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Abstract
Psychological experiments often yield data that are hierarchically structured. A number of popular shortcut strategies in
cognitive modeling do not properly accommodate this structure and can result in biased conclusions. To gauge the severity
of these biases, we conducted a simulation study for a two-group experiment. We first considered a modeling strategy that
ignores the hierarchical data structure. In line with theoretical results, our simulations showed that Bayesian and frequentist
methods that rely on this strategy are biased towards the null hypothesis. Secondly, we considered a modeling strategy that
takes a two-step approach by first obtaining participant-level estimates from a hierarchical cognitive model and subsequently
using these estimates in a follow-up statistical test. Methods that rely on this strategy are biased towards the alternative
hypothesis. Only hierarchical models of the multilevel data lead to correct conclusions. Our results are particularly relevant
for the use of hierarchical Bayesian parameter estimates in cognitive modeling.

Keywords Cognitive models · Statistical test · Statistical errors · Bayes factor · Hierarchical Bayesian model

Introduction

Quantitative cognitive models are an important tool in under-
standing the human mind. These models link latent cog-
nitive processes, represented by the models’ parameters,
to observable variables, thus allowing researchers to for-
mulate precise hypotheses about the relationship between
cognitive processes and observed behavior. To test these
hypotheses, researchers fit the model to experimental data
from a sample of participants who perform several trials of
an experimental task. Although this procedure might seem
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straightforward, the hierarchical data structure induces a
number of subtleties.

For example, the diffusion decision model (DDM;
Ratcliff, 1978; Ratcliff et al., 2016) conceptualizes decision-
making in terms of seven model parameters that represent
different cognitive processes, such as encoding of the response
stimulus and response caution. Using these seven model
parameters, the DDM describes the response time (RT)
distribution that results from repeated performance of a
decision-making task. A researcher might, for instance,
hypothesize that caffeine leads to faster decision-making
due to improved attention. In terms of the DDM, this
hypothesis would be described as an increase in the model
parameter that represents the speed of stimulus encoding
but no change in response caution. To test this hypothesis,
the researcher randomly assigns participants either to a
group that is given a placebo or to a group that is given
caffeine and asks participants to perform several trials of
the Eriksen flanker task (e.g., Lorist & Snel, 1997). In the
Eriksen flanker task (Eriksen & Eriksen, 1974), participants
are presented a central stimulus that is surrounded by two
distractors on each side, the flankers. The participants’ task
is to respond as quickly as possible to the central stimulus
while ignoring the flankers. The researcher subsequently
wishes to fit the DDM to participants’ RT data and compare
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the estimated speed of stimulus processing and response
caution between groups (see also White et al., 2011).
Complications in modeling these data arise from the fact
that the experimental setup leads to a hierarchical data
structure, with trials (i.e., repeated measurements) nes-
ted within participants. A proper analysis of these data
therefore requires a hierarchical implementation of the
DDM. However, two common modeling strategies, namely
ignoring the hierarchy and taking a two-step analysis
approach, do not properly account for the hierarchical data
structure.

First, ignoring the hierarchy means that researchers
model the data for each participant independently and sub-
sequently pool parameter point estimates across participants
for further statistical analyses. A researcher might, for
example, fit the DDM independently to each participant’s
RT data and enter the resulting parameter estimates into
a t test or ANOVA-type analysis. In a simpler version of
this strategy, researchers compute the mean RT for each
participant and subsequently perform statistical inference
on the participant means. Although analyses that ignore
the hierarchy might be unavoidable if only non-hierarchical
implementations of a particular cognitive model are avail-
able, such analyses risk statistical biases. As we will show
in the present work, ignoring the hierarchy can lead to an
underestimation of effect sizes and statistical tests that are
biased towards the null hypothesis.

Second, taking a two-step analysis approach means that
researchers apply a hierarchical cognitive model to their
data and subsequently perform further statistical analyses
on the parameter point estimates for individual participants.
This strategy is closely linked to the recent development
and popularization of hierarchical Bayesian cognitive mod-
els (Rouder & Jun, 2005; Rouder et al., 2003; Lindley &
Smith, 1972). A hierarchical version of the DDM (Wiecki
et al., 2013), for example, assumes that each participant’s
RT distribution is characterized by seven DDM parameters;
these participant-level parameters are in turn drawn from
group-level distributions that are characterized by a set of
parameters of their own. Finally, in an ideal application,
the effect of the experimental manipulation is described
by the difference between group-level parameters, most
commonly expressed as a standardized effect size. One
favorable property of such a hierarchical model is that
parameter estimates for individual participants are informed
by the parameter estimates for the rest of the group; less
reliable estimates are more strongly pulled towards the
group mean, a property that is referred to as shrinkage
(Gelman et al., 2013; Efron & Morris, 1977). Shrinkage
reduces the influence of outliers on group-level estimates
and at the same time improves the estimation of indi-
vidual participants’ parameters. In clinical populations,
for instance, individual estimates are often associated with

considerable variability, as only few participants can be
recruited and little time is available for testing so that
hierarchical methods need to be employed to obtain reli-
able estimates of group-level parameters (Krypotos et al.,
2015).

Due to the shrinkage property, hierarchical Bayesian
methods provide estimates of individual participants’
parameters with the smallest estimation error (Efron &
Morris, 1977), and it therefore seems prudent also to base
inferences about groups on hierarchical Bayesian parameter
estimates for individuals. This might seem to suggest
a two-step approach where parameter point estimates
obtained from a hierarchical Bayesian model are used in
a follow-up frequentist test. Researchers might furthermore
feel compelled to use a two-step approach because they
are more familiar with frequentist methods, because the
journal requires authors to report p values, or because the
software for fitting a hierarchical Bayesian version of a
particular cognitive model is not sufficiently flexible to
carry out the desired analysis. However, tempting as a two-
step approach might seem, it is fraught with difficulties.
Although hierarchical Bayesian methods provide the best
estimates for individuals’ parameters on average (Farrell
& Ludwig, 2008; Rouder et al., 2003), if used in
statistical tests such hierarchical estimates can potentially
lead to inflated effect sizes and test statistics (see e.g.,
Mislevy, 1991; Mislevy et al., 1992 for a more complete
discussion of problems associated with a two-step analysis
approach).

Relevance

Hierarchically structured data are ubiquitous in cognitive
science and analysis strategies that either ignore the
hierarchy or take a two-step approach are highly prevalent
in practice. For example, of the most recent 100 empirical
papers in Psychonomic Bulletin & Review’s Brief Report
section (volume 23, issues 2-4), 93 used a hierarchical
experimental design. Of these 93 papers, 74 used a statistical
analysis that was based on participant means and thus
ignored the hierarchical data structure. That means that the
statistical results in about 80% of these 93 papers might be
biased due to an incorrect analysis strategy. Ignoring the
hierarchy is also common in more sophisticated analyses
that are based on cognitive models (e.g., Beitz et al., 2014;
Cooper et al., 2015; Epstein et al., 2006; Kieffaber et al.,
2006; Kwak et al., 2014; Leth-Steensen et al., 2000; Penner-
Wilger et al., 2002; Ratcliff et al., in press; Ratcliff et
al., 2004; Ratcliff et al., 2001). The frequency with which
researchers take a two-step approach is harder to assess
because the number of studies that use hierarchical Bayesian
cognitive models is still relatively low. Nevertheless, a
number of authors from different areas of psychology have
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recently taken a two-step approach to analyzing their data
(Ahn et al., 2014; Badre et al., 2014; Chan et al., 2013;
Chevalier et al., 2014; Matzke et al., 2015; Vassileva et
al., 2013; Driel et al., 2014; Zhang et al., 2016; Zhang &
James, 2014), which suggests that this analysis approach
and the associated statistical biases might become more
prevalent in the literature as hierarchical Bayesian models
gain popularity.

