Interactions of fullerenes and calixarenes in the solid state studied with 13C-CP-MAS NMR.

Williams, R.M.; Zwier, J.M.; Verhoeven, J.W.; Nachtegaal, G.H.; Kentgens, A.P.M.

DOI
10.1021/ja00094a073

Publication date
1994

Published in
Journal of the American Chemical Society

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
Interactions of Fullerenes and Calixarenes in the Solid State Studied with 13C CP-MAS NMR

René M. Williams, Jurriaan M. Zwier, and Jan W. Verhoeven

Laboratory of Organic Chemistry
University of Amsterdam
Nieuwe Achtergracht 129
1018 WS Amsterdam, The Netherlands

Gerda H. Nachtegaal and Arno P. M. Kentgens
SON National HF-NMR Facility, University of Nijmegen
Toernooiveld, 6525 ED Nijmegen, The Netherlands

Received March 15, 1994

Linking fullerene chemistry1 with the wide field of chemistry of the calixarenes2 is one of the aims of our current research.3 Understanding the interactions between fullerenes and calixarenes may lead not only to water-soluble fullerene complexes4 with a potential biomedical application5 but also to phase-transfer purification of fullerenes, self-assembly of macroscopic fullerene structures using supramolecular architecture, solar energy conversion materials, and new electronic devices.6

Previously we reported the solubilization of C$_{60}$, under conditions which leave C$_{60}$ uncomplexed, by a water-soluble calixarene.7 Here we report our findings on the interactions of fullerenes with calixarenes, forming a solid-state complex between C$_{60}$ and 4-tert-butylcalix[8]arene, and solid-state NMR of this complex.

Calixarene 1 (Figure 2) and C$_{60}$ (MER Corp.) dissolved in a 1:1 stoichiometry in carbon disulfide yield after an extended period at low temperature a greenish microcrystalline material. IR spectroscopy (KBr) indicates that the intramolecular hydrogen bonding normally present in the calixarenes is partly disrupted (indicated by a shift from 3200 to 3400 cm$^{-1}$). Elemental analysis of the metallic green material is consistent with a 1:1 stoichiometry.8 The material can be dissolved in carbon disulfide or chloroform, in which dissociation occurs and the magenta color can be removed by filtration (PVDF Gelman Acrodisc L.C.3 ($0.45 \mu m$) and the large unit cell found in the X-ray “diffraction (Z = 4).” The spectrum of the green powder consisting of C$_{60}$ and I obtained from Cs$_2$ washed with benzene, however, shows rather narrow lines for the calixarene carbons.

Changes occurring upon C$_{60}$-1 complexation11 are a slight but significant upfield shift of the resonance of C$_{60}$ at 1.4 ppm12 (the significance of this shift was checked by 13C NMR of a mixture of C$_{60}$ and the C$_{60}$-1 complex, as a static spectrum shows an only slightly broader

(8) Room temperature solid-state MAS NMR data were obtained on a Bruker AM 500 spectrometer equipped with a magic angle spinning probe; number of scans, 450; rotor speed, 4000–5000 Hz. The magic angle was checked by addition of a small amount of KBr to each sample (sample size ca. 250 mg) in the zirconium oxide sample holder.

Figure 1. 13C MAS NMR of C$_{60}$ and 13C CP-MAS NMR of 1 and the C$_{60}$-1 complex (see ref 11 for details). Spinning sidebands are denoted with an asterisk.

The size-specific complexation found in the aqueous-phase experiments4 using a water-soluble analog of 1 reappears in complexation studies using fullerenes dissolved in benzene. Whereas addition of a benzene solution of C$_{60}$ in benzene leads to discoloration of the magenta solution and formation of a green precipitate, addition to a benzene solution of a mixture of C$_{60}$ and C$_{70}$ leads to selective complexation of C$_{60}$, leaving C$_{70}$ in solution.

13C solid-state NMR spectra of C$_{60}$, the 4-tert-butylcalix[8]-arene (1), and the C$_{60}$-1 complex are shown in Figure 1. The narrow line of C$_{60}$ at 143.7 ppm is in excellent agreement with literature reports.9 The rather broad aromatic resonances and the signals in the aliphatic region of the free calixarene (its solid-state structure is described as a pleated loop)24 are present with literature25 and can be understood on the basis of the distorted solid-state structure of 1 and the large unit cell found in the X-ray diffraction (Z = 4). The spectrum of the green powder consisting of C$_{60}$ and I obtained from Cs$_2$ washed with benzene, however, shows rather narrow lines for the calixarene carbons.

Isotropic rotation of the C$_{60}$ molecules is still present in the complex, as a static spectrum shows an only slightly broader
Conclusion. Complexation of C_{60} with calix[8]arene\(^{12}\) can occur in CS\(_2\) and in benzene solution, leading to the formation of a solid-state complex. The experiments indicate a 1:1 stoichiometry for the complex. C\(_{60}\) does not form similar complexes with calix[8]arenes, leading to the possibility of transferring C\(_{60}\) to the solid phase, separating it from C\(_{70}\) remaining in solution.

