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On Likelihood Ratios for Partially Identified Models

H. Peter Boswijk∗

Tinbergen Institute & University of Amsterdam†

May 1995; Revised June 1995.

Abstract

This paper studies asymptotic properties of likelihood-based estimators and test statistics

for models which are partially identified. We concentrate on local or global identification

problems which are linked to (“structural”) reparameterisations, where the original (“reduced

form”) parameters are identified. The problem is approached via local asymptotic analysis of

likelihood ratio functions. Applications include simultaneous equation models under limited

information, testing for cointegration in VAR models, and testing structural hypotheses on

cointegrating vectors.

1 Introduction

One of the central themes in econometric analysis is the identification problem. For example, the

Cowles Commission’s work focused on identification and estimation of simultaneous equations

models; and more recently, identification of long-run relationships in cointegration models has

attracted much attention. This emphasis may be explained by the fact that econometrics mostly

pertains to non-experimental phenomena, so that the observed variation in the data is a reduced

form outcome of the interaction of various underlying structural relationships. Thus, we are

faced with the task of making inference on structural parameters, which only indirectly, and often

non-linearly, determine the joint distribution of the observables.

If the relation between structural and reduced-form parameters is non-linear, then there will

often be specific ranges of the parameter space where part of the structural parameter vector

is not identified. If this range is essentially the entire parameter space, then this is a global

lack of identification; on the other hand, if it is a subspace (of Lebesgue measure zero), then the

identification problem is local. Although local identification problems have always been recognised
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in econometric modelling, usually no specific attention is given to their effect on estimation and

inference. Rather, the problem is avoided by assuming that the true value of the parameter is

outside the problematic region of the parameter space. This common approach was questioned by

Phillips (1989), who argued that by concentrating on well-behaved criterion functions, we exclude

interesting and empirically relevant phenomena such as spurious regressions and simultaneous

equations models under a (local) rank condition violation. More recently, Dufour (1994) showed

that if parameters are locally non-identified, then confidence sets for these parameters cannot

be bounded with probability one; he also proved that confidence sets based on Wald tests (as

opposed to likelihood ratio tests) do not satisfy this property, and thus can yield very unreliable

inferences.

These results suggest that analyzing the behaviour of maximum likelihood estimators and

likelihood ratio test statistics under local unidentification is not only of theoretical interest, but

also of empirical relevance. The present paper seeks to provide such an analysis for a rather general

class of parametric models. Following Phillips (1989), we analyse the local asymptotic behaviour

of criterion functions, from which the asymptotic distributions of the relevant estimators and test

statistics are readily obtained; here we focus on the likelihood ratio as the criterion function.

We extend Phillips’ analysis to a more general class of models, where estimators need not have

an explicit closed form expression. In that case the advantages of studying the likelihood ratio

function are even more prominent: the conventional “delta method” to obtain the asymptotic

distributions of statistics of interest will break down, since unidentification implies that (some of

the) parameters are not estimated consistently, and the second derivative matrix of the criterion

function is singular. Our analysis covers not only the classical case of root-n consistent and

asymptotically Gaussian estimation, but also non-ergodic models with limiting mixed Gaussian

distributions or Brownian motion functionals.

The plan of the paper is as follows. Section 2 reviews local asymptotic analysis of likelihood

ratios (LR’s). Following Jeganathan (1988), we define locally asymptotically quadratic (LAQ)

LR’s, as well as two special cases thereof, viz. locally asymptotically mixed normal (LAMN) and

locally asymptotically normal (LAN) LR’s. In Section 3, we analyse likelihood-based estimation

and inference on structural parameters for two cases: the globally (partially) unidentified case,

and the locally (partially) unidentified case. In Section 4 the results are applied to simultaneous

equation models under limited information, testing for cointegration in VAR models, and testing

structural hypotheses on cointegrating vectors. Section 5 contains some concluding remarks.

Throughout the paper, the Euclidean matrix norm (tr(A′A))1/2 is denoted by ‖A‖. Positive

definiteness of a matrix A is denoted by A > 0. For any n×m matrix A of full column rank, A⊥
denotes an n× (n−m) matrix of full column rank such that A′⊥A = 0. We use L(X) or L(X|P )

to signify the distribution of X (under a probability measure P ); convergence in distribution is

denoted by L→.
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2 LAQ Likelihood Ratios

In this section we shall review the theory of locally asymptotically quadratic (LAQ) likelihood

ratios (LR’s). This theory was developed recently by Jeganathan (1988), building on earlier work

of Le Cam (1960) on locally asymptotically normal (LAN) LR’s and of Jeganathan (1980) on

locally asymptotically mixed normal (LAMN) LR’s. An overview of the material in this section

is given in Le Cam and Yang (1990); see also Phillips (1988, 1989) for a lucid introduction.

Consider a p-vector stochastic process {Xt, t = 1, 2, . . .}, defined on a family of probability

spaces {(Ω,F , Pθ), θ ∈ Θ}, where θ is a k-dimensional parameter vector, with parameter space

Θ ⊆ Rk. For fixed n, Xn ≡ (X1, . . . , Xn) defines a Borel-measurable mapping from Ω into Rkn,

inducing a family of probability measures {Pθ,n, θ ∈ Θ} on (Rkn,B), where B denotes the Borel

σ-field. We shall assume that for all n > 0 and θ ∈ Θ, the measure Pθ,n is dominated by a σ-finite

measure µ; the density of Pθ,n with respect to µ is defined as the Radon-Nykodym derivative

fn(xn; θ) ≡ dPθ,n/dµ. It will be most convenient to think of Xn as a continuous random vector,

so that we may take the Lebesgue measure for µ, in which case fn(xn; θ) is the probability density

function of Xn. However, the following results may also be applied to distributions with discrete

or mixed discrete/continuous supports. What is required is that the support of Pθ,n does not

depend on θ, so that any two measures Pθ0,n and Pθ1,n are mutually absolutely continuous.

Define the likelihood function by Ln(θ) = fn(Xn; θ); note that Ln(θ) is viewed as a random

function of θ. The log-likelihood ratio for two parameter points θ0, θ1 ∈ Θ is

Λn(θ1, θ0) ≡ ln
dPθ1,n

dPθ0,n
= ln

fn(Xn; θ1)
fn(Xn; θ0)

= ln
Ln(θ1)
Ln(θ0)

. (1)

Suppose that we consider Λn(θ, θ0) as a function of θ, with θ0 fixed at a specific value. Then

this function has the same maximand as the likelihood function Ln(θ), so that the maximum

likelihood estimator (MLE) θ̂n, if it exists, satisfies

θ̂n ≡ arg max
θ∈Θ

Ln(θ) = arg max
θ∈Θ

Λn(θ, θ0). (2)

Thus, the distribution (under Pθ0,n) of the MLE (assuming measurability of θ̂n) may be derived

from the distribution of the log-likelihood ratio function Λn(θ, θ0).

Since the distributions of estimators and test statistics are often quite complex (if not in-

tractable) in finite samples, we are interested in their asymptotic properties, as n → ∞. The

approach taken here is to derive the asymptotic properties of these statistics via analyzing

the limiting behaviour of Λn(θ, θ0). To guarantee that this function actually has a limit, it is

necessary to study the behaviour of Λn in shrinking neighbourhoods of θ0, i.e., for sequences

θn = θ0 + Dnτ , where Dn is a sequence of k × k non-singular matrices such that ‖Dn‖ → 0, and

τ = D−1
n (θn − θ0) ∈ Tn is a parameter vector measuring the “normed” deviation from θ0, with

parameter space

Tn = {τ ∈ Rk : θ0 + Dnτ ∈ Θ}. (3)
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In the classical case of independent and identically distributed observations, we have Dn = n1/2Ik.

However, the present general setup allows for different rates of convergence, which may vary across

different linear combinations of θ; note that Dn need not be diagonal. We shall assume that the

dimension of Θ is k, and that θ0 lies in the interior of Θ, so that limn→∞ Tn = Rk, i.e., the

parameter θ is allowed to vary freely in a neigbourhood of θ0.

Definition 1 (Jeganathan, 1988) The sequence of families {Pθ,n; θ ∈ Θ;n = 1, 2, . . .} is said to

have locally asymptotically quadratic (LAQ) likelihood ratios at θ0 ∈ Θ if

(i) there exist sequences of norming matrices Dn, random k-vectors Sn and almost surely pos-

itive definite k × k random matrices Jn (all possibly depending on θ0), such that under

Pθ0,n,

Λn(θ0 + Dnτn, θ0)− τ ′nSn +
1
2
τ ′nJnτn

P→ 0 (4)

for every bounded sequence {τn ∈ Tn};

(ii) under Pθ0,n,

(Sn, Jn) L→ (S, J), (5)

where S is a random vector and J is an almost surely positive definite random matrix.

Moreover, E[expΛ(τ)] = 1 for all τ ∈ Rk, where

Λ(τ) ≡ τ ′S − 1
2
τ ′Jτ. (6)

The last part of condition (ii) implies that the sequences {Pθ0,n} and {Pθ0+Dnτ,n} are contigu-

ous, see Jeganathan (1988), which may be loosely defined by the property that in the limit, the

support of Pθ0+Dnτ,n does not depend on τ . Note that S is the first derivative of Λ(τ), evaluated

in τ = 0, and hence (since Λn is equal to the log-likelihood, up to an additive constant) the limit

of the normed score vector, evaluated in θ0; similarly, J equals minus the limiting Hessian matrix,

or the limit of the normed observed information matrix.

Abbreviate Λn(θ0 + Dnτ, θ0) as Λn(τ). The conditions for LAQ imply that under Pθ0,n,

Λn(τ) L→ Λ(τ). (7)

However, this convergence is pointwise, i.e., for fixed τ . For the purpose of the present paper this

needs to be strengthened to weak convergence of the random function Λn(.). Let C(Rk) denote

the space of continuous functions on Rk under the uniform metric, and let C(K) be defined

analogously for any compact set K ⊂ Rk. Observe that in C(Rk), Λ is not a continuous function

of (S, J): however close two (non-identical) realisations of (S, J) are, the distance between the

corresponding realisations of Λ will be infinite. Therefore, we can only hope to establish (7)

uniformly on compact sets, i.e., in C(K). Analogously to the analysis of Billingsley (1968) for
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C[0, 1], this will require, in addition to pointwise convergence, some smoothness conditions on Λn,

in particular stochastic equicontinuity (see, e.g., Newey, 1991, and Saikkonen, 1993):

Definition 2 The sequence of functions Λn on C(K) is said to be stochastically equicontinuous

if for each ε > 0 and η > 0, there exists a δ > 0 and an n0 such that

Pθ0,n

{
sup

t,τ∈K,‖t−τ‖<δ
|Λn(t)− Λn(τ)| > ε

}
≤ η, n ≥ n0. (8)

The sequence Dn, and hence Tn, may always be chosen such that K ⊂ Tn for all n, so that

Λn is defined on the whole of K. Let τ̂n = arg maxτ∈K Λn(τ), which can be seen as a truncated

version of the sequence D−1
n (θ̂n−θ0): if the latter lies outside K, then τ̂n will be on the boundary

of K (denoted by ∂K). If Λn
L→ Λ in C(K), then the continuous mapping theorem (see Billingsley,

1968) guarantees that

τ̂n
L→ arg max

τ∈K
Λ(τ) = 1K(J−1S) · J−1S + 1Kc(J−1S) · arg max

τ∈∂K
Λ(τ), (9)

where 1A(.) is the indicator function of the set A. Note that the maximand is a continuous

mapping of Λ almost surely, because Λ is a quadratic function with negative definite second

derivative almost surely.

Let Q denote the probability measure induced on Rk by J−1S. Since Rk is separable and

complete, Q is tight, see Billingsley (1968, Theorem 1.4), which entails that for any ε > 0 there

exists a K such that Q(K) > 1 − ε. This means that the distribution of the right-hand side of

(9) is arbitrarily close to the distribution of J−1S. Similar reasoning shows that the distribution,

for fixed n, of D−1
n (θ̂n − θ0) is arbitrarily close to that of τ̂n. In order to make the same claim

for the sequence {D−1
n (θ̂n − θ0)} however, we need the sequence of probability measures Qn of

D−1
n (θ̂n − θ0) to be uniformly tight, which entails that for any ε > 0 there exists a K such that

Qn(K) > 1 − ε for all n. Since the measures Qn are defined on Rk, this is nothing else than

requiring that D−1
n (θ̂n − θ0) is bounded in probability, or Op(1). If this is satisfied, then we may

conclude that

D−1
n (θ̂n − θ0)

L→ arg max
τ∈Rk

Λ(τ) = J−1S. (10)

Conditions for this kind of uniform tightness of maximum likelihood estimators are given, e.g.,

in Basawa and Scott (1983) and Prakasa Rao (1987). Since ‖Dn‖ → 0, they immediately imply

that θ̂n is consistent. Its asymptotic distribution is determined by the joint distribution of S and

J . Two special cases are considered in the following definition:

Definition 3 (Jeganathan, 1980) Assume that the sequence of families {Pθ,n, θ ∈ Θ} have LAQ

likelihood ratios at θ0; then the likelihood ratios are said to be locally asymptotically mixed normal

(LAMN), if

L(S, J) = L(J1/2Z, J), (11)
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where Z is a standard normal random vector, independent of J ; if in addition to (11), J is

non-random, then the likelihood ratios are said to be locally asymptotically normal (LAN).

Under LAN, and if Dn = n−1/2Ik, we have the classical result

√
n(θ̂n − θ0)

L→ J−1/2Z ∼ N(0, J−1), (12)

where J−1 is the Cramér-Rao lower bound. Under LAMN, the limit distribution of D−1
n (θ̂n− θ0)

is N(0, J−1) conditionally on J , so that the unconditional distribution is a mixture of normals.

For both LAN and LAMN, it can easily be shown that the likelihood ratio test statistic for the

simple hypothesis θ = θ0 converges in distribution to Z ′Z, which has a χ2(k) distribution.

Jeganathan (1980) has shown that a necessary and sufficient condition for LAMN is that

the limiting information is an asymptotically ancillary statistic, in the sense that L(J |Pθ0+Dnτ,n)

does not depend on τ . Moreover, he has shown that if LAQ holds for all θ ∈ Θ, then LAMN (or

possibly LAN) is satisfied for almost all θ ∈ Θ, i.e., outside a set of Lebesgue measure zero. For

example, the Gaussian AR(1) model has LAN likelihood ratios if the autoregressive root is stable,

and LAMN LR’s if the root is explosive; in case of a unit root, the LR is LAQ but not LAMN or

LAN; in that case

L(S, J) = L
(∫ 1

0
W (t)dW (t),

∫ 1

0
W (t)2dt

)
, (13)

where W (t) is a standard Brownian motion process; hence, this is a special case of a so-called lo-

cally asymptotically Brownian functional (LABF) likelihood ratio (see Jeganathan, 1988; Phillips,

1989).

Because Definition 1 requires the limiting normed information J to be non-singular, θ will

be fully identified. See Rothenberg (1971) for the connection between identification and non-

singularity of the information matrix. In the next section, we look at structural reparameter-

isations of θ which may be globally or locally unidentified, and study the effect of this lack of

identification on likelihood ratio test statistics and maximum likelihood estimators.

3 Partially Identified Models

Consider a statistical model {Pθ,n, θ ∈ Θ, n = 1, 2, . . .}which satisfies the following assumptions:

Assumption 1 Under Pθ0,n, the likelihood ratio sequence Λn(τ) = ln dPθ0+Dnτ,n/dPθ0,n is locally

asymptotically quadratic and stochastically equicontinuous.

Assumption 2 Under Pθ0,n, the sequence of normed and centered maximum likelihood estimators

D−1
n (θ̂n − θ0) exists, is Borel-measurable, and is uniformly tight.

6



As discussed in the previous section, these assumptions allow the limiting distribution of

D−1
n (θ̂n − θ0) to be obtained from the limiting likelihood ratio Λ(τ) and the continuous mapping

theorem. It will be useful to consider the normed log-likelihood (cf. Barndorff-Nielsen and Cox,

1994)

Λn(θ, θ̂n) = Λn(θ, θ0)−max
θ∈Θ

Λn(θ, θ0). (14)

Letting Λ̄n(τ) ≡ Λn(θ0 + Dnτ, θ̂n), we have under Assumptions 1 and 2,

Λ̄n(τ) L→ Λ(τ)−max
τ∈Rk

Λ(τ)

= −1
2
(τ − J−1S)′J(τ − J−1S)

≡ Λ̄(τ), (15)

uniformly on compact sets.

Consider now the hypothesis that the parameter vector θ is related to another l-dimensional

“structural” parameter vector φ ∈ Φ ⊆ Rl:

H0 : θ = h(φ), (16)

where h : Rl 7→ Rk is a continuously differentiable function with derivative matrix Hφ =

∂h(φ)/∂φ′. If, at a particular point φ0 ∈ Φ, Hφ0 has full column rank, then φ0 ∈ Φ is fully

identifiable, and H0 entails k− l restrictions on θ. We denote the parameter space under the null

hypothesis by

Θ0 = {θ ∈ Θ : θ = h(φ), φ ∈ Φ}. (17)

The corresponding sequence of parameter spaces for τ is

T0,n ≡ {τ ∈ Rk : θ0 + Dnτ ∈ Θ0}. (18)

The likelihood ratio test statistic for H0 and the restricted MLE of θ (if it exists) are given by

LRn ≡ −2 max
θ∈Θ0

Λn(θ, θ̂n) = −2 max
τ∈T0,n

Λ̄n(τ), (19)

θ̃n ≡ arg max
θ∈Θ0

Λn(θ, θ̂n) = θ0 + Dn arg max
τ∈T0,n

Λ̄n(τ). (20)

We are interested in the asymptotic behaviour of LRn and θ̃n. Analogously to the previous

section, the idea is to derive their properties from convergence of Λ̄n and the continuous mapping

theorem. This requires two further assumptions:

Assumption 3 Under Pθ0,n, the sequence of normed and centered restricted maximum likelihood

estimators D−1
n (θ̃n − θ0) exists, is Borel-measurable, and is uniformly tight.
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Assumption 4 There exists a limiting local parameter space T0, i.e.,

lim
n→∞ T0,n = T0. (21)

Assumption 3 allows us to use weak convergence of Λ̄n on compact subsets, together with the

continuous mapping theorem, for deriving the limit distribution of LRn and D−1
n (θ̃n − θ0). The

fourth assumption is only related to the sequence of parameter spaces, and thus can be checked

without making any probability argument. Observe that no assumption has been made regarding

the shape of T0. We now obtain the following result:

Theorem 1 Let Assumptions 1-4 hold for some θ0 in the interior of Θ0. Then, as n →∞,

LRn
L→ min

τ∈T0

(τ − J−1S)′J(τ − J−1S), (22)

D−1
n (θ̃n − θ0)

L→ arg min
τ∈T0

(τ − J−1S)′J(τ − J−1S) (23)

Proofs are given in the Appendix. From this theorem, it should be evident that the random

function Λ̄(τ) fully determines the asymptotic properties of the statistics of interest. Thus, once

one has established the uniform LAQ property of the unrestricted model (together with uniform

tightness of the restricted and unrestricted MLE sequences), no new probability arguments have

to be made. What remains to be analysed is the shape of the null space T0, which determines the

way in which the asymptotic distributions of LRn and θ̃n are defined from Λ̄(τ). We now consider

two special cases, which differ with respect to the properties of T0.

3.1 Partially Globally Unidentified Models

Let Br(φ0) denote a ball around a particular point φ0 ∈ Φ with radius r, such that Br(φ0) ⊂
Φ (hence φ0 is an interior point of Φ). We shall call a parameter point φ0 partially globally

unidentified if there is some r > 0 such that

∀φ ∈ Br(φ0) : rankHφ = l1, (24)

where Hφ is the k × l derivative matrix of h(φ), so that l1 ≤ min(k, l). Let A be a particular

orthogonal l × l matrix, such that

Hφ0A = [H1 : 0], A′φ =

(
φ1

φ2

)
, (25)

where H1 is a full column rank matrix of order m× l1 and φ1 and φ2 are vectors of dimension l1

and l2 = l − l1, respectively.

A Taylor series expansion of h(φ) around φ0 (with θ0 = h(φ0)) gives

θ − θ0 = Hφ0(φ− φ0) + o(‖φ− φ0‖)
= H1(φ1 − φ1,0) + o(‖φ− φ0‖). (26)
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We see that in a neigbourhood of φ0, θ only varies with φ1, so that φ2 is not identified, i.e., φ2,0 is

not unique. The rank condition (24) implies that Θ0 has dimension l1 (in a neigbourhood of θ0),

which in turn implies that H1 will not depend on the choice of φ2,0 (among all observationally

equivalent points). Thus φ2 does not enter (26), so that the remainder term may be replaced by

o(‖φ1 − φ1,0‖).
Let Cn be a sequence of l1 × l1 matrices such that ‖Cn‖ → 0, and chosen such that H1Cn =

DnH̄ for some k × l1 matrix H̄ of full column rank. Note that if Dn = n−αIk, then Cn = n−αIl1

and H̄ = H1. Consider a local sequence φ1,n = φ1,0 + Cnψ, where ψ has the same relation to φ

as τ has to θ. We now find

τ = D−1
n (θn − θ0)

= D−1
n H1CnC−1

n (φ1,n − φ1,0) + D−1
n o(‖φ1,n − φ1,0‖)

= H̄ψ + o(1), (27)

which means that in the limit, the restricted parameter space of τ is the linear subspace

T0 = {τ ∈ Rk : τ = H̄ψ, ψ ∈ Rl1}
= {τ ∈ Rk : H̄ ′

⊥τ = 0}. (28)

Combining this with Theorem 1, we find

Theorem 2 Let the assumptions of Theorem 1 be satisfied, and let φ0 satisfy condition (24).

Then, as n →∞,

LRn
L→ S′J−1S − S′H̄(H̄ ′JH̄)−1H̄ ′S

= S′J−1H̄⊥(H̄ ′
⊥J−1H̄⊥)−1H̄ ′

⊥J−1S, (29)

D−1
n (θ̃n − θ0)

L→ H̄(H̄ ′JH̄)−1H̄ ′S. (30)

Corollary 1 Under the assumptions of Theorem 2 and LAMN,

LRn
L→ χ2(k − l1). (31)

We see that in globally partially unidentified models, the LAMN condition allows us to use

conventional tables for testing hypotheses; the only effect of the partial identification is that the

appropriate degrees of freedom is k − l1 rather than k − l. In practice, the value of l1 can be

computed either as the rank of the Jacobian matrix Hφ = ∂θ/∂φ′, or as the rank of the observed

information on φ, which is H ′
φJθ,nHφ, with Jθ,n the observed information on θ; see Boswijk (1995)

and Doornik (1995).
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3.2 Partially Locally Unidentified Models

A parameter point φ0 is said to be partially locally unidentified, if instead of (24), we have

rankHφ0 = l1 < max
φ∈Br(φ0)

rankHφ = l, (32)

where the maximal rank1 l holds almost everywhere in Br(φ0). Thus φ0 is a singular point of

Hφ, see Rothenberg (1971). This implies that the rank of Hφ does not equal the dimension of the

parameter space Θ0, which is l.

Let H1 and φ1 be as defined before. The Taylor series expansion (26) is still valid, but now

H1 does depend on the choice of true value of the locally unidentified parameter φ2. Explicitly,

we now have

θ − θ0 = H1(φ2)(φ1 − φ1,0) + o(‖φ1 − φ1,0‖). (33)

Thus the dependence of θ on φ2 is non-linear, even in the limit. The following example illustrates

this point.

Example 1 Consider the AR(1) model with constant

Xt = ρXt−1 + α + εt, (34)

and define the reduced form parameter vector θ = (ρ, α)′. Consider the “structural” reparameter-

isation in terms of φ = (ρ, µ)′:

θ =

(
ρ

α

)
=

(
ρ

µ(1− ρ)

)
=

(
φ1

φ2(1− φ1)

)
= h(φ), (35)

which corresponds to the model

(Xt − µ) = ρ(Xt−1 − µ) + εt. (36)

The derivative of θ = h(φ) is

Hφ =
∂θ

∂φ′
=

[
1 0

−φ2 (1− φ1)

]
. (37)

If ρ0 = 1 (in which case Xt is a random walk), then Hφ0 has rank 1, and µ0 is not identified.

However, the first column of Hφ0 obviously depends on φ2. We may write this as

θ − θ0 =

(
1

−φ2

)
(φ1 − φ1,0) = H1(φ2)(φ1 − φ1,0). (38)

1The maximal rank could also be a number l∗ between l1 and l, which would combine local and global identifi-

cation problems; for simplicity this is not considered explicitly here.
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The fact that φ2 is not identified implies that we cannot in general expect its estimator φ̃2,n

to converge in probability to a unique limit. In some cases it will actually diverge, in the sense

that it has to be divided by a power of n in order to have a non-degenerate limiting distribution.

In the above example, it is well known that θ̃1,n − θ1,0 = Op(n−1) and θ̃2,n − θ2,0 = Op(n−1/2);

since φ̃1,n − φ1,0 = θ̃1,n − θ1,0, it follows that φ̃2,n = −(θ̃2,n − θ2,0)/(θ̃1,n − θ1,0) = Op(n1/2).

Therefore, consider the sequences φ1,n = φ1,0 + Cnψ and φ2,n = Bnγ, where ‖Cn‖ → 0, and

were Cn and Bn are chosen such that

lim
n→∞D−1

n H1(Bnγ)Cn = H̄(γ), (39)

where H̄(γ) is a k × l1 matrix function of full column rank (for all γ). Via similar derivations as

in (27), this leads to the following restricted parameter space for τ (with l1 + l2 = l):

T0 = {τ ∈ Rk : τ = H̄(γ)ψ, ψ ∈ Rl1 , γ ∈ Rl2}. (40)

In contrast with the previous subsection, this is not a linear subspace. However, it is linear if

we first fix γ. Maximizing over ψ yields the same results as in Theorem 2, but with LRn, θ̃n and

H̄ all functions of γ. This implies

Theorem 3 Let the assumptions of Theorem 1 be satisfied, and let φ0 satisfy condition (32).

Then, as n →∞,

LRn
L→ min

γ∈Rl2

S′J−1H̄(γ)⊥[H̄(γ)′⊥J−1H̄(γ)⊥]−1H̄(γ)′⊥J−1S, (41)

D−1
n (θ̃n − θ0)

L→ H̄(γ̄)[H̄(γ̄)′JH̄(γ̄)]−1H̄(γ̄)′S, (42)

where γ̄ is the minimand of (41).

Corollary 2 Under the assumptions of Theorem 3 and LAMN,

LRn
L→ min

γ∈Rl2

Z ′A(γ)A(γ)′Z, (43)

where Z is a standard normal vector and A(γ) = J−1/2H̄(γ)⊥[H̄(γ)′⊥J−1H̄(γ)⊥]−1/2.

For fixed γ, the distribution of A(γ)′Z is N(0, Ik−l1), which shows that the limiting distribution

in (43) is the minimum over χ2(k− l1) random variables, so that it is stochastically dominated by

the χ2(k− l1) distribution. Thus, we can use critical values from this χ2 distribution to construct

a conservative test based on the LR statistics. In the next section we shall encounter a number

of examples where the right-hand side of (43) can in fact be bounded by a χ2(k − l) random

variable, which allows as to use tighter bounds for the appropriate critical values. No such results

can however be established outside the LAMN framework.
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4 Applications

In this section we shall apply the analysis developed above to a number of econometric models

which are partially unidentified. We shall focus on the behaviour of the likelihood ratio statistic,

although the asymptotic distribution of the restricted MLE can usually be obtained as a by-

product. In all cases, the unrestricted reduced form model will be a (multivariate) Gaussian

linear regression (possibly with lagged dependent regressors). For simplicity, we shall always

assume that the error variance (matrix) is known, which implies that the likelihood ratio is exactly

quadratic (the results can, however, be extended to the case of unknown variance parameters).