As pointed out above, there are compelling pragmatic
reasons why researchers might ignore the hierarchy or
take a two-step analysis approach. In addition, cognitive
models are often difficult to estimate per se (e.g., Turner
et al., 2013) and introducing a hierarchical structure into
the model might yield an overly complex model that cannot
be estimated reliably in practice. However, researchers
should to be aware of and acknowledge the potential
biases associated with these strategies. Although the biases
associated with each strategy tend to become negligible
if sufficient data is available, exactly how much data are
needed to render statistical biases inconsequential will
depend on the specific cognitive model. It is therefore
important to understand the general mechanisms and
potential magnitude of statistical biases introduced by these
analysis approaches.

The goal of the present work is to illustrate how statistical
results can be biased by analyses of hierarchical data that (1)
ignore the hierarchy, or (2) take a two-step approach. To this
end, we will discuss five prototypical analysis strategies,
two of which correctly represent the data structure, and
three which commit one or the other mistake. We will
base our discussion of the different analysis strategies on
a model that assumes normal distributions on the group-
level and on the participant-level. Although this model
is far removed from the complexity typically found in
cognitive models, its structure simplifies the theoretical
treatment of the different modeling strategies. These results
can then be easily generalized to more complex, cognitive
models.

We begin with a brief discussion of some well-
established theoretical results that explain how the different
analysis strategies will impact statistical inference. We then
illustrate the practical consequences of these theoretical
results in a simulation study. Nevertheless, to anticipate our
main conclusions, ignoring the hierarchy generally biases
statistical tests towards the null hypothesis. Taking a two-
step analysis approach, on the other hand, biases tests
towards the alternative hypothesis. In addition, Bayesian
hypothesis tests that ignore the hierarchy show an overcon-
fidence bias; when tests favor the alternative hypothesis,
they indicate stronger evidence for the alternative hypoth-
esis than warranted by the data, and when tests favor the
null hypothesis, they indicate stronger evidence for the null
hypothesis than warranted by the data.

Part I: Statistical background

In this section, we will provide a basic technical account
of the different analysis strategies and how they impact
statistical inference (see Box & Tiao, 1992, for a similar
discussion). Readers who are not interested in these details
can skip ahead to the section “Consequences for five
different analysis strategies”. For the sake of simplicity,
we will assume that all data are normally distributed.
Nevertheless, the basic mechanisms discussed here also
hold for more complex models.

In a typical experimental setup, for each participant i,
i = 1, . . . , N , a researcher obtains a number of repeated
measurements j , j = 1, . . . , K , of a variable of interest,
such as pupil dilation, test scores, or skin conductance.
These trial-level measurements are prone to participant-
level variance, that is, given the participant’s true mean
θi , the observations xij are independent and normally
distributed:

xij ∼ N
(
θi, σ

2
)

, (1)

where σ 2 is the participant-level variance.1 Moreover, given
the group-level mean μ, the true participant-level means
θi for different participants are independent and normally
distributed:

θi ∼ N
(
μ, τ 2

)
(2)

with variance τ 2. When τ 2 is large, this indicates that
participants are relatively heterogeneous (Shiffrin et al.,
2008).

Researchers are usually interested in making statements
about the group-level mean μ for different experimental
groups. However, the group-level mean is not directly
observable and therefore needs to be estimated. The
simplest estimate for the group-level mean would be the
average of participants’ true means, θ̄ . Because participants’
true means vary around the group-level mean with variance
τ 2, the average θ̄ has some uncertainty associated with it.
Moreover, the true participant means θi themselves are also
unobservable, and therefore need to be estimated. A simple
point estimate for each participant’s true mean is the average
of the person’s repeated measurements, x̄i . Because the
repeated measurements vary around the person’s true mean,
the average x̄i has sampling variance σ 2/K associated with
it. Consequently, there are two sources of variance that
influence the distribution of the x̄i around the group-level

1For convenience we assume that the participant-level variance is
constant across participants. This assumption will be relaxed for our
simulations reported below.
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mean μ, namely the group-level variance τ 2 and the
sampling variance σ 2/K:

x̄i ∼ N
(

μ, τ 2 + σ 2

K

)
. (3)

Ignoring either of these variance components can consid-
erably bias researchers’ analyses, as we will discuss in the
next sections. We will first turn to the problem of ignoring
the hierarchical data structure, which leads to an overesti-
mation of the group-level variance, before we discuss the
problem of a two-step analysis approach, which leads to an
underestimation of the group-level variance.

First faulty method: Ignoring the hierarchy

The first faulty analysis method that is highly prevalent
in current statistical practice is ignoring the hierarchical
data structure, which is equivalent to missing a random
effect on the participant-level. The underlying mechanism
is common to both Bayesian and frequentist analyses and
leads to an overestimation of the group-level variance.
When researchers ignore the hierarchy, they base their
analysis on participants’ sample averages x̄i and equate
these with participants’ true means θi . This tacitly implies
that the variance of the x̄i is assumed to equal the group-
level variance τ 2. However, the variance of the x̄i is in fact
the sum of the true group-level variance τ 2 and the sampling
variance σ 2/K (see Eq. 3), and as a result researchers
overestimate the group-level variance by σ 2/K . Although
the problem is negligible when the number of trials per
participant K is large, the sampling variance σ 2/K is
usually unknown and it is unclear for what size of K

the influence of the sampling variance becomes negligible
relative to the group-level variance. Moreover, the rate
at which the overestimation of the group-level variance
decreases with increasingK will also depend on the specific
cognitive model and will be considerably larger for some
models than for others.

Second faulty method: Two-step analyses

The second faulty analysis method regularly seen in the
recent literature is taking a two-step approach. Much as
ignoring the hierarchy, this method is detrimental to the
validity of statistical conclusions but has the opposite effect.
While ignoring the hierarchy leads to an overestimation of
the group-level variance, taking a two-step approach leads
to an underestimation of the group-level variance. Here
we focus on the analysis strategy where researchers obtain
point estimates from a hierarchical Bayesian model and
use participant-level estimates in a non-hierarchical follow-
up test. However, the same problems can be expected to

befall analyses that use participant-level point estimates
from a hierarchical frequentist model in a non-hierarchical
follow-up test.

A two-step analysis is based on an appropriately spec-
ified hierarchical Bayesian model. Given the experimental
setup outlined above, the appropriate hierarchical model
postulates that repeated measurements for each partici-
pant are normally distributed around a true mean (xij ∼
N

(
θi, σ

2
)
) and participants’ true means are normally dis-

tributed around the group-level mean (θi ∼ N
(
μ, τ 2

)
).

This setup acknowledges the fact that participants’ sample
means x̄i are uncertain estimates of their true means θi , and
correctly distinguishes the sampling variance σ 2/K of the
participant means from the variance τ 2 of the true means
(see Eq. 3).

A researcher might furthermore propose a uniform prior
distribution for the group-level mean p(μ) ∝ 1. For the sake
of clarity, we ignore the priors for the variance parameters
and assume that the true values are known. A posterior point
estimate of each participant’s true mean is then given by the
mean of the posterior distribution of the person’s true mean
given the participant’s sample mean and group-level mean,
θi | μ, x̄i . For participant i, the posterior point estimate
is θ̂i = (

x̄iτ
2 + μσ 2/K

)
/
(
τ 2 + σ 2/K

)
and the variance

of the posterior distribution is
(
τ 2σ 2/K

)
/
(
τ 2 + σ 2/K

)
.

The posterior estimate of the participant’s true value
θ̂i is the weighted average of the person’s sample
mean and the group-level mean, and as the sampling
variance σ 2/K increases, more weight is given to the
group-level mean, thus pulling, or shrinking, the sample
mean towards the group-level mean. As a consequence,
the variance of the posterior estimates is smaller than
the variance of participants’ true means, τ 2, that is,(
τ 2σ 2/K

)
/
(
τ 2 + σ 2/K

) ≤ τ 2. This becomes more
obvious when both sides of the inequality are multiplied
by K and

(
τ 2 + σ 2/K

)
, the denominator of the left-hand

side: σ 2 ≤ τ 2K + σ 2. Therefore, if posterior estimates
from a hierarchical Bayesian model are used in a follow-
up frequentist analysis, the group-level variance will be
systematically underestimated.

Consequences for five different analysis strategies

In the preceding sections, we discussed the general
mechanisms that give rise to biases if either the hierarchical
data structure is ignored or a two-step analysis approach
is taken. We now turn to a discussion of the consequences
for specific analysis strategies that are frequently seen in
statistical practice. We will focus on the case of Bayesian
and frequentist t tests as these constitute some of the most
basic analysis methods in researchers’ statistical toolbox.
Nevertheless, the same general conclusions apply to more
complex analysis methods.
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Hierarchical Bayesian t test

The correct analysis strategy for hierarchical data with
two groups of participants is a hierarchical t test. Within
the Bayesian framework, statistical hypothesis tests are
usually based on Bayes factors, which express the relative
likelihood of the data under two competing statistical
hypotheses H0 and H1 (Rouder et al., 2009). To compute a
Bayes factor, researchers need to specify their prior beliefs
about the model parameters they expect to see under each
of the competing hypotheses. One particularly convenient
way to specify these prior distributions is to express ones
expectations about effect size δ = (μ2−μ1)/τ , where μg is
the mean of experimental group g = 1, 2 and τ is the group-
level standard deviation as above. For the present work, we
specified the null hypothesis to be the point null δ = 0 and
the alternative hypothesis that δ �= 0, which we expressed as
a standard normal prior p(δ) = N (0, 1). The Bayes factor
can then be computed as:

BF10 = p(x | H1)

p(x | H0)
=

∫
�

∫
δ

p(x | θ, δ)p(θ)p(δ)dδdθ

∫
�

p(x | θ, δ = 0)p(θ)dθ
,

where � is the set of model parameters2 other than δ

and x is the vector of all measurements xgij across
groups g, participants i, and repeated measurements j . One
convenient way to obtain the Bayes factor is known as
the Savage–Dickey density ratio (Dickey & Lientz, 1970;
Wagenmakers et al., 2010). This method expresses the
Bayes factor as the ratio of the prior and posterior den-
sities under the alternative hypothesis at the point null.
Specifically, because our null hypothesis is δ = 0, the Bayes
factor is BF10 = p(δ = 0 | H1)/p(δ = 0 | x,H1), the prior
density at δ = 0 divided by the posterior density at δ = 0.

One important result of our technical discussion above
is that researchers need to specify a hierarchical model
that correctly represents the hierarchical structure of their
data. In the case discussed here, the model needs to
include a trial-level on which repeated measurements for
each participant are nested within that person. Moreover,
the model needs to include a participant-level on which
each participant’s mean is nested within the experimental
group. Finally, the model also needs to include a group-
level that contains the two experimental groups. Such a
model specification guarantees that the different sources of
variability in the data, namely the variability of the repeated

2More specifically, because the effect size δ depends on the means
of the two experimental groups, μ1, μ2 and the group-level variance
τ 2, the set � contains only one of the two means and the group-level
variance.

measurements within each participant, and the variability
of the means between participants, are correctly accounted
for.3 The resulting estimates of the population means and
variance will be approximately correct, yielding estimates
of the effect size δ that lie neither inappropriately close nor
inappropriately far from δ = 0; hence Bayes factors will
correctly represent the evidence for the null and alternative
hypothesis.

Non-hierarchical Bayesian t test

In our discussion above, we showed that modeling
participants’ sample means rather than the single trial
data (ignoring the hierarchy), ignores the variability of the
repeated measurements within each participant and results
in an overestimation of the group-level variance τ 2. Such
overestimation of the group-level variance will result in
effect size estimates δ that are too close to 0. Because,
given our choice for the prior on δ, data associated with
small δ are more plausible under the null hypothesis of
no group difference. Hence Bayes factors based on a non-
hierarchical model will unduly favor the null hypothesis
when the true effect is δ �= 0. Note that the strength of this
bias depends on the choice of the prior distribution for δ. A
non-local alternative prior, for example, has 0 mass at δ = 0
(Johnson & Rossell, 2010), and will therefore result in a
much stronger bias towards the null hypothesis if the true
effect is δ �= 0.

Hierarchical frequentist t test

Statistical hypothesis tests within the frequentist framework
are based on test statistics that express the ratio of variance
accounted for by the experimental manipulation to the
standard error of the group-level difference. In the case of
a two-sample t test for the null hypothesis that there are no
group differences, this is simply

t = μ̂2 − μ̂1

σ̂m

, and

σ̂m =
√(

τ̂ 21 + τ̂ 22

)
/N,

where μ̂1 and μ̂2, and τ̂ 21 and τ̂ 22 are the sample means and
variances, respectively, and σ̂m is an estimate of the standard
error of the group-level difference.

A proper hierarchical analysis constitutes the recom-
mended solution within the frequentist framework (Baayen

3Note that the nesting discussed here only refers to the participant
means and group means. Researchers might also consider nesting
participant- and group-specific variances. However, such nested
variances might cause convergence problems in complex models if
insufficient data are available.
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et al., 2008; Pinheiro & Bates, 2000). However, such a hier-
archical analysis might, for some reason, not be feasible.
One scenario frequently encountered in practice is a hier-
archical Bayesian implementation of a cognitive model for
which an equivalent hierarchical frequentist implementation
has not been developed (e.g., Matzke et al., 2013, 2015;
Ravenzwaaij et al., in press; Wiecki et al., 2013; Steingroever
et al., 2014). In this case, researchers might decide to use
the group-level estimates for μ1, μ2, and τ 2 from a hierar-
chical Bayesian model as the basis for their t test. Although
this strategy is not yet widespread in practice, we include it
in our theoretical analysis and in our simulations as a possi-
ble alternative to the common but suboptimal strategies of a
non-hierarchical or a two-step frequentist t test.

Using group-level estimates from a hierarchical Bayesian
model in a follow-up frequentist t test leads to smaller
biases than a non-hierarchical or a two-step frequentist
t test. Specifically, estimates of the group-level mean in
a hierarchical Bayesian model are subject to shrinkage
towards the prior mean. However, the degree of shrinkage
for the group-level means is mild compared to the shrinkage
for participant-level means. Moreover, estimates of the
group-level variance obtained from correctly specified
hierarchical models will usually not over- or underestimate
the true group-level variance. Therefore, t tests that are
based on such hierarchical Bayesian group-level estimates
will tend to be somewhat conservative but will be less
biased overall than t tests in a two-step or non-hierarchical
approach.

Non-hierarchical frequentist t test

As mentioned before, neglecting the trial-level and basing
the analysis on participant means instead (ignoring the
hierarchy) leads to an overestimation of the group-level
variance. Overestimation of the group-level variance will
in turn result in underestimation of t values and will bias
frequentist t tests against the alternative hypothesis.

Two-step frequentist t test

Our theoretical considerations above showed that hierar-
chical Bayesian estimates of participants’ means can be
strongly affected by shrinkage. Because all estimates are
pulled towards a common value, the prior mean, the vari-
ance of the estimates can be considerably smaller than
the true group-level variance. Therefore, if researchers
obtain estimates of participants’ means from a hierarchical
Bayesian model and subsequently use these estimates in a
frequentist test (two-step approach), the group-level vari-
ance will be underestimated, resulting in overestimation of
t values and a bias in favor of the alternative hypothesis.

Interim conclusion

To sum up, theoretical considerations indicate that ignoring
the hierarchical data structure will lead to an overestimation
of the group-level variance. Such an overestimation will
bias frequentist as well as Bayesian t tests towards the null
hypothesis. Taking a two-step analysis approach, on the
other hand, will lead to an underestimation of the group-
level variance. Consequently, t values will be overestimated
and tests will be biased towards the alternative hypothesis.

Part II: Practical ramifications

The theoretical considerations in the previous section
indicate that analysis strategies for hierarchical data that
ignore the hierarchy or take a two-step approach result in
biased statistical tests. To gauge the severity of these biases,
we performed a Monte Carlo simulation study using the
five analysis strategies discussed above. For the sake of
simplicity and comparability with our theoretical results, we
focused on a hierarchical data structure with two levels and
normal distributions on both levels. Nevertheless, the overall
patterns observed here apply to more complex cases with
different distributions or numbers of hierarchical levels.

Constructing a data-generatingmodel

To simulate a realistic experimental setup, we considered
a typical psychological experiment in which the goal is
to assess the effect of an experimental manipulation on a
variable of interest, say RT. To this end, participants are
randomly assigned to one of two experimental conditions.
Subsequently, each participant’s RT is measured repeatedly.

A hierarchical Bayesian model of such an experiment
is shown in Fig. 1. On the first, trial-level, the model
assumes that repeated measurements xgij for participant i

in group g (shaded, observed node in the innermost plate)
are drawn from a normal distribution with mean θgi and
variance σ 2

gi (unshaded, stochastic nodes in the intermediate
plate). On the second, participant-level, the mean θgi for
each participant is drawn from a normal distribution with
mean μg (for μ1, second unshaded, stochastic node from
the left at the top; for μ2 double-bordered, deterministic
node in the outer plate; the node is shown as deterministic
becauseμ2 is fully determined by δ, τ , andμ1) and standard
deviation τ (third unshaded, stochastic node from the left
at the top). The participant-specific sampling variance σ 2

gi

is drawn from a half-normal distribution with mean 0
and standard deviation λ (fourth unshaded, stochastic node
from the left at the top; see Gelman, 2006; Chung et al.,
2013, for a discussion of choices for prior distributions
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Fig. 1 Full hierarchical model.N denotes the normal prior, U denotes
the uniform prior, and T(0,) indicates truncation at 0

for variance parameters). We further assumed that only
the group mean, μg , differs between groups by δτ , where
δ (leftmost unshaded, stochastic node at the top) is the
standardized effect size (i.e., we assumed equal variances
across groups; μ2=μ1 + δτ ).

As we had little prior information regarding plausible
parameter values for the hierarchical model yet a wealth of
data to constrain the posterior estimates of the parameter
values, we followed Edwards et al.’s (1963) principle
of stable estimation. That is, for the group-level model
parametersμ1, τ , and λ, for which there was no default prior
distribution available, we specified the prior to be relatively
uninformative across the range of values supported by the
data. Therefore, we assigned the group-level mean μ1 a
positive-only (truncated) normal distribution4 with mean
6 and standard deviation 1/3; we assigned the standard
deviation τ of participants’ true values θi a uniform
distribution ranging from 0 to 15 (Gelman, 2006); we
assigned the standard deviation λ of the distribution of
sampling variances a uniform prior ranging from 0 to 10.
Exploratory analyses using different distributions for τ and
λ yielded similar results.

We implemented our model in Stan Development Team
(2016a, b) and ran MCMC chains until convergence
(Gelman-Rubin diagnostic R̂ ≤ 1.05; Gelman and Rubin,
1992). We obtained 20,000 samples from three chains for
each model parameter, of which we discarded 2000 samples

4This truncation was necessary because when fitting log-RTs, negative
values of the group-level mean would imply impossibly small RTs.
Nevertheless, due to the large mean of the prior and the comparatively
small standard deviation, the effect of the truncation on our model fits
was negligible.

as burn-in. Thinning removed a further three out of every
four samples, leaving us with a total of 4500 posterior
samples per parameter and chain. We then used the mean of
the posterior samples to parameterize the three group-level
parameters (μ̂1 = 6.52, τ̂ = 0.16, λ̂ = 0.29) of our model.
To generate data for our Monte Carlo simulations, we set the
fourth group-level parameter, δ, to a pre-specified value (see
next section), and sampled N values of the participant-level
parameters (θgi , σ 2

gi), representing simulated participants,
for each experimental group. We subsequently sampled K

values of the trial-level parameter (xgij ) for each simulated
participant in each experimental group (i.e., a total of 2 ×
N × K values).

Designing theMonte Carlo simulations

We generated data from the hierarchical Bayesian model
as described above and applied five different analysis
strategies. Repeating this process 200 times for each
simulation allowed us to quantify the degree of bias
introduced by the different strategies.

We varied three parameters that should influence the
degree to which different analysis strategies bias statistical
results. The number of simulated trials per participant, K ,
varied over four levels (K ∈ {2, 5, 15, 30}). The number
of simulated participants in each group, N , also varied
over four levels (N ∈ {2, 5, 15, 30}). Here the smallest
values, K = 2 and N = 2, were included to illustrate
the mechanism of the different statistical biases in extreme
cases. We manipulated the size of the effect between groups,
δ, which was chosen from the set {0, 0.1, 0.5, 1}. In each
simulation, we used one combination of parameter values,
resulting in a total of 64 simulations with 200 data sets each.
The R-code for the simulations is available in the online
appendix: osf.io/uz2nq.

Implementation of analysis strategies

Hierarchical Bayesian t test

For the hierarchical Bayesian analysis, we fit the complete
hierarchical model described in the section “Constructing a
data-generating model” (see also Fig. 1) to the simulated
data. We assigned the group-level parameters μ1, τ , and
λ the priors described above. Moreover, we assigned the
standardized effect size δ a normal prior with mean 0 and
standard deviation 1 (Rouder et al., 2009).

To analyze the simulated data, we implemented the
hierarchical model in Stan (RStan version 2.9.0; Stan
Development Team, 2016a, b) and ran MCMC chains until
convergence (Gelman-Rubin diagnostic R̂ ≤ 1.05; Gelman
and Rubin, 1992) with the same settings as described above

http://osf.io/uz2nq


Behav Res (2018) 50:1614–1631 1621

(i.e., we obtained 20,000 samples from three chains, of
which 2000 samples were discarded as burn-in and a further
three out of every four samples were removed by thinning).
We then estimated the Bayes factors using the Savage–
Dickey method (Dickey & Lientz, 1970; Wagenmakers et
al., 2010) based on logspline density fits of the posterior
samples for δ (Stone et al., 1997).

Non-hierarchical Bayesian t test

For the non-hierarchical Bayesian analysis, we considered a
model that has the same overall structure as the hierarchical
model but ignores the participant-level (Fig. 2). Specifically,
the model represents individual participants i in group g by
their participant means x̄gi (shaded, deterministic node in
the innermost plate), thus ignoring the sampling variance
associated with the participant means. The participant
means are in turn drawn from a normal distribution with
mean μg (for μ1, second unshaded, stochastic node at the
top; for μ2 double-bordered, deterministic node in the outer
plate; the node is shown as deterministic because μ2 is
fully determined by δ, τ , and μ1) and standard deviation τ

(right unshaded, stochastic node at the top). Groups again
only differ in their mean μg by δτ , where δ (left unshaded,
stochastic node at the top) is the standardized effect size.

