From Complex I to hydrogenase and back
Albracht, S.P.J.; de Jong, A.M.P.; Kotlyar, A.B.

Published in:
Journal of inorganic biochemistry

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
L01 FROM COMPLEX I TO HYDROGENASE AND BACK

S.P.J. Albracht, A.M.Ph. de Jong and A.B. Kotlyar

aE.C. Slater Institute, BioCentrum Amsterdam, Plantage Muidergracht 12, NL-1018 TV Amsterdam, The Netherlands and bLaser Laboratory for Fast Reactions in Biology, Department of Biochemistry, George S. Wise Faculty of Life Sciences, Ramat Aviv, 69978, Tel Aviv, Israel

Since the discovery of iron-sulphur clusters in mitochondrial Complex I by Beinert and Sands in 1960 \cite{1} quite some research groups have been studying this most complicated enzyme. At present at least four different Fe-S clusters have been detected with EPR, but their precise function in the energy-linked electron transfer catalyzed by the enzyme is not really understood. The analysis of Weidner et al. \cite{2} of the operon encoding Complex I in \textit{Escherichia coli} indicates that only 14 of the 41 polypeptides of the bovine-mitochondrial enzyme \cite{3} are essential for coupled electron transfer. Five polypeptides show conservative Cys patterns that might accommodate Fe-S clusters. Four of these are quite likely inherited from hydrogenases [see e.g. 4]. The remaining polypeptide, the TYKY subunit \cite{3}, contains a Cys pattern typical for two classical cubane clusters. With this information a monomeric model, rather than a dimeric one \cite{5} can be constructed, explaining most physico-chemical and kinetic properties of the enzyme (see figure). All Fe-S clusters of Complex I are fully reduced within 5 ms, when SMP are mixed with NADH. Within 40 ms the g_z line of the EPR signal of the clusters 2, but not the g_{xy} line, disappears in coupled particles. This effect is sensitive to uncouplers. It is also reversed upon anaerobiosis. It is concluded that we have detected an 'energized' form of Complex I in which the protein structure around the clusters 2 has changed. It is proposed here that the TYKY subunit holds the Fe-S clusters 2 and renders the enzyme the ability to perform coupled electron transfer.