This reduces proving LAQ to proving convergence in distribution of the normed score vector and

observed information matrix. Also, stochastic equicontinuity will be trivially satisfied, as well

as tightness of the unrestricted MLE. Assumption 3 (tightness of the restricted MLE) will be

assumed rather than proved explicitly.

4.1 Limited Information Simultaneous Equations

Consider the multivariate linear regression model

Yt = Π′xt + Vt, t = 1, . . . , n, (44)

where Yt is a g-vector of dependent random variables, xt is an m-vector of non-random explanatory

variables, and Vt is a g-vector of i.i.d. N(0, Ω) disturbances, with Ω > 0 known. Let θ = vecΠ (of

order k = gm); the unrestricted parameter space is Θ = Rk. The log-likelihood ratio is given by

Λn(θ0 + ∆nτ, θ0) = τ ′D′
nvec

(
n∑

t=1

xtV
′
t Ω−1

)
− 1

2
τ ′D′

n

(
Ω−1 ⊗

n∑

t=1

xtx
′
t

)
Dnτ. (45)

Assume that

lim
n→∞

1
n

n∑

t=1

xtx
′
t = M > 0, (46)

which implies
1√
n

n∑

t=1

xtV
′
t Ω−1 L→ (Ω−1 ⊗M)1/2Z ∼ N(0, Ω−1 ⊗M), (47)

where Z is a standard normal vector. Thus the likelihood ratio is LAN, with Dn = n−1/2Ik and

J = (Ω−1 ⊗M):

Λn(θ0 + Dnτ, θ0)
L→ τ ′J1/2Z − 1

2
τ ′Jτ = Λ(τ). (48)

Consider the following simultaneous model in structural form:

Y1t = β′Y2t + γ′x1t + U1t, (49.a)

Y2t = Π′12x1t + Π′22x2t + V2t, (49.b)
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where Yt and xt are partitioned such that Y1t is scalar, and xit is of order mi, i = 1, 2; Π is

partitioned conformably. The reduced form of this model implies:

Π =

[
π11 Π12

π21 Π22

]
=

[
Π12β + γ Π12

Π22β Π22

]
. (50)

Define θ = (π′11, π
′
21, (vecΠ12)′, (vecΠ22)′)′ and φ = (β′, γ′, (vecΠ12)′, (vecΠ22)′)′. The derivative

matrix of θ = h(φ) is

Hφ =




Π12 Im1 (β′ ⊗ Im1) 0

Π22 0 0 (β′ ⊗ Im2)

0 0 (Ig−1 ⊗ Im1) 0

0 0 0 (Ig−1 ⊗ Im2)




. (51)

It is easily checked that Hφ0 is of full column rank if and only if Π22 is, which is the celebrated

rank condition. This can only be satisfied if m2 ≥ (g − 1) (the order condition) which we assume

to hold in the sequel.

As a polar case, suppose that Π12,0 = 0 and Π22,0 = 0. Then the first g−1 columns of Hφ0 are

zero, whereas the remaining columns are linearly independent, so that β is completely (locally)

unidentified, whereas γ, Π12 and Π22 are fully identified. The analysis of the previous section can

now be directly applied with Cn = n−1/2Im1+(g−1)m, Bn = Ig−1 and

H̄(β)⊥ =

(
1

−β

)
⊗E, (52)

where E = [0 : Im2 ]
′, of order m × m2. Let δ = (1,−β′)′ and a(β) = (δ′Ωδ)−1/2δ′Ω1/2, a unit

length vector, and B = M−1/2E(E′M−1E)−1/2, an m × m2 semi-orthogonal matrix. Then we

have (with A(β) as in Corollary 2)

A(β)′Z = (a(β)′ ⊗B′)Z = vecB′Xa(β), (53)

where X is an m× g standard normal matrix such that Z = vecX. Letting X1 = B′X, an m2× g

standard normal matrix, we thus find that (43) reduces to

LRn
L→ min

a′a=1
a′X ′

1X1a = λmin(X ′
1X1), (54)

where λmin(.) denotes the minimal eigenvalue of the argument.

Using the same method, it can be shown that (54) also holds if rankΠ22 = r, but with X1 of

order (m2 − r) × (g − r). Thus, if the rank condition is satisfied, then LRn has an asymptotic

χ2(m2 − g − 1). Letting χ2
α(m2 − g − 1) denote the 100(1 − α)th percentile of this distribution,

it can be shown (see Boswijk, 1994) that for all r ≤ g − 1,

P{λmin(X ′
1X1) > χ2

α(m2 − g − 1)} ≤ α. (55)

This implies that the size (i.e., the maximum type I error probability) of the LR test converges

to α if χ2 critical values are used.
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4.2 Testing for Cointegration in Vector Autoregressions

Consider the first-order vector autoregression in p dimensions, written in error correction form:

∆Xt = ΠXt−1 + εt, t = 1, . . . , n, (56)

where {εt} is an i.i.d. N(0, Ω) sequence and X0 is fixed. Assume that rankΠ = r, 0 ≤ r ≤ p,

and that the characteristic equation |(1 − z)Ip − Πz| = 0 has exactly p − r roots equal to one

and all other roots outside the unit circle. As shown by Johansen (1991), this implies that Xt

is cointegrated of order (1,1): letting Π = αβ′, where α and β are p × r matrices of full column

rank, β′Xt is stationary, whereas β′⊥Xt is integrated of order 1.