We ran MCMC chains for the model until convergence
and obtained 5000 samples from three chains for each
model parameter, of which we discarded 500 samples as
burn-in, leaving a total of 4500 posterior samples per
parameter and chain. Thinning was not necessary, as we did
not observe any noteworthy autocorrelations. As with the
hierarchical model, we estimated Bayes factors using the
Savage–Dickey method.

We based the hierarchical frequentist t test on group-
level estimates from the hierarchical Bayesian model. In
particular, we computed the median of the posterior samples
for the group-level means μg and standard deviation τ

Fig. 2 Non-hierarchical model. N denotes the normal prior distribu-
tion, U denotes the uniform prior, and T(0,) indicates truncation at 0

and used these summary statistics to compute the t values.
We set the type I error rate for the two-sided test to the
conventional α = .05.

Non-hierarchical frequentist t test

We based the non-hierarchical frequentist t test on the
participant means x̄gi . We therefore computed estimates of
the group-level means and standard deviation by averaging
the participant means in each experimental group and
computing the pooled standard deviation of the participant
means, respectively. As for the hierarchical t test, we set
α = .05.

Two-step frequentist t test

For the two-step analysis approach, we used participant-
level estimates from the hierarchical Bayesian model as
input for a frequentist t test. We therefore computed the
median of the posterior samples for each participant’s
estimated true mean θgi . We then obtained estimates of
the group-level means and standard deviation by averaging
the posterior medians of the posterior estimates in each
experimental group and computing their pooled standard
deviation, respectively. As for the hierarchical t test, we set
α = .05.

Results

To anticipate our main conclusion, our simulation results
corroborate the theoretical predictions. Specifically, an
analysis that takes the hierarchical structure of the data into
account leads to approximately correct inferences, whereas
analyses that neglect the hierarchical data structure lead to
an overestimation of the group-level variance, and thus bias
Bayesian and frequentist t tests towards the null hypothesis
of no group difference. Moreover, taking a two-step analysis
approach leads to an underestimation of the group-level
variance, and thus biases t tests towards the alternative
hypothesis. In addition, the simulations also revealed a
result that was not obvious from the theoretical analyses;
this result will be discussed in more detail below.

Below we will focus on only the most extreme cases
(N ∈ {2, 30}, K ∈ {2, 30}, δ ∈ {0, 1}), as they provide
the clearest illustration of the consequences of the different
analysis strategies. Nevertheless, the results presented here
hold generally. The results of the full set of simulations can
be found in the online appendix: osf.io/uz2nq.

Hierarchical Bayesian t test

Figure 3 shows a comparison of the hierarchical and the
non-hierarchical Bayesian t test for δ = 0. Data points

http://osf.io/uz2nq
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are the natural logarithm of the Bayes factors under the
hierarchical and non-hierarchical model (scatter plots),
which means that values below 0 indicate evidence for the
null hypothesis whereas values above 0 indicate evidence
for the alternative hypothesis; marginal distributions of the
Bayes factors under each model are shown on the sides.
Panels give the results for different numbers of trials (K)
and participants per group (N). The horizontal dashed line
indicates the point where hierarchical log-Bayes factors are
0 and favor neither the null nor the alternative hypothesis.

The y-axis shows the hierarchical log-Bayes factors for
200 simulations. Hierarchical Bayes factors constitute the
correct Bayesian analysis of the simulated data. When
the number of participants is low, these Bayes factors are
largely unaffected by the number of trials per participant
(compare top and bottom row in the left column) and log-
Bayes factors cluster around 0, which indicates a lack of
evidence. However, when the number of participants is
large, Bayes factors become smaller as the number of trials
per participant increases, thus increasingly favoring the
null hypothesis that there is no difference between groups
(compare top and bottom row in the right column).

Fig. 3 Outcomes of the Bayesian analysis under the hierarchical and
non-hierarchical Bayesian model for different numbers of simulated
trials (K) and participants (N) for δ = 0. The scatterplot shows
a comparison of log-Bayes factors for the hierarchical (BF10H , y-
axis) and non-hierarchical (BF10NH , x-axis) Bayesian model. The gray
diagonal line shows where log-Bayes factors should fall in the case
of equality (logBF10H = logBF10NH ). The gray dotted lines indicate
the indecision point where logBF = 1. Histograms show the marginal
distribution of the log-Bayes factors

Figure 4 shows the comparison of the hierarchical and
the non-hierarchical Bayesian t test for δ = 1. The results
are complementary to the results for δ = 0; hierarchical
Bayes factors, shown on the y-axis, cluster around 0 when
the number of participants is low, irrespective of the number
of trials per participant (compare top and bottom row in
the left column). This indicates a lack of evidence. On
the other hand, when the number of participants is large,
hierarchical Bayes factors become larger as the number of
trials per participant increases (compare top and bottom
row in the right column), thus increasingly favoring the
alternative hypothesis (compare top and bottom row in the
right column).

Non-hierarchical Bayesian t test

The non-hierarchical log-Bayes factors for δ = 0 are shown
on the x-axis in Fig. 3, the vertical dashed line indicates
the point where the log-Bayes factors are 0. Similar to the
hierarchical Bayes factors, when the number of participants
is low, non-hierarchical log-Bayes factors are unaffected by
the number of trials per participant and cluster around 0,

Fig. 4 Outcomes of the Bayesian analysis under the hierarchical and
non-hierarchical Bayesian model for different numbers of simulated
trials (K) and participants (N) for δ = 1. The scatterplot shows a
comparison of log-Bayes factors for the hierarchical (BF10H , y-axis)
and non-hierarchical (BF10NH , x-axis) Bayesian model. Red asterisks
indicate outliers (outliers are jittered to prevent visual overlap). The
gray diagonal line shows where log-Bayes factors should fall in the
case of equality (logBF10H = log BF10NH ). The gray dotted lines
indicate the indecision point where logBF = 1. Histograms show the
marginal distribution of the log-Bayes factors
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which indicates a lack of evidence (compare top and bottom
row in the left column). However, when the number of
participants is large, Bayes factors become smaller as the
number of trials per participant increases, thus increasingly
favoring the null hypothesis (compare top and bottom row
in the right column).

The non-hierarchical Bayes factors for δ = 1, shown on
the x-axis in Fig. 4. These Bayes factors cluster around 0
when the number of participants is low, irrespective of the
number of trials per participant (compare top and bottom
row in the left column). This indicates a lack of evidence.
On the other hand, when the number of participants is large,
non-hierarchical Bayes factors become larger as the number
of trials per participant increases, thus increasingly favoring
the alternative hypothesis (compare top and bottom row in
the right column).

Importantly, in the top right scatter plots of Figs. 3 and 4,
most data points lie above the diagonal. This indicates that
when the number of participants is large and the number of
trials per participant is low, non-hierarchical Bayes factors
are biased towards the null hypothesis. However, when the
number of trials per participant is large, this bias disappears
(compare bottom right panels in Figs. 3 and 4).

Similar patterns can be seen in Fig. 5, which shows
the differences in absolute log-Bayes factors under the
hierarchical and the non-hierarchical model. Dashed gray
lines show the point where Bayes factors under both models
are equal. The results for δ = 0, shown on the left,
indicate that in most situations considered here hierarchical
and non-hierarchical Bayes factors are approximately equal.
However, when the number of participants is large and the
number of trials per participant is relatively small (top right

panel), differences between absolute log-Bayes factors are
smaller than 0, which means that absolute non-hierarchical
Bayes factors are larger than absolute hierarchical Bayes
factors, and thus tend to overstate the evidence for the null
hypothesis. The results for δ = 1, shown on the right, again
indicate that in most situations considered here hierarchical
and non-hierarchical Bayes factors are approximately equal.
However, when the number of participants is large and
the number of trials per participant is relatively small (top
right panel), differences between absolute log-Bayes factors
are larger than 0, which means that non-hierarchical Bayes
factors are smaller than hierarchical Bayes factors, and thus
are biased towards the null hypothesis.

The above observations can be accounted for by
examining the behavior of the posterior distributions on
which the Bayes factors are based. Figure 6 shows the prior
and quantile-averaged posterior distributions for δ under
the hierarchical and the non-hierarchical model. Panels
show the results for different numbers of trials (K) and
participants per group (N) for δ = 0 (left subplot) and
δ = 1 (right subplot). The posterior distributions under
the hierarchical and the non-hierarchical model are very
similar under most conditions except when the number of
participants is large and the number of trials per participant
is small (top right panel in both subplots). When δ = 0,
the modes of the posterior distributions are equal under
both models (top right panel in the left subplot), whereas
when δ = 1, the mode under the non-hierarchical model is
systematically smaller than the mode under the hierarchical
model (top right panel in the right subplot). This pattern
is due to the fact that the non-hierarchical model ignores
the sampling variance associated with participant means,

Fig. 5 Differences between log-Bayes factors under the hierarchical
and non-hierarchical Bayesian model. Violin plots show the distribu-
tion of differences between absolute log-Bayes factors, | logBF10H | −

| log BF10NH |, for different numbers of simulated trials (K) and partic-
ipants (N). Dashed horizontal lines indicate no difference in log-Bayes
factors
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Fig. 6 Posterior distribution of effect size δ under the hierarchical
and non-hierarchical Bayesian model for different numbers of simu-
lated trials (K) and participants (N). Distributions shown are the prior
(light gray dashed lines) and quantile-averaged posterior distributions

of δ under the hierarchical (H, black) and non-hierarchical model (NH,
dark gray) for δ = 0 (left subplot) and δ = 1 (right subplot). The gray
solid vertical line indicates the mean of the prior distribution and the
black dashed vertical line shows the true value of δ

which leads to an overestimation of the group-level variance
and thus biases the posterior distribution of the effect size
towards the null hypothesis δ = 0 when the true effect is
δ = 1.

The quantile-averaged posteriors in Fig. 6 furthermore
reveal a subtle overconfidence bias in the non-hierarchical
model. When the number of participants is large and the
number of trials per participant is small (top right panel
in both subplots), the posterior under the non-hierarchical
model is more peaked than under the hierarchical model,
which means that the non-hierarchical model overstates the
confidence that can be placed in estimates of the effect
size δ. Although we did not anticipate this result from our
theoretical analysis, the overconfidence bias is nevertheless
in line with our theoretical considerations. Because the non-
hierarchical model ignores the sampling variance associated
with participant means as a separate source of uncertainty
about δ, the posterior variance of δ is underestimated.

The consequences of the behavior of the posteriors for
Bayes factors are straightforward. First consider δ = 0,
where the modes of the posterior distribution under both
models are equal but, due to the overconfidence bias, the
posterior under the non-hierarchical model is more peaked.
This means that the non-hierarchical posterior has higher
density at δ = 0, resulting in Bayes factors that provide
stronger support for the null hypothesis than hierarchical
Bayes factors. Second, consider δ = 1. In this case, due
to the overconfidence bias, the posterior under the non-
hierarchical model is again more peaked. This means that
if the posterior modes under both models were similar, the

non-hierarchical model would yield larger Bayes factors
than the hierarchical model. However, for the simulations
reported here, the mode of the non-hierarchical posterior
lies considerably closer to δ = 0 than the mode of the
hierarchical posterior, which mitigates the effect of the
lower posterior standard deviation and leads to a bias
towards the null hypothesis. Nevertheless, the trade-off
between the two biases is subtle and differences in the
posterior mode are not guaranteed to fully offset differences
in posterior standard deviation between the hierarchical and
the non-hierarchical model. Smaller differences between
the number of participants and the number of trials per
participant than reported here, for example, can result in
non-hierarchical Bayesian t tests that overstate the evidence
for the alternative hypothesis compared to hierarchical
Bayesian t tests (see Figures A2-A4 and A6-A8 in the online
appendix: osf.io/uz2nq, for examples).

True values

To obtain a standard for our comparisons between the three
frequentist analysis strategies, we computed the true t values
and p values for each simulated data set based on the
true participant means, which are usually not available to
researchers in empirical data sets. Figure 7 shows the true t
values (top rows) and p values (bottom rows) and the t and
p values obtained by each of the three frequentist analysis
strategies for different numbers of trials (K) and participants
per group (N) for δ = 0 (left column) and δ = 1 (right
column). Short thick black lines indicate the mean t values

http://osf.io/uz2nq
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Fig. 7 Outcomes of the frequentist analysis for different numbers of
simulated trials (K) and participants (N). Top row: t values for δ = 0
(left subplot) and δ = 1 (right subplot). Dotted lines show t = 0,
dashed lines show the critical t value in a two-sided t test with α = .05,
and red lines show the theoretical t value. Dots are true t values (TR;
blue), t values from a hierarchical frequentist strategy (HF; green),
non-hierarchical frequentist strategy (NF; grey), and two-step frequen-
tist strategy (TF; orange); asterisks denote outliers (outliers are jittered

to prevent visual overlap). Numbers at the bottom indicate the propor-
tion of significant t values (out of 200 t tests). Bottom row: p values for
δ = 0 (left subplot) and for δ = 1 (right subplot). Solid lines indicate
p = .05. Dots are true p values (blue), p values from a hierarchical
frequentist strategy (green), non-hierarchical strategy (grey), and two-
step frequentist strategy (orange). Data points are jittered for improved
visibility

and p values across the 200 simulations. Numbers at the
bottom of each panel show the proportion of significant t
values.

The true t values (TR, blue) are sensitive to the number
of participants in each experimental group. When δ = 0, the
values are symmetrically distributed around 0 and cluster
more closely together for larger numbers of participants
(compare blue dots in the left and right panels of the top
left subplot). The type I error rate approximately equals

the nominal α = .05. The corresponding p values (bottom
left subplot) are uniformly distributed over the range from
0 to 1, as is expected if the null hypothesis is true. When
δ = 1, the t values are symmetrically distributed around the
theoretical value and cluster more closely together for larger
numbers of participants (compare left and right panels of
the top right subplot). The corresponding p values rapidly
approach 0 as the number of participants increases (bottom
right subplot).
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Hierarchical frequentist t test

When δ = 0, t values that are based on group-level estimates
from a hierarchical Bayesian model (HF, green) tend to
cluster more closely around 0 than the true t values for
small numbers of participants (compare green to blue dots
in the left panels of the top left subplot). However, when
the number of participants is large, the t values are as
variable as the true t values (right panels in the top left
subplot). This is also reflected in the observed type I error
rate that is far below the nominal α = .05 when there are
few participants but, somewhat unexpectedly, surpasses that
theoretical value for large numbers of participants and small
numbers of trials. The corresponding p values cluster near 1
for small numbers of participants (left panels in the bottom
left subplot) but become more evenly spread over the range
from 0 to 1 for large numbers of participants, especially
when the number of trials per participant is relatively large
(right panels in the bottom left subplot). When δ = 1, the
t values are, on average, smaller than the true t values (top
right subplot), except when the number of participants and
the number of trials per participant are large; the power of
hierarchical t tests lags behind that for t tests based on the
true t values. The p values cluster near 1 for small numbers
of participants (left panels in the bottom right subplot)
but approach 0 as the number of participants increases,
especially when the number of trials per participant is large
(right panels in the bottom right subplot).

