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Classical null-hypothesis significance testing (NHST) 
allows researchers to evaluate scientific propositions in 
a seemingly straightforward manner: Whenever the  
p value falls below a threshold α (usually set to .05), 
researchers feel licensed to reject the null hypothesis 
(H0) that the effect is absent and to embrace the alter-
native hypothesis (H1) that the effect is present. For 
example, in the results section, one may encounter 
conclusions such as “overall classification accuracy was 
greater than chance,” “the analysis revealed a main 
effect of the manipulation,” and “the correlation was 
significant”; in the discussion section, these statements 
typically are abstracted even further from the standard 
NHST framework, conveying the impression that when-
ever p is below the .05 threshold, the data strongly favor 
H1 over H0 (i.e., no effect).

The social sciences’ mechanistic use of p values 
appears to be at odds with the recent warning issued 
by the American Statistical Association (ASA; Wasser-
stein & Lazar, 2016): “The widespread use of ‘statistical 
significance’ (generally interpreted as ‘p ≤ .05’) as a 
license for making a claim of a scientific finding (or 
implied truth) leads to considerable distortion of the 
scientific process” (p. 131). Indeed, p values have been 
critiqued on numerous grounds (e.g., Greenland et al., 
2016; Nickerson, 2000; Rouder, Morey, Verhagen, Province, 
& Wagenmakers, 2016; Wagenmakers, Marsman, et  al., 
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Abstract
Across the social sciences, researchers have overwhelmingly used the classical statistical paradigm to draw conclusions 
from data, often focusing heavily on a single number: p. Recent years, however, have witnessed a surge of interest in 
an alternative statistical paradigm: Bayesian inference, in which probabilities are attached to parameters and models. 
We feel it is informative to provide statistical conclusions that go beyond a single number, and—regardless of one’s 
statistical preference—it can be prudent to report the results from both the classical and the Bayesian paradigms. 
In order to promote a more inclusive and insightful approach to statistical inference, we show how the Summary 
Stats module in the open-source software program JASP (https://jasp-stats.org) can provide comprehensive Bayesian 
reanalyses from just a few commonly reported summary statistics, such as t and N. These Bayesian reanalyses allow 
researchers—and also editors, reviewers, readers, and reporters—to (a) quantify evidence on a continuous scale using 
Bayes factors, (b) assess the robustness of that evidence to changes in the prior distribution, and (c) gauge which 
posterior parameter ranges are more credible than others by examining the posterior distribution of the effect size. The 
procedure is illustrated using Festinger and Carlsmith’s (1959) seminal study on cognitive dissonance.
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2018). One widely appreciated concern is that p values 
do not convey information about the size of the effect 
or the precision with which that effect is estimated (e.g., 
Cumming, 2014).

There is a growing trend for psychologists to employ 
Bayesian statistics (e.g., Vandekerckhove, Rouder, & 
Kruschke, 2018; van de Schoot, Winter, Ryan, Zondervan-
Zwijnenburg, & Depaoli, 2017; Wagenmakers, Morey, & 
Lee, 2016), a prominent alternative to p-value NHST. 
Within the Bayesian framework, prior uncertainties 
about parameters and models are updated by means of 
observed data to yield posterior uncertainties (Etz, 
Gronau, Dablander, Edelsbrunner, & Baribault, 2018). 
For instance, the posterior distribution quantifies one’s 
knowledge about a nonzero effect size, which is useful 
for parameter estimation; on the other hand, the Bayes 
factor contrasts the predictive adequacy of two compet-
ing models, which is useful for hypothesis testing (for 
technical details, see Etz & Vandekerckhove, 2018). 
Specifically, the Bayes factor quantifies the degree to 
which the data are more likely under one model versus 
another (e.g., Etz & Wagenmakers, 2017; Jeffreys, 1961; 
Kass & Raftery, 1995; Myung & Pitt, 1997). For example, 
the Bayes factor can be used to compare the hypothesis 
that there is no effect (H0) with the hypothesis that 
there is an effect (H1). The value of the Bayes factor in 
favor of H1 over H0, denoted as BF10, has an intuitive 
interpretation; a BF10 of 7 indicates that the observed 
data are 7 times more likely under H1 than under H0, 
whereas a BF10 of 0.2 indicates that the observed data 
are 5 times more likely under H0 than under H1. In 
general, BF10 is a nonnegative number, and higher val-
ues indicate that the data provide more evidence for 
H1 over H0, whereas lower values indicate that the data 
provide less evidence for H1 over H0. When H1 and H0 
are equally plausible a priori, a BF10 of 6 indicates that 
the posterior plausibility for H1 is 86% (i.e., 6/7), leav-
ing 14% (i.e., 1/7) posterior probability for H0.