Since Ω is considered as fixed, the log-likelihood ratio is given, for θ = vec(Π′), by

Λn(θ0 + Dnτ, θ0) = τ ′Sn − 1
2
τ ′Jnτ, (57)

where

Sn = D′
nvec

(
n∑

t=1

Xt−1ε
′
tΩ
−1

)
, (58)

Jn = D′
n

(
Ω−1 ⊗

n∑

t=1

Xt−1X
′
t−1

)
Dn. (59)

Defining

D′
n =




n−1/2(Ip ⊗ β′)

n−1(α′ ⊗ β′⊥)

n−1(α′⊥Ω⊗ β′⊥)


 , (60)

it can be shown (see Johansen, 1991) that

Jn
L→




J11 0 0

0 J22 0

0 0 J33




=




Ω−1 ⊗ Σββ 0 0

0 (α′Ω−1α)⊗ ∫ 1
0 W (t)W (t)′dt 0

0 0 (α′⊥Ωα⊥)⊗ ∫ 1
0 W (t)W (t)′dt


 , (61)

where Σββ = var[β′Xt], and W (t) is a (p− r)-dimensional vector Brownian motion process with

variance matrix α′⊥Ωα⊥. Furthermore,

Sn
L→




J
1/2
11 Z1

J
1/2
22 Z2∫ 1

0 W (t)dW (t)′


 , (62)
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where Z = (Z ′1, Z
′
2)
′ is a standard normal vector of dimension pr + r(p− r), independent of W (t).

It follows that Λ(τ) =
∑3

i=1 Λi(τi), where Λ1 is LAN, Λ2 is LAMN, and Λ3 is LABF.

Consider now the reparameterisation

∆Xt = αβ′Xt−1 + εt

= α[Ir : −B′]Xt−1 + εt, (63)

where α is a p × r matrix of error correction coefficients, and β = [Ir : −B′]′ is a p × r matrix

of cointegrating vectors, so that B is of order (p − r) × r. Letting φ = (vec(α′)′, vec(B)′)′, and

recalling that θ = vec(Π′) = h(φ), we have

Hφ =

[
Ip ⊗

(
Ir

−B

)
: −α⊗

(
0

In−r

)]
= [(Ip ⊗ β) : −(α⊗E)] , (64)

where E = [0 : Ip−r]′, of order p× (p− r). Given the normalization of β, the first pr columns of

Hφ0 always have full rank, so that α is always identified (since it equals the first r columns of Π).

However, if α0 has less than full column rank, then part of B will not be identified.

Consider again the polar case where α0 = 0, so that Π0 = 0 and the true cointegrating rank

is zero. In (60)-(62), this implies that α⊥ = β⊥ = Ip, Dn = n−1Ω⊗ Ip, and

(S, J) =
(

vec
∫ 1

0
W (t)dW (t) , Ω⊗

∫ 1

0
W (t)W (t)′dt

)
, (65)

where W (t) is a p-vector Brownian motion process with variance matrix Ω. Furthermore, H̄(B)⊥ =

Ip ⊗ (B : Ip−r)′, which after some manipulations implies

LRn
L→ min

C′C=Ip−r

C ′
[(∫ 1

0
B(t)dB(t)′

)′(∫ 1

0
B(t)B(t)′dt

)−1 (∫ 1

0
B(t)dB(t)′

)]
C, (66)

where B(t) is a standard p-vector Brownian motion process. Thus the limit distribution of LRn

is characterised by the sum of the (p− r) smallest eigenvalues of the matrix in square brackets in

(66).

It can again be shown that if rankα0 = s with 0 ≤ s ≤ r, (66) still holds with B(t) of dimension

p− s; if s = r this yields the trace of the matrix in square brackets. Quantiles of the distribution

of this trace (for various values of (p−r)) are tabulated in Johansen (1988) and are used as critical

values for the LR test, since this distribution holds almost everywhere in the restricted parameter

space. However, unlike the example in the previous section, the distributions for s < r are not

stochastically dominated by the distribution for s = r, so that the asymptotic size of the test is

not equal to α if the critical values for s = r are used. The crucial difference with the previous

example is that the likelihood ratio here is not LAMN or LAN, so that not only the distribution

of J and S, but also that of J−1/2S changes with different values in the parameter space. A

sequential testing procedure to control the asymptotic size was proposed by Johansen (1992). In

this procedure, the hypothesis Hr : rank(Π) ≤ r is rejected only if all subhypotheses Hs, s ≤ r

are rejected at their respective critical values.
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4.3 Testing Structural Hypotheses on Cointegrating Vectors

Consider the same model as in the previous subsection, but now with the (p − r) unit root

restrictions implied by (63) imposed. That is, the unrestricted model is now formulated in terms

of α and B. We consider a true value α0 with full column rank, so that the problems mentioned

above do not arise. Furthermore, it will simplify the analysis if we consider B0 = 0; this can

always be accomplished by suitable rotation of Xt. Under these assumptions, it can be checked

from (60) and (64) that

Dn

(
Ipr+r(p−r)

0

)
= Hφ0

[
n−1/2Ipr 0

0 n−1Ir(p−r)

]
. (67)

This implies that the limiting likelihood ratio for the cointegration model is given by

Λ(τ) = τ ′1J
1/2
11 Z1 − 1

2
τ ′1J11τ1

+τ ′2J
1/2
22 Z2 − 1

2
τ ′2J22τ2, (68)

where Jii, i = 1, 2, are as given in (61). Thus, the consequence of restricting the model is that

the third (LABF) part of the likelihood ratio vanishes, so that the resulting likelihood ratio is

LAMN.

Consider the hypothesis

H0 : rank(R′β) ≤ r − 1, (69)

where R is a known p×m matrix of full column rank, with m > r− 1 (since otherwise H0 is not

testable). The hypothesis entails that there is at least one vector β1 in the cointegrating space

sp(β) satisfying R′β1 = 0; this can be one of the columns of β = [Ir : −B′]′, but also a more

general linear combination of the columns.

Letting G = R⊥, we find that β1 = Gγ, with γ ∈ Rp−m. Assume that the first r components

of Xt are ordered in such a way that the first component of β1 may be normalized to one, and

that this corresponds to the normalization γ′ = (1, δ′)′. Then we have

β1 =




1

G1δ

G2δ




1

r − 1

p− r

, (70)

where δ ∈ Rp−m−1 and G = diag(1, [G′
1 : G′

2])
′. Let B = [b1 : B2], with b1 a (p− r)-vector. Since

β1 is a linear combination of β = [Ir : −B′]′, it follows that (70) implies b1 + B2G1δ = G2δ, or

B = [b1 : B2] = [(G2 −B2G1)δ : B2]. (71)

Thus, with θ = (vec(α′)′, b′1, vec(B2)′)′ and φ = (vec(α′)′, δ′, vec(B2)′)′, we have

Hφ =
∂θ

∂φ′
=




Ipr 0 0

0 (G2 −B2G1) −(δ′G′
1 ⊗ Ip−r)

0 0 I(p−r)(r−1)


 . (72)
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Since B0 = 0, the column rank of Hφ0 is determined by s = rankG2: if s = p−m− 1, then φ0

is fully identified, and the likelihood ratio test has a limiting χ2(m− r + 1) distribution. At the

other extreme, if G2 = 0, then δ is completely unidentified, and we find

H̄(δ)⊥ =




0(
1

G1δ

)
⊗ Ip−r


 =

[
0

Ḡ1γ ⊗ Ip−r

]
, (73)

where γ = (1, δ′)′ and Ḡ1 = diag(1, G1). From this is can again be shown that, analogously to

(54),

LRn
L→ min

a′a=1
a′X ′

1X1a = λmin(X ′
1X1), (74)

where X1 is now a (p− r)× (p−m) standard normal matrix. For general s = rankG2, the same

holds with X1 of dimension (p− r− s)× (p−m− s), so that (74) also includes the fully identified

case where s = p−m− 1 and the limit distribution is χ2(m− r + 1). A result analogous to (55)

applies to the present case.

5 Concluding Remarks

In this paper we have analyzed a particular class of partially identified models, viz. models with

fully identified reduced form parameters. As we have shown, within this class the behaviour of the

restricted maximum likelihood estimate and likelihood ratio test statistic can be analyzed in two

steps: first establish that the unrestricted model has locally asymptotically quadratic likelihood

ratios, and then determine the shape of the limiting local parameter space. The examples have

illustrated this approach, and have suggested that under LAN or LAMN, an asymptotic size α

LR test is obtained if critical values for the fully identified case are used; outside the LAMN class

such results cannot be established, so special care has to be taken of the unidentified subsets of

the parameter space.

Although the chosen setup is quite general, it excludes models with no fully identified reduced

form parameters. An example of such a model is an ARMA model with a common factor; in that

case the AR and MA parameters are not identified, and cannot be related to a fully identified

finite dimensional parameter vector (although the infinite order autoregressive representation is

unique). Another class of models which have recently attracted much attention are time series

models with a structural break in the parameters at an unknown break point, see e.g. Andrews

(1993), and Andrews and Ploberger (1994). In such models, the break point parameter is globally

unidentified under the null hypothesis, but the analysis of Section 3.1 cannot be applied, because

at the true parameter value the unrestricted model is unidentified as well.
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Appendix

Proof of Theorem 1: Let Qn and Q̃n be the probability measures of D−1
n (θ̂n−θ0) and D−1

n (θ̃n−
θ0), respectively; similarly, let Q and Q̃ be the probability measures of J−1S and arg minτ∈T0 Λ̄(τ),

respectively. For any ε > 0, fix Kε such that each of these four measures (for all n) assign a

probability greater than 1 − ε to Kε. Let Iε be a binary random variable with P{Iε = 0} =

1 − P{Iε = 1} = ε, such that Iε = 0 if any of the above (sequences of) random variables have a

realisation outside Kε. What needs to be proved first is that the sequence of parameter spaces

T0,n can essentially be replaced by its limit T0, i.e.,

∣∣Iε minτ∈T0,n∩Kε Λ̄n(τ)− Iε minτ∈T0∩Kε Λ̄n(τ)
∣∣ P→ 0, (A.1)

∥∥Iε arg minτ∈T0,n∩Kε Λ̄n(τ)− Iε arg minτ∈T0∩Kε Λ̄n(τ)
∥∥ P→ 0. (A.2)

This follows from Assumption 4, together with (4), which is implied by Assumption 1.

Next, uniform weak convergence of Λ̄n(τ) on Kε implies, via the continuous mapping theorem,

Iε min
τ∈T0,n∩Kε

Λ̄n(τ) = Iε min
τ∈T0∩Kε

Λ̄n(τ) + op(1) L→ Iε min
τ∈T0∩Kε

Λ̄(τ), (A.3)

and the analogous result for the minimand. Since ε can be made arbitrarily small, it follows that

the left-hand side of (A.3) has the same distribution as LRn, and the right-hand side limit has

the same distribution as minτ∈T0 Λ̄(τ). This proves (22); (23) follows analogously.

Proof of Theorem 2: Follows from Theorem 1 and the linearity of the null space T0 in (28).

Proof of Theorem 3: Follows from Theorem 1 and the shape of the null space T0 in (40).
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