These results can be understood by considering the
behavior of the group-level hierarchical Bayesian estimates
used in the frequentist analysis. Specifically, because the
hierarchical Bayesian model takes the hierarchical structure
of the data into account, estimates of the group-level
variance τ are not overly biased. The posterior estimate
of each group-level mean μg is the weighted average
of the prior mean and participants’ sample means. For
small numbers of participants, this posterior estimate is
shrunken towards the prior mean but as the number of
participants increases, the posterior estimate increasingly
depends on participants’ sample means. Consequently,
when the number of participants is small, t values tend to be
underestimated whereas when the number of participants is
large, this underestimation disappears.

Non-hierarchical frequentist t test

When δ = 0, t values that are based on participant means
(NF, gray) are similarly distributed as the true t values
(compare grey to blue dots in the top left subplot) and the
observed type I error rate is roughly in keeping with the
nominal α = .05. The corresponding p values uniformly
span the range from 0 to 1 (bottom left subplot). However,

when δ = 1 and the number of participants is large but
the number of trials per participant is small, the t values
are systematically smaller than the true values (top right
subplot), and power consequently lags behind the power
associated with the true t values. This pattern is also
reflected in the p values, which approach 0 more slowly than
the true p values (bottom right subplot).

These results are accounted for by the fact that basing t
values on participant’s sample means x̄gi ignores the sam-
pling variance associated with those means. Consequently,
the group-level variance is overestimated, which leads to an
underestimation of t values.

Two-step frequentist t test

When δ = 0, t values that are based on participant-level
estimates from a hierarchical Bayesian model (TF, orange)
are in most cases similar to the true t values (top left
subplot). However, when the number of participants is large
and the number of trials per participant is small, t values
from a two-step analysis are more variable than the true
t values (compare orange and blue dots in the top right
panel of the top left subplot) and the type I error rate
is up to six times the nominal α = .05. The p values
show a corresponding pattern (bottom left subplot), being
uniformly distributed between 0 and 1 except when the
number of participants is large and the number of trials per
participants is small, in which case the p values rapidly
approach 0 (top right panel in the bottom left subplot).
When δ = 1, t values from a two-step analysis are again
largely similar to the true t values (top right subplot).
However, when the number of participants is large and the
number of trials per participant is small, t values from a
two-step analysis are larger and more variable than the true
t values (compare orange and blue dots in the top right
panel of the top right subplot). Nevertheless, the power of
two-step t tests differs only slightly from that of t tests
based on the true t values. The corresponding p values
show a complementary pattern (bottom right subplot), being
relatively uniformly distributed between 0 and 1 when the
number of participants is small but rapidly approaching 0
when the number of participants is large (top right panel in
the bottom left subplot).

These results are again easily explained by the Bayesian
estimators based on which the t values were computed.
Participant-level estimates from a hierarchical Bayesian
model are shrunken towards a common value, the prior
mean, and shrinkage is strongest when the number of
participants is large and the number of trials per participant
is small. Therefore, in these situations, the group-level
variance is underestimated, resulting in an overestimation of
t values.
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Interim conclusion
The results of our simulation study corroborate the
theoretical predictions. Bayesian and frequentist t tests that
ignore the hierarchical data structure are biased in favor
of the null hypothesis that there is no difference between
groups. Frequentist t tests in a two-step approach tend
to unduly favor the alternative hypothesis. In addition,
our simulations revealed an overconfidence bias in non-
hierarchical Bayesian t tests, which tend to overstate the
support for the hypothesis the Bayes factor favors. This
overconfidence bias, which we did not anticipate in our
theoretical analysis, is explained by the nature of the
posterior distributions, which are too peaked when the
hierarchical data structure is ignored.

Discussion

Over the last decade, the use of cognitive models in the
analysis of experimental data has become increasingly
popular in cognitive science, a trend that has been further
reinforced by the recent popularization of hierarchical
Bayesian implementations of cognitive models (Rouder &
Jun, 2005; Rouder et al., 2003). This development has
had many positive effects, such as facilitating experimental
studies based on quantitative predictions and offering new
ways of connecting neurophysiological and psychological
theories of the human mind (Forstmann et al., 2011).
However, the increased use of cognitive models comes at
the cost of an increased number of suboptimal applications
of cognitive models.

In the present study, we set out to demonstrate how faulty
analysis strategies in cognitive modeling of hierarchical data
can lead to biased statistical conclusions.We considered two
inappropriate approaches, namely ignoring the hierarchical
data structure and taking a two-step analysis approach.
Both of these approaches are highly prevalent in recent
studies and might therefore introduce substantial biases into
the literature. Well-established theoretical results predict
that ignoring the hierarchy leads to an overestimation of
the group-level variance, which should result in a bias
towards the null hypothesis (see also Box and Tiao, 1992).
Taking a two-step approach, on the other hand, should lead
to an underestimation of the group-level variance, which
should result in a bias towards the alternative hypothesis.
To illustrate the severity of these biases, we conducted a
Monte Carlo study in which we generated data for a two-
group experiment. For illustrative purposes, we considered
a simple statistical model with normal distributions on
the group level and on the participant level. For the
Bayesian analysis of the data, we computed Bayes factors
for the effect size based on either a hierarchical or a
non-hierarchical model. In line with our predictions, the

simulations showed that non-hierarchical Bayes factors
exhibited a bias towards the null hypothesis. In addition,
the simulations also revealed an overconfidence bias in
non-hierarchical Bayes factors, which overstate the strength
of the evidence provided by the data. Although we did
not anticipate this result from our theoretical analysis,
the overconfidence bias is explained by the theoretical
properties of the posterior distributions on which the Bayes
factors are based. Both tendencies, the bias towards the
null hypothesis and the overconfidence bias, were most
pronounced when the number of simulated trials was small
and the number of participants was large.

For the frequentist analysis, we computed t tests that
were either based on participants’ sample means, which
ignore the hierarchical data structure, or participant-level
posterior estimates from a hierarchical Bayesian model that
represent a two-step approach. In addition, we computed
frequentist t tests that were based on group-level posterior
estimates from a hierarchical Bayesian model. Because the
group-level posterior estimates respect the hierarchical data
structure, we expected that this analysis strategy might mit-
igate the biases of a two-step approach. Our results were
again largely in line with previous theoretical results. t tests
based on participants’ sample means resulted in an under-
estimation of t values and a loss of power; these biases
were particularly strong when the number of participants
was large and the number of trials was small. t tests based
on hierarchical Bayesian participant-level estimates resulted
in highly variable t values, leading to considerable type
I error inflation, especially when the number of partici-
pants was large and the number of trials was small. t tests
based on hierarchical Bayesian group-level estimates, on the
other hand, resulted in t values that were biased towards
the null hypothesis, especially when the number of partici-
pants was large and the number of trials per participant was
relatively low.

Taken together, our results show that ignoring the hierar-
chical data structure or taking a two-step analysis approach
can bias researchers’ conclusions. These biases are most
pronounced when only little data is available for each par-
ticipant and the number of participants is large. Under these
circumstances, the sampling variance will be greatest and,
consequently, the group-level variance, if not modeled cor-
rectly, will be overestimated to the highest degree, thus also
maximizing shrinkage in Bayesian parameter estimates.

Ramifications for cognitivemodeling

The simulations presented here used a simple statistical
model for illustrative purposes. This raises the question
of how our results generalize to hierarchical cognitive
models. To answer this question, we first note that,
although the strength of each type of bias will depend on
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the particular cognitive model, the general mathematical
mechanisms discussed in the first part of this paper will
hold for any cognitive model. Ignoring the variance on one
hierarchical level in a model will lead to a propagation of
the variance to another hierarchical level, and will therefore
bias statistical tests irrespective of the particular model.
Similarly, shrinkage will reduce the variance of the posterior
estimates in any hierarchical Bayesian model, and hence
bias statistical tests irrespective of the particular model.

One important difference between most cognitive models
and the statistical model considered here is that the
parameters in cognitive models are often highly correlated.
In the diffusion decision model, for example, correlations
between parameters tend to range from 0.5 upward (Ratcliff
& Tuerlinckx, 2002) and misestimation of some parameters
can critically affect estimation performance for other
parameters (Boehm et al., 2018). Consequently, biases
introduced in one parameter by inappropriate analysis
strategies might carry over to other parameters, and thus
affect statistical tests across model parameters. Although
researchers might only be interested in testing the effect
of an experimental manipulation on a particular model
parameter, inappropriately modeling the hierarchical data
structure on another parameter can still affect tests on
the parameter of interest. It therefore seems that correctly
accounting for the hierarchical data structure is even more
important in cognitive models than in the simple statistical
model considered here.

Despite the theoretical advantages that hierarchical
cognitive models have to offer, implementing the full
hierarchical structure for all model parameters might not
always be feasible or even desirable. Hierarchical cognitive
models are notoriously difficult to fit (e.g., Turner et al.,
2013) and researchers might not have sufficient data to
estimate a full random-effects structure on all model
parameters. Moreover, fitting a fully hierarchical model
might come at the expense of decreased statistical power
(Matuschek et al., 2017). One possible solution might
be to implement a fully hierarchical structure only for
some model parameters. However, this strategy comes
with two complications. First, different model selection
criteria build on different definitions of what constitutes the
‘best’ model, and might therefore select different models
for the same data (Aho et al., 2014; McQuarrie & Tsai,
1998). Second, model selection is always associated with
uncertainty (Jeffreys, 1961; Silberzahn & Uhlmann, 2015),
hence selecting a single model carries the risk of missing
relevant random effects. One possible solution is provided
by multimodel inference. Bayesian model averaging, for
example, avoids the need to select a single model and
accounts for model uncertainty by weighing the results of
each model by the plausibility of the model in light of the
data (Gronau et al., 2017; Hoeting et al., 1999). Similarly,

model averaging can also be performed in a frequentist
setting, for instance using Akaike weights (Burnham &
Anderson, 2002).

Statistically sound applications of hierarchical Bayesian
cognitive models are further hampered by the inflexibility
of existing software packages. For example, the use of
hierarchical Bayesian cognitive models has been strongly
advocated for clinical applications, where these methods
help address the strong constraints on data collection
(Matzke et al., 2013, in press; Shankle et al., 2013;Wiecki et
al., 2013); by pooling all available information, hierarchical
Bayesian models provide more reliable parameter estimates
than if each participant’s data were modeled individually.
However, as our simulation study demonstrates, using
hierarchical Bayesian participant-level parameter estimates
in ANOVA-type analyses can lead to a substantial type
I error inflation. A more appropriate analysis strategy
would be to include the clinical variables of interest in
the hierarchical Bayesian model itself. Unfortunately, while
some software packages already come equipped with a basic
capability for modeling covariates (e.g., HDDM; Wiecki et
al., 2013), or can be easily extended with a general linear
model (Boehm et al., in press), other software packages lack
this flexibility. In these cases, users will need to seek other
strategies to avoid statistical biases in their analyses. One
strategy we explored here was to use group-level parameter
estimates from the hierarchical Bayesian model, rather
than participants-level estimates, as input for ANOVA-type
analyses. Our simulations showed that although the type I
error rate inflation caused by this strategy is considerably
smaller than that caused by a two-step analysis approach,
the type I error rate can still be up to four times the nominal
rate. We therefore recommend against the use of group-level
estimates from a hierarchical Bayesian model in follow-up
statistical tests.

Careful examination of the mechanisms underlying the
biases created by a two-step analysis approach suggests fur-
ther ways to alleviate the problem. As our simulations show,
using participant-level posterior estimates in a t test leads
to an overestimation of t values because the group-level
variance is underestimated. This overestimation is caused
by shrinkage, which pulls less reliable participant-level
estimates more strongly towards the group mean. How-
ever, while shrinkage corrects the location of the participant-
level posteriors, it does not eliminate the posterior vari-
ance associated with these estimates. On the other hand,
if participant-level point estimates are used to estimate the
group-level variance, as is done in a two-step approach, the
posterior variance associated with these estimates is ignored
and the group-level variance is thus underestimated.

An alternative approach that correctly takes the posterior
variance of the participant-level estimates into account is
the method of plausible values (Ly et al., in press; Mislevy,
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1991; Marsman et al., 2016). In this approach, a single
sample is drawn from the posterior distribution of the
participant-level parameters, which accounts for the fact
that the posterior distributions have a certain variance. The
resulting samples are referred to as plausible values and can
be used to compute an estimate of the group-level mean and
variance. Repeating the sampling process several times will
give sets of estimates of the group-level mean and variance
that, if pooled correctly (Mislevy, 1991), can be used to
compute a t value.

Finally, irrespective of the technical explanations for our
findings discussed so far, our finding that participant-level
parameter estimates from hierarchical Bayesian models
result in biased statistical tests seems to be squarely at odds
with other authors’ findings that such Bayesian estimates
are better able to recover participants’ true parameter
values than non-hierarchical methods. For example, Farrell
and Ludwig (2008) found in their simulation study
that hierarchical Bayesian methods provided estimates of
participants’ ex-Gaussian parameters that were closest to the
data-generating parameter values (see also Rouder and et
al., 2003). There are two likely reasons for these divergent
results. Firstly, whereas Farrell and Ludwig were concerned
with parameter estimation, we are concerned with statistical
testing. In parameter estimation, the quantity of interest is
the absolute deviation between the estimated and the true
parameter values, which might very well be minimal for
hierarchical Bayesian estimates. In statistical testing, on the
other hand, it is not only the absolute deviation but also
its direction that is of interest. If the estimated parameters
systematically deviate from the true values in the direction
of the group mean, estimates of the group-level variance that
are based on such parameter estimates will systematically
be too small, and will thus bias test statistics.

A second reason for the discrepancy with Farrell and
Ludwig (2008) might lie in the relatively low degree of
shrinkage in their study. The most extreme case simulated
in Farrell & Ludwig’s study was an experiment with 80
participants and 20 trials per participant, whereas the most
extreme case in our study was an experiment with 60
participants and two trials per participant. Consequently,
the sampling variance was much greater in our study so
that the participant-level estimates were strongly shrunken.
Although it might be argued that such extreme cases are
rarely encountered in practice, it should be noted that the
model with normal distributions on all hierarchical levels
considered here is extraordinarily well behaved and can
usually be fitted reasonably well with only little data. More
complex models, especially ones that rely heavily on the
precise estimation of variance parameters (e.g., Ratcliff &
Russ, in press), might show a problematic sensitivity to
shrinkage for much larger sample sizes, a problem that
should be explored in future studies.

To sum up, our simulation study showed that taking
shortcut strategies for applying cognitive models to
hierarchical data biases frequentist as well as Bayesian
statistical tests; these biases are most pronounced when
only little data is available. We therefore recommend that
researchers avoid taking shortcuts and use hierarchical
models to analyze hierarchical data.
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