A discussion on the merits and demerits of the dif-
ferent statistical paradigms is beyond the scope of this 
article. We agree with the ASA’s recommendation to go 
beyond p, and we believe that it is prudent to adopt an 
inclusive statistical approach. When the results of dif-
ferent statistical paradigms point in the same direction, 
this bolsters one’s confidence in the conclusions, but 
when the results are in blatant contradiction, this weak-
ens one’s confidence.

In the spirit of promoting a more inclusive statistical 
approach, our primary goal in this article is to demon-
strate the ease with which published classical results 
can be subjected to a Bayesian reanalysis using the 
recently developed Summary Stats module in JASP 
( JASP Team, 2017). Depending on the analysis at hand, 
this module takes as input a commonly reported 

statistic such as t, r, or R together with sample size N 
and returns a comprehensive Bayesian assessment.1 An 
important point is that this Bayesian assessment can be 
executed in the absence of the raw data, which is essen-
tial when the data are no longer available or when they 
cannot be shared; but even when the raw data are 
publicly available, the reanalysis with the Summary 
Stats module is much more efficient—reviewers, read-
ers, and reporters can obtain a comprehensive Bayesian 
assessment almost instantaneously. We believe that the 
richness of a Bayesian report contrasts favorably with 
a report of just the summary statistics themselves. We 
illustrate this claim using a seminal study published 
more than half a century ago.

Disclosures

The analyses presented here are available via the Open 
Science Framework (file named festingerCarlsmith1959.
jasp), at https://osf.io/7t2jd/.

Festinger and Carlsmith’s (1959) 
Cognitive Dissonance Study

In a landmark publication (cited more than 3,540 times 
as of February 2, 2018, according to Google Scholar), 
Festinger and Carlsmith (1959) outlined a theory to 
account for cognitive dissonance, a phenomenon they 
described as follows:

If a person is induced to do or say something 
which is contrary to his private opinion, there will 
be a tendency for him to change his opinion so 
as to bring it into correspondence with what he 
has done or said. (p. 209)

In earlier experiments on cognitive dissonance (e.g., 
Kelman, 1953), participants were induced to make a 
statement contrary to their personal opinion for a 
chance to gain a reward. It was hypothesized that the 
opinion would change more when the potential reward 
was greater, but the data showed the reverse: The 
smaller the reward, the greater the change in opinion. 
Festinger and Carlsmith proposed a theory that could 
account for this behavioral pattern, and they subse-
quently put that theory to the test in an ingenious 
experiment.

Festinger and Carlsmith’s (1959) experiment included 
control, high-reward, and low-reward conditions, each 
with 20 participants. All participants performed a boring 
task for 1 hr, after which they were asked to take a 
survey and answer questions about, among other 
things, their enjoyment of the study. Where the condi-
tions differed was in what happened after participants 
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completed the boring task but before they completed 
the survey. In the reward conditions, participants were 
asked to tell a confederate that the experiment was 
interesting and fun; in return, they received either $20 
(high reward) or $1 (low reward). In the control condi-
tion, participants went straight to the survey and did 
not interact with the confederate. According to Festinger 
and Carlsmith, the crucial test of their theory lay in 
comparing the enjoyment ratings from the low-reward 
condition and the high-reward condition; the low-
reward condition was predicted to yield higher enjoy-
ment ratings. Results were in line with the theory’s 
prediction: The (sample) mean enjoyment rating was 
higher in the low-reward group than in the high-reward 
group, t(38) = 2.22, p = .032, and Festinger and Carlsmith 
took this as support for their theoretical position. No 
effect-size estimate was reported in the original publi-
cation, but the effect size can be easily computed from 
the t value and the group sizes, which yield a Cohen’s 
d of 0.702.

Bayesian Reanalysis

If Festinger and Carlsmith’s (1959) study were published 
today and we wished to conduct a Bayesian reanalysis 
of their result, then we would ask them to share their 
data with us. Unfortunately, this study was published 
six decades ago, and the raw data are no longer avail-
able. However, the Summary Stats module in JASP 
affords a comprehensive Bayesian reanalysis of the 
experiment using only the test statistic reported in the 
original publication.2 Inputting the reported t value and 
sample sizes for the two groups yields the results shown 
in Figure 1.

In Figure 1a, the dashed line represents the default 
prior distribution for the population effect size, δ, under 
H1: a zero-centered Cauchy distribution (i.e., a t distri-
bution with 1 degree of freedom; Jeffreys, 1948; Ly, 
Verhagen, & Wagenmakers, 2016a, 2016b), with a 
default scale, γ, of 0.707 (e.g., Morey & Rouder, 2015). 
Thus, under H1—that is, presuming the effect is 
present—the expectation is that the effect is most likely 
to be small, although the possibility that it is large is 
not ruled out.

The solid line in Figure 1a is the posterior distribu-
tion for effect size, that is, the knowledge about effect 
size obtained after updating the prior distribution using 
the observed data, and presuming that H1 holds. This 
posterior distribution of δ has a median of 0.5713 and 
a relatively wide 95% credible interval that ranges from 
–0.032 to 1.197. In other words, 95% of the posterior 
mass lies in the interval from –0.032 to 1.197; clearly, 
the effect has not been estimated with much precision. 
More generally, by computing the area under the 

posterior distribution between δ = a and δ = b, one can 
assess how plausible it is that the population effect 
size falls in the interval from a to b after the data have 
been observed (e.g., Wagenmakers, Love, et al., 2018; 
Wagenmakers et al., 2016). For instance, by comparing 
the area under the posterior distribution to the right of 
zero against the area under the posterior distribution 
to the left of zero, one quantifies how much more likely 
it is that the effect is positive rather than negative, under 
H1—that is, under the presumption that the effect is 
present.

In general, the posterior distribution quantifies all 
that one knows about the population effect size given 
that H1 holds and the effect exists. The latter point is 
worth emphasizing because it has been argued that one 
may perform a Bayesian null-hypothesis test by judging 
whether the 95% credible interval overlaps with zero. 
Despite its beguiling simplicity, such a procedure is 
incorrect (Berger, 2006; Jeffreys, 1961; Wagenmakers 
et al., 2017) because it begs the question: The extent 
to which H0 is plausible cannot be assessed when this 
hypothesis has been ruled out in advance; that is, under 
the continuous prior distribution (e.g., the Cauchy 
prior) specified for H1, the probability of any single 
point, such as p(δ = 0), equals zero.

In order to perform a Bayesian hypothesis test, one 
needs to compare the predictive performance of H0 
against that of H1. The result of this comparison is the 
Bayes factor (BF10), and Figure 1a reveals that it equals 
2.056 for Festinger and Carlsmith’s (1959) data; that is, 
the observed data are only about twice as likely under 
H1 than under H0. Bayesian statistician Harold Jeffreys 
(1961) deemed this level of evidence “not worth more 
than a bare mention” (p. 432). The proportion wheel 
in this panel of the figure provides a visualization of 
the strength of the evidence (see also Wagenmakers & 
Gronau, 2015).

The Bayes factor quantifies relative predictive per-
formance, and the predictive performance from H1 is 
determined in part by the prior distribution. Under a 
default prior specification, it is natural to wonder how 
robust the conclusions are to plausible changes in the 
prior distribution. To address this issue, the Summary 
Stats module allows one to select the option “Bayes 
factor robustness check.” Figure 1b shows the result: 
The value of BF10 is graphed as a function of the scale, 
γ, of the Cauchy prior distribution. The values on the 
x-axis range from γ = 0 (when H1 reduces to H0 and 
BF10 is 1 regardless of the data) to γ = 1.5. Across this 
entire range, the Bayes factor in favor of H1 over H0, 
BF10, never exceeds 3; in fact, the maximum BF10 equals 
2.159, when γ is set to 0.459.

So far, we assumed that the prior for effect size is 
always centered at zero. However, the Bayesian 
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framework can be extended to include informed prior 
distributions that incorporate context-specific expecta-
tions and need not be centered around zero (Gronau, 
Ly, & Wagenmakers, 2017). As in the reanalysis with 

default priors, the reanalysis with informed priors is a 
function solely of the summary statistics. To illustrate 
the use of an informed prior, we once again reanalyze 
Festinger and Carlsmith’s (1959) study, but this time 
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Fig. 1. Screenshot showing JASP’s output for a comprehensive Bayesian reanalysis of 
the seminal study by Festinger and Carlsmith (1959), obtained by entering t = 2.22 and 
N1 = N2 = 20 into the JASP Summary Stats module. The graph in (a) shows the default 
prior distribution and the posterior distribution for the population effect size, δ, under 
the alternative hypothesis (H1). The 95% credible interval (CI) is indicated by the bar. 
BF10 is the Bayes factor in favor of H1 over the null hypothesis (H0), and BF01, which 
is equal to 1/BF10, is the Bayes factor in favor of H0 over H1. The graph in (b) shows 
the value of BF10 as a function of the width (i.e., scale, or γ) of the Cauchy prior. For 
the wide prior, γ = 1, and for the ultrawide prior, γ = √2; the user prior corresponds to 
the scale chosen by the user, which in this case is 0.707. The arrows indicate ranges 
in which the BF10 indicates there is evidence for H1 (i.e., values > 1) and in which the 
BF10 indicates there is evidence for H0 (i.e., values < 1). See the text for further details.
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with two different priors that are centered away from 
zero. The first informed prior was elicited from Suzanne 
Oosterwijk, a social psychologist at the University of 
Amsterdam. This Oosterwijk prior (Gronau et al., 2017) 
was elicited in the context of a specific effect, but we 
believe it is plausible more generally for effects in 
experimental psychology whose presence needs to be 
ascertained by a statistical analysis. The Oosterwijk prior 
is a t distribution with a location of 0.350, a scale of 
0.102, and 3 degrees of freedom (dashed line in Fig. 
2); it assigns most mass to effect sizes from 0.1 to about 
0.6. Because this prior is highly informative and the 
number of observations in Festinger and Carlsmith’s 
study is fairly small, the change from prior to posterior 
(solid line in Fig. 2) is modest in this case. The BF10 
indicates that the data are 5.743 times more likely under 
the informed alternative than under H0. Under equal 
prior-model probabilities, this reanalysis leaves H0 a 
nonnegligible posterior probability of 14.8% (i.e., 
1/6.743).

One might suspect that it is possible to find as much 
evidence for H1 as desired for a given data set just by 
changing the prior distribution. This, however, is not 
true. The second informed prior that we consider is an 
oracle prior that assigns all of its mass to a single point: 
the observed effect size, d, of 0.702. This “prior” can 
be obtained in JASP by choosing a normal distribution 
prior with mean of 0.702 and standard deviation of 0. 
Note that as a prior it is unrealistic, because in practice 
it is impossible to know the observed effect size before 

conducting the experiment. However, this prior show-
cases the maximum evidence possible in favor of H1 
(Edwards, Lindman, & Savage, 1963). Using this oracle 
prior, we obtain a Bayes factor of 10.45 in favor of H1 
over H0. Hence, even if researchers are blatantly cheat-
ing by assigning all prior mass to the observed effect 
size, the data are only 10.45 times more likely under 
H1 than under H0; under equal prior-model probabili-
ties, such an extreme form of cheating still leaves H0 a 
posterior probability of 8.7% (i.e., 1/11.45). In this par-
ticular scenario, a seminal result, significant with a  
p value of .032, does not yield compelling evidence 
against H0 when assessed from a default or an informed 
Bayesian perspective.4 We wish to emphasize that the 
strength of evidence provided by a Bayes factor can be 
best appreciated by considering the raw numbers, per-
haps visualized as a proportion wheel (see Figs. 1 and 
2); the classification scheme proposed by Jeffreys 
(1961) provides a useful but rough guideline that 
should not take precedence over a more careful assess-
ment of the strength of evidence.

In sum, the Bayesian reanalyses shown in Figures 1 
and 2 are easily obtained in JASP and paint an inferen-
tial picture more complete than the one provided by 
the statement “t(38) = 2.22, p = .032.”

Concluding Comments

The Summary Stats module in JASP unlocks a compre-
hensive Bayesian experience from a few commonly 
reported summary statistics. We have illustrated the use 
of the module for the case of an independent-samples 
t test, but the Summary Stats module can also be used 
for inferences concerning paired-samples t tests, cor-
relation coefficients, binomial proportions, and linear 
regression models. An entire literature filled with clas-
sical statistics is now open for straightforward Bayesian 
reanalysis.

In addition to looking back on the existing literature, 
one can look forward. For instance, editors and review-
ers may request that authors include a Bayesian analysis 
alongside the results obtained using classical statistical 
methods, and such a Bayesian analysis can be obtained 
with JASP in mere seconds. For a specific data set, the 
results obtained with classical and Bayesian analyses 
may disagree (e.g., Wetzels et  al., 2011). We believe 
that such a discrepancy is cause for additional reflec-
tion, because it suggests that the data are perhaps not 
as informative as one would have otherwise believed. 
Reviewers and editors can request that authors acknowl-
edge this uncertainty and be transparent about the con-
flicting accounts of the data.

An additional advantage of a Bayesian analysis is 
that one can use the data efficiently to inform follow-up 
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studies by taking the posterior distribution from the 
current study as a prior distribution for further studies. 
This allows one to compute replication Bayes factors 
(Ly, Etz, Marsman, & Wagenmakers, in press; Verhagen 
& Wagenmakers, 2014), which quantify the additional 
evidence brought forth by the new data.

Note, however, that even when the summary statistics 
are sufficient (i.e., they capture all relevant information; 
e.g., Ly, Marsman, Verhagen, Grasman, & Wagenmakers, 
2017) on general grounds, it is still beneficial to have 
access to the raw data. The raw data can be used to 
confirm that the statistical model is appropriate, the 
desirability of which is vividly displayed by Anscombe’s 
quartet (e.g., Anscombe, 1973; Matejka & Fitzmaurice, 
2017). Anscombe’s quartet, shown in Figure 3, consists 
of four scatterplots; in all four, the summary statistics 
(i.e., sample size, mean, variance, and Pearson correla-
tion) for the x and y variables are identical, and so are 
the Bayes factors; nevertheless, for three of the four 
scatterplots, an inference in terms of the strength of a 
linear association, based on the observed Pearson’s cor-
relation coefficient, is meaningless.5

We close by noting that the kind of Bayesian reanaly-
ses outlined here provides an opportunity to expand 
summary statistics to statements about posterior distri-
butions and Bayes factors. Such an expansion will 
afford (a) an additional inferential perspective to sup-
plement the classical perspective, (b) reanalyses of 
published findings that do not require the raw data, 
and (c) a highly efficient method for editors, reviewers, 
readers, and reporters to gauge whether the conclu-
sions from a different statistical paradigm contradict or 
confirm the conclusions obtained using classical meth-
ods. We hope that the Summary Stats module of JASP 
will spur more comprehensive, inclusive, and nuanced 
assessments of statistical evidence.
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Frederick L. Oswald served as action editor for this article.
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Notes

1. The calculators at https://web.archive.org/web/2017021207 
5534/http://pcl.missouri.edu/bayesfactor, designed and main-
tained by Jeff Rouder, exploit the same idea, but are of more 
limited scope than the Summary Stats module.
2. The Summary Stats module is activated via the “+” icon next 
to the “Common” tab at the top of the JASP window.

3. Note that the prior distribution of the population effect size 
has shrunk the sample value of d (i.e., 0.702) toward zero.
4. For a further discussion of Festinger and Carlsmith’s (1959) 
results, see Heino (2016).
5. See also Cairo’s (2016) Anscombosaurus.
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