The solid-state complexation in benzene, leading to precipitation, provides strong evidence for establishment of an interaction between C\(_{60}\) and 1. A change of the conformation of the calixarene upon complexation is indicated by the OH shift in the IR and the solid-state CP-MAS NMR data. From the NMR data the following can be concluded. (i) The complexed calixarene does not have a pleated loop conformation. (ii) The signals of C\(_1\) and C\(_{2}\) at 147.3 and 144.2 ppm show two small side peaks at 149.1 and 145.4 ppm, indicating the presence of two conformational types of phenolic units in a ratio of 2:6 (based on integrals of the 149.1- and 147.3-ppm signals), in agreement with a two-winged conformation. (iii) Interpretation of the three main aliphatic signals analogously to that given\(^{12}\) in the case of the octaacetate 1 suggests the presence of two types of tert-butyl groups (ratio 2:6) and two types of bridging methylene groups (ratio 1:1, with a 2.6-ppm difference\(^{12}\)). These conclusions are in agreement with a two-winged or alternate cone conformation of the calixarene (with the 1 and 5 phenolic units "out" or "down" being most likely).

The shift of the C\(_{60}\) resonance of 1.4 ppm and the large effect of complexation on calixarene resonances provide further proof that an interaction between C\(_{60}\) and the (aromatic) units of the calixarene is established.

We would like to draw attention to the agreement of our NMR data with the reported data for the 4-tert-butylcalix[4]arene-toluene complex\(^{16}\) and to the recently reported\(^{17}\) unexpectedly good "induced fit" (p-accepting) solvent complexation of 1 used as a sensor.

We are currently further investigating this interesting complex with other NMR techniques, studying the interactions of other calixarenes with fullerenes, and extending these systems in a supramolecular way.

Acknowledgment. This research was supported by the Netherlands Foundation for Chemical Research (SON) with financial aid from the Netherlands Organization for the Advancement of Scientific Research (NWO).

Note Added in Proof: After submission of our original manuscript, selective complexation of C\(_{60}\) by calixarenes was also reported by J. L. Atwood, G. A. Koutsantonis, and C. L. Raston (Nature 1994, 368, 229-231) and by T. Suzuki, K. Nakasima, and S. Shinkai (Chem. Lett. 1994, 699-702). In the latter paper, a limited amount of \(^{13}\) C NMR data are presented that agree well with the more extensive data discussed here. We are grateful to Prof. Shinkai for making available his data to us prior to publication.

\(^{(11)}\) \(^{13}\)C NMR data (in ppm). C\(_{60}\) solid state: \(\delta\) 143.73. Calix-1 complex solid state: \(\delta\) 30.48 (CH\(_3\)); 31.09 (w, sh) (CH\(_2\)); 31.53 (br) (CH\(_2\)); 33.59 (w) (CH\(_2\)); 33.96 (w) (CH\(_3\)); 35.36 (br) (CH\(_3\)); 125.53 (C\(_3\)); 128.16 (C\(_3\)); 129.37 (C\(_3\)); 142.30 (C\(_1\)); 144.55 (C\(_1\)); 147.3 (C\(_1\)); 149.13 (C\(_1\)). Solid state: \(\delta\) 31.20, 33.54 (CH\(_2\), CH\(_3\), C\(_3\)); 125.57 (br) (C\(_1\)); 128.97 (br) (C\(_1\)); 144.30 (br) (C\(_1\)); 146.86 (br) (C\(_1\)). In CDCl\(_3\): \(\delta\) 31.45 (CH\(_3\)); 32.31 (CH\(_3\)); 33.99 (C\(_3\)); 125.50 (C\(_1\)); 128.68 (C\(_1\)); 144.69 (C\(_1\)); 146.59 (C\(_1\)). Cross polarization times (\(T_{\text{CP}}\)) based on peak intensities were calculated by using a fit procedure described in ref 13a. Calix-1 complex solid state: \(\delta\) 31.53 (\(T_{\text{CP}} = 0.45\) ms), 33.59 (0.45), 35.36 (0.55), 125.53 (0.21), 128.16 (0.21), 142.30 (1.1), 147.3 (3.3).

\(^{(12)}\) (a) One of the referees pointed out that application of the Spiescke-Schneider correlation\(^{12}\) to this shift would suggest a ground-state charge-transfer character of 55%. This appears unrealistically high, and therefore it is likely that other factors besides charge density determine the shift in the complex. (b) Ohl, G. A.; Mateescu, G. D. J. Am. Chem. Soc. 1970, 92, 1430-1432.

\(^{(14)}\) We are grateful to one of the referees for pointing out this effect.

\(^{(15)}\) Calixarene 1 (purified by crystallization from chloroform before use) is commercially available (Janssen Chimica).
