Suppression of the Gruneisen parameter of CeCu6 by a magnetic field

Holtmeier, S.; de Visser, A.; Haen, P.; Flouquet, J.; Walker, M.B.

Published in:
Physica B-Condensed Matter

DOI:
10.1016/0921-4526(94)00813-B

Citation for published version (APA):
Suppression of the Grüneisen parameter of CeCu$_6$ by a magnetic field

S. Holtmeiera, A. de Visserb,*, P. Haena, J. Flouquetc, E. Walkerd

aCRTBT-CNRS, BP166X, 38042 Grenoble, France
bVan der Waals–Zeeman Laboratory, University of Amsterdam, Valckeniersstraat 65, 1018 XE Amsterdam, The Netherlands
cDRFMC, CENG, BP85X, 38041 Grenoble, France
dDPMC, University of Geneva, 1211 Geneva 4, Switzerland

Received 16 August 1993

Abstract

In order to investigate the suppression of the heavy-fermion state of CeCu$_6$ by a magnetic field ($B \parallel c$) we have measured the coefficients of thermal expansion of a single-crystalline sample ($\alpha_a, \alpha_b, \alpha_c$) in the temperature range 0.3–10 K in fields up to 8 T. The electronic Grüneisen parameter ($\Gamma_{\text{hf}} = V_m \alpha_b / \kappa_\gamma$), which amounts to 80 in zero field ($T \rightarrow 0$), is reduced by a factor 10 in a field of 8 T. This enormous drop of Γ is attributed to a rapid suppression of the magnetic inter-site correlations.

The heavy-electron compound CeCu$_6$ exhibits an unusually large quasiparticle mass as is inferred from the large Sommerfeld coefficient in the specific heat ($\gamma \approx 1600$ mJ/mol K2) [1]. In general, the strong mass renormalization in heavy-fermion (HF) compounds is attributed to the presence of competing electronic interactions: the on-site Kondo screening and inter-site antiferromagnetic (RKKY-type) interactions. In the case of CeCu$_6$ this picture has been confirmed by inelastic neutron-scattering experiments [2].

Under influence of a magnetic field the HF state is suppressed albeit at a moderate rate and in a strongly anisotropic way [1]. Specific-heat measurements reveal that the largest effects are found for a field along the orthorhombic c-axis, with the γ-value reduced to ~ 500 mJ/mol K2 for $B = 7.5$ T [3]. It has been demonstrated by inelastic neutron-scattering experiments ($B \parallel c, B < 5$ T) that the effect of a magnetic field on the microscopic level is to suppress primarily the inter-site interactions, whereas the on-site fluctuations persist [2]. The threshold field, B^*, for suppression of the inter-site interactions (metamagnetism) amounts to 2.5 T.

The formation of the Kondo-lattice state in CeCu$_6$ is accompanied by a pronounced maximum in the coefficient of volume expansion (α_v) at $T^* = 2.5$ K [4]. The Grüneisen parameter for the heavy-electron contribution $\Gamma_{\text{hf}} = V_m \alpha_v / \kappa_\gamma$ (where $\alpha_v = \alpha_c / T$ is the coefficient of the linear term in the volume expansion) attains the enormous value of 80 [4, 5], implying a strong volume dependence of the width of the HF resonance ($\Gamma_{\text{hf}} = -\partial \ln T^* / \partial \ln V$). In Ref. [6] we reported a large field effect on the coefficient of linear thermal
Fig. 1. Coefficient of linear thermal expansion of CeCu$_6$ versus temperature in a magnetic field along the c-axis. Upper frame α_c, middle frame α_b and lower frame α_a. (●) 0 T, (△) 2 T, (▲) 4 T, (+) 6 T and (○) 8 T. In the lower frame additional curves are given at fields of 3, 4.5, 5 and 7 T, as indicated.

The linear coefficient of thermal expansion ($\alpha = L^{-1}dL/dT$) along the three principal orthorhombic axes (α_a, α_b, α_c) have been measured in a magnetic field ($B \parallel c$) in the temperature interval $0.3 \, K < T < 10 \, K$ using a sensitive capacitance dilatometer mounted in a 3He cryostat. The experimental results (obtained on the same specimen as used in Ref. [4–6]) for α_a, α_b and α_c are shown in Fig. 1, while the calculated coefficient of volume expansion $\alpha_v = \alpha_a + \alpha_b + \alpha_c$ is shown in Fig. 2. The field dependence of $\alpha_a(T)$, $\alpha_b(T)$ and $\alpha_c(T)$ is rather complex. The largest effect is observed for α_c: the expansion along the c-axis ($\alpha_c(T)$) at very low temperatures (0.1–0.5 K). In this paper we present a complete data set (including data for the a- and the b-axis), which enabled us to investigate $\alpha_c(B)$ and $\Gamma_{\text{hf}}(B)$ in relation to the suppression of the HF state by a magnetic field.

In Fig. 3 we show the effective Grüneisen parameter $\Gamma_{\text{eff}}(T) = \alpha_v(T)V_m/kc(T)$ in applied fields, where we used the specific-heat data obtained for the same sample [2]. The Grüneisen parameter for the HF contribution ($\Gamma_{\text{hf}} = \Gamma_{\text{eff}}$ for $T \rightarrow 0$), which amounts to ~ 80 in zero field, is reduced by a factor 10 in a field of 8 T. This signifies that α_c is suppressed at a much faster rate than the specific positive contribution centered at 1.8 K in zero field is strongly suppressed and becomes of the order of α_a in a field of 8 T. Simultaneously, α_b becomes dominant. As a result α_v is strongly suppressed at low temperatures, while $T^* (= 2.5 \, K$ for $B = 0 \, T$) shifts towards higher temperatures.
heat. More precisely, in a field of 8 T the coefficient a, is reduced by a factor 30, whereas γ is reduced by a factor 3 only. This implies that the density of states remains fairly high in a field of 8 T, whereas its pressure dependence becomes much weaker. The enormous drop of Γ_{HF} with field is primarily attributed to a rapid suppression of the inter-site correlations. Magnetostriction measurements at very low temperature ($T < 0.4 \, K$) have revealed that this might occur in a two-step process [6]. Further measurements are underway in order to elucidate this point [7].

Acknowledgements

The work of AdV was made possible by a fellowship of the Royal Netherlands Academy of Arts and Sciences. SH acknowledges financial support from the Commission of the European Communities (Brite–Euram Programme).

References