Emergent Haldane phase in the S=1 bilinear-biquadratic Heisenberg model on the square lattice

Niesen, I.; Corboz, P.

DOI
10.1103/PhysRevB.95.180404

Publication date
2017

Document Version
Final published version

Published in
Physical Review B

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.

UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl)
Emergent Haldane phase in the $S = 1$ bilinear-biquadratic Heisenberg model on the square lattice

Ido Niesen and Philippe Corboz

Institute for Theoretical Physics and Delta Institute for Theoretical Physics, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands

(Received 30 January 2017; revised manuscript received 2 May 2017; published 22 May 2017)

Infinite projected entangled pair states simulations of the $S = 1$ bilinear-biquadratic Heisenberg model on the square lattice reveal an emergent Haldane phase in between the previously predicted antiferromagnetic and three-sublattice 120° magnetically ordered phases. This intermediate phase preserves SU(2) spin and translational symmetry but breaks lattice rotational symmetry, and it can be adiabatically connected to the Haldane phase of decoupled $S = 1$ chains. Our results contradict previous studies which found a direct transition between the two magnetically ordered states.

Introduction.

The search for novel states of matter in condensed-matter physics is one of the most active areas in the field of frustrated magnetism and strongly correlated electrons. A fascinating example is the critical interchain coupling θ separating AF and 3-SL 120° phases.

In the present work we focus on the BBH model in two dimensions, which has gained much interest in recent years. Firstly, due to its possible connection to the triangular lattice compounds NiGa$_2$S$_4$ and Ba$_3$NiSb$_2$O$_9$, the model is equivalent to the SU(3) Heisenberg model which can be experimentally realized using ultracold fermionic atoms in optical lattices. The latter has been shown to exhibit three-sublattice order on the square and triangular lattices, and an important question concerns the stability of this phase away from the SU(3) symmetric point. Previous studies on the square lattice based on linear flavor-wave theory [24], exact diagonalization [24], and series expansion [26] predicted a direct transition between the antiferromagnetic (AF) and the three-sublattice phase for $\theta \approx 0.2\pi$. However, the accurate study of this parameter regime remains very challenging because quantum Monte Carlo suffers from the negative sign problem.

In this Rapid Communication we show, using state-of-the-art tensor network simulations, that in between the AF and the three-sublattice phase an intermediate quantum paramagnetic phase emerges which preserves translational and SU(2) spin symmetry, but breaks lattice rotational symmetry (see Fig. 1). We identify this intermediate phase as the Haldane phase by showing that it can be adiabatically connected to the Haldane phase of decoupled $S = 1$ chains. This result at first appears surprising in view of the fact that for $\theta = 0$ already a small interchain coupling $J_c > J_c^\star = 0.0436$ is sufficient to destabilize the Haldane phase. However, we show that with increasing θ the critical interchain coupling $J_c^\star(\theta)$ separating the Haldane phase from the AF phase dramatically increases, and eventually reaches the isotropic two-dimensional (2D) limit.

Method.

Our results have been obtained using infinite projected entangled-pair states (iPEPS) simulations of the BBH model. The iPEPS ansatz consists of a network of order-5 tensors on a square lattice, with one tensor per lattice site. Each auxiliary index goes over D elements, called the bond dimension, which controls the accuracy of the ansatz. For translational invariant states an ansatz with the same tensor on each lattice site can be used, however, if translational symmetry in the ground state is broken, a larger unit cell of tensors is required. For example, to
reproduce an antiferromagnetic state two different tensors (one for each sublattice) are needed, whereas the three-sublattice 120° ordered state shown in Fig. 1 requires a unit cell with three different tensors. In practice we run simulations using different unit cells to find out which structure yields the lowest energy state.

For more details on the method we refer to Refs. [39, 48, 60]. For the experts we note that the optimization of the tensors has been done via an imaginary time evolution with the full update optimization [39] (or fast-full update [60]), except for the simulations of the anisotropic model where we used the computationally cheaper simple-update optimization [61,62]. The contraction of the infinite tensor network is done by a variant [52, 63] of the corner-transfer matrix method [64, 65]. We also exploited the U(1) symmetry [66, 67] to increase the efficiency [except in the three-sublattice phase which breaks U(1) symmetry].

AF and three-sublattice phases.}
occurs, showing that the 1D Haldane phase can indeed be adiabatically connected to the isotropic 2D limit. Finally, for $0.21\pi \leq \theta < \pi/4$ we find a finite transition value $J_0^*(\theta)$ between the Haldane and the three-sublattice phase which decreases with increasing θ.

Comparing to the full update results (Fig. 2), which predict the two transitions to be at $0.189(2)\pi$ and $0.217(4)\pi$, respectively, we see that the simple update underestimates the extent of the Haldane phase at the isotropic point. Moreover, it does so by a margin of at most 0.01π (and by much less for $\theta = 0$), indicating that the continuous path that connects the intermediate 2D phase to the 1D Haldane phase persists also when taking the error margin on the phase boundary into account.

Transition from Haldane to three-sublattice phase. We next focus again on the isotropic 2D case ($J_1 = 1$) and accurately determine the transition from the Haldane to the three-sublattice phase by pushing the simulations up to $D = 16$ (Haldane state) and $D = 10$ (three-sublattice state) using the full update optimization, and compare the energies of the two states in the infinite D limit. Figure 4(a) shows the energies extrapolated in the so-called truncation error w (see Ref. [56] for details). For $\theta = 0.21\pi$ the state in the Haldane phase is clearly lower than the three-sublattice state, whereas for $\theta = 0.22\pi$ the opposite is true. By linear interpolation of the energies, taking into account the extrapolation error, we find a critical value of $\theta_c = 0.217(4)\pi$. Finally, the squares in Fig. 4(b) show the difference in bond energies $\Delta E = E_y - E_x$ in the x and y direction of the Haldane state. In the infinite D limit ΔE tends to a finite value, e.g., $\Delta E = 0.07(1)$ for $\theta = 0.21\pi$, which shows that the rotational symmetry in the Haldane phase is indeed spontaneously broken.

Nature of the phase transitions in the isotropic case. Because the Haldane and three-sublattice phases break different translational and rotational symmetries, the corresponding phase transition is expected to be first order. This picture is confirmed by the occurrence of hysteresis around the transition point, which allows us to simulate both phases on both sides of the phase transition. Moreover, the sublattice magnetization is strictly positive throughout the three-sublattice phase [see Fig. 4(b)]—even for $\theta = 0.21\pi$ where the three-sublattice state is no longer the lowest energy state—implying that the magnetization does not go to zero when approaching the transition from above. Since the magnetization is zero in the Haldane phase, it jumps to zero at the transition, showing that the transition is clearly of first order.

As for the AF to Haldane phase transition, the absence of a clear hysteresis in the full update simulations and the fact that the sublattice magnetization in the AF phase goes to zero as we approach the Haldane phase indicates either an unconventional second-order or a weak first-order phase transition. However, due to the error bars in Fig. 2(b) close to the critical point, we cannot exclude one of the two based on our data.

Conclusion. We have studied the $S = 1$ BBH model on a square lattice where, in contrast to previous predictions, we found an intermediate quantum paramagnetic phