Growth of Bi-2212 single crystals and oxygen diffusion studies
Li, T.W.; Kes, P.H.; Fu, W.T.; Hien, N.T.; Franse, J.J.M.; Menovsky, A.A.

Published in:
Physica C

DOI:
10.1016/0921-4534(94)91489-3

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
Growth of Bi-2212 single crystals and oxygen diffusion studies

T.W. Lia, P.H. Kesa, W.T. Fub, N.T. Hienc, J.J.M. Fransec and A.A. Menovskyc

aKamerlingh Onnes Laboratorium, Rijksuniversiteit Leiden, P.O. Box 9506, 2300 RA Leiden, The Netherlands.
bGorlaeus Laboratorium, Rijksuniversiteit Leiden, P.O. Box 9502, 2300 RA Leiden, The Netherlands.
cVan der Waals-Zeeman Laboratorium, Universiteit van Amsterdam, Amsterdam, Valckenierstraat 65, 1018 XE Amsterdam, The Netherlands.

Bi-2212 superconducting single crystals were grown by the travelling solvent floating zone method at different oxygen ambient pressures up to 300 kPa by the TSFZ method in the NEC SC-N35HD image furnace. During the growth process the feed and seed shafts were counter rotated at a rate of 30 rpm. The growth rate was approximately 0.2-0.26 mm/h in the static ambient atmosphere of air, 200 and 300 kPa oxygen pressure.

From all growth experiments, single-crystalline boules of typically 6-8 mm in diameter and 60-100 mm in length were obtained. Single-crystalline samples were prepared by first cutting and then cleaving the boules. A "large-volume" and a "large-surface" sample were made for neutron scattering and muon-spin rotation experiments, respectively [1]. The "large volume" sample was a big crystal of approximately $12 \times 5 \times 1.5 \text{mm}^3$ which weighted 690 mg. Neutron diffraction results showed that this sample actually consisted of one large aid one small single crystal which were closely aligned with their c-axis coinciding within 2° and with respective rocking curve widths of 0.4°, and 0.6° [2]. The "large-surface" sample for muon-spin rotation experiments was composed from 5 thin single-crystalline pieces of typical size of $5 \times 5 \times 0.5 \text{mm}^3$ with well-defined a- and b-directions, and the c-direction perpendicular to the surface [3].

1. SINGLE CRYSTAL GROWTH

For some physical measurements probing the local field distribution of the vortex lattice phase, there is an increasing need for high-quality and large-size single crystals of Bi-2212. Therefore we have grown several large boules of the Bi-2212 superconducting phase at different oxygen ambient pressures up to 300 kPa by the TSFZ method in the NEC SC-N35HD image furnace. During the growth process the feed and seed shafts were counter rotated at a rate of 30 rpm. The growth rate was approximately 0.2-0.26 mm/h in the static ambient atmosphere of air, 200 and 300 kPa oxygen pressure.

We now turn to study of the anisotropic oxygen diffusion. Compared with other methods, a classical thermogravimetric technique can be more accurate and direct in determining the amount of oxygen change and in studying the anisotropy of oxygen diffusion. But, for the calculation of the diffusion coefficients, the determination of the effective diffusion lengths is still a question to be solved. Therefore the use of single-crystalline sample is extremely desirable.

Bi-2212 single crystalline samples were prepared by the Traveling Solvent Floating Zone (TSFZ)
method [1]. In order to directly investigate the mechanism and structural anisotropy of the oxygen diffusion, two samples were prepared: sample A consisting of crystals of typical size $1 \times 1 \times 0.01$ (mm3), total weight 178.00 (mg), and sample B consisting of crystals of typical size $3.5 \times 1.2 \times 0.1$ (mm3), total weight 203.80 (mg). The dependence between crystal size and timescale for oxygen out-diffusion in nitrogen atmosphere at 500°C was studied.

Thermogravimetrical analysis (TGA) was performed using a thermogravimetric microbalance (Setakam TGA 24 thermoanalyzer) connected with a gas mixture system. This thermobalance is able to detect weight change within ± 2.5 (µg). For samples of the Bi-2212 phase of about 200 (mg), it is possible to measure the change of Δx with an accuracy of about 0.001. We choose the oxygen content at 500°C in air as a reference point.

The result of size dependent oxygen out-diffusion in nitrogen at 500°C, as can be seen in Fig. 1.

![Fig. 1](image)

Fig. 1. The size dependence of the timescale for oxygen out-diffusion at 500°C in nitrogen. The arrows indicate the relaxation time t.

If the oxygen diffusion would be in the c-direction, the relaxation time for sample B had to be 100 times larger than that of sample A. This is in contradiction with the experimental result, the relaxation time for sample B being only 6 times larger than that of Sample A. It means that the oxygen out-diffusion takes place in the a-b planes. This is in agreement with the oxygen tracer diffusion result for Bi-2212, namely $D_{ab}/D_c \approx 10^4-10^6$ [5]. For a crystal of dimensions $a \times b \times c$, the in-plane diffusivity D_{ab} is given by:

$$D_{ab} = \left[1/a^2 + 1/b^2 + 1/c^2\right]^{-1/2} \pi t$$

where α is the anisotropy ratio between D_a and D_b, and β is the anisotropy ratio between D_{ab} and D_c. Since β is about 10^4-10^6, the third term in Eq. (1) may be neglected, then

$$D_{ab} = \left[1/a^2 + 1/b^2\right]^{-1/2} \pi t$$

After substitution of the values for a, b, and t (the relaxation time is defined in Fig. 4) for sample A and B, we get $\alpha \geq 5-6$ and $D_{ab} \approx 6.12 \times 10^{-8}$ (cm2/s) at 500°C. It follows that the oxygen out-diffusion in the a-b plane is also quite anisotropic and it is mainly along the a-direction.

This work is supported by the foundation for fundamental research on matter (FOM) of the Netherlands.

REFERENCE: