Anisotropic f-electron magnetism in Uni4B
Mentink, S.A.M.; Nieuwenhuys, G.J.; Menovsky, A.A.; Mydosh, J.A.

Published in:
Physica B-Condensed Matter

DOI:
10.1016/0921-4526(94)90467-7

Link to publication

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
Anisotropic f-electron magnetism in UNi₄B

S.A.M. Mentink, G.J. Nieuwenhuys, A.A. Menovsky, and J.A. Mydosh
Kamerlingh Onnes Laboratory, Leiden University, P.O. Box 9506, 2300 RA Leiden, The Netherlands*

The hexagonal uranium compound UNi₄B has been shown to exhibit strongly anisotropic hybridization of f- and d-electron states. We performed low-field (3 mT) and high-field (40 T) magnetization measurements from 1.4 K to 30 K on a single crystal of this antiferromagnetically ordering compound, $T_N=20$ K, to further investigate the magnetic anisotropy. A phase diagram, including a spin-flop transition around 9 T, is presented. The observed large values of the electronic specific heat at low temperatures are attributed to in-plane magnetic fluctuations, which persist far below T_N. No superconductivity was found down to 40 mK. The relevance of strong 5f-3d hybridization is confirmed by extensive experiments on a series of diluted compounds UCoₓNi₄₋ₓB (0 ≤ x ≤ 4).

In previous papers [1,2] we demonstrated that the hexagonal intermetallic uranium compound UNi₄B, a member of the growing class of “1-5”–intermetallic compounds, exhibits highly anisotropic magnetic properties. AF ordering of U-spins lying in the basal plane occurs below $T_N=20$ K. However, both susceptibility and specific heat increase below T_N, which can be explained by the presence of strong in-plane magnetic fluctuations, persisting down to below 1 K [2]. In this contribution we show the importance of hybridization of the f and d-electron bands by alloying UNi₄B with Co on the Ni-sites. As both UCo₄B and UNi₄B crystallize in the same CeCo₄B-type structure, alloying is possible over the entire concentration range (0 ≤ x ≤ 4) in UCoₓNi₄₋ₓB. In Table 1 we list the lattice parameters of this pseudo-ternary system, together with the observed AF ordering temperature. From these data, the different interatomic uranium distances can be derived: In the basal plane, $d_{U-U}=a$, while along the c-axis $d_{U-U}=\frac{1}{2}c$, yielding 4.952 Å and 3.477 Å for UNi₄B. In general, the magnetic moment will orient perpendicular to the direction of strongest f-f hybridization, i.e. in the basal plane.

In Fig.1 we present the magnetic susceptibility ($\chi=M/H$) for polycrystalline material with $x=1$ and 2, together with low-field (3 mT) and high-field (0.5 T) data for single-crystal UNi₄B. While UNi₄B exhibits clear Curie-Weiss local-

* This work is partially supported by the Dutch Foundation FOM.
moment type behavior with $p_{eff}=2.81 \mu_B$ above 100 K (not shown), its uranium 5f-derived moment is progressively lost upon increasing Co-concentration. This strongly suggests that the 5f–electrons are filling the 3d-band when Co is introduced in the system. As a result, the AF ordering temperature is strongly reduced, from $T_N=20.0$ K for UNi$_4$B to $T_N=5.0$ K for UCoNi$_3$B. The low-field magnetization of single-crystal UNi$_4$B, was measured with a SQUID magnetometer in fields of 3 mT and 0.5 T. See Fig.1. In the lowest fields, χ first increases below T_N, before it saturates below 10 K. A larger field suppresses these apparent basal-plane fluctuations, yielding a maximum around 7 K.

The specific heat of these samples, plotted in Fig.2 on a logarithmic temperature scale, clearly shows the reduction of T_N with increasing Co-concentration. For pure UNi$_4$B, an increase of c/T is observed below 7 K, in accord with the susceptibility maximum. The increase in c/T, which is almost field-independent [2], follows a weak $\ln T$–dependence, reminiscent of the formation of an unusual Fermi–liquid state [3,4]. An extension towards lower T is necessary to confirm this $\ln T$–dependence. The extrapolated γ–values are 269 and 294 mJ/mol K2 for UNi$_4$B and UCoNi$_3$B, respectively.

If we combine these new results with those obtained earlier [1,2], we can establish the magnetic phase diagram for UNi$_4$B. This diagram, shown in Fig.3, is a combination of high-field magnetization, specific heat and resistivity, both in magnetic fields, for two field directions in the basal plane. The AF phase boundary lies at 20 T. A spin–flop transitions is found for $\mu_0 H=8$ and 11 T for the two directions, respectively. The low-T regime for in-plane fluctuations is also indicated (shaded area in Fig.3).

In conclusion, we have shown that the ordering temperature of UCo$_x$Ni$_{4-x}$B strongly depends on the 5f–3d hybridization strength. We have presented a detailed magnetic phase diagram for UNi$_4$B, which incorporates a highly unusual low temperature spin state, thought to arise from large in-plane fluctuations in the antiferromagnetically ordered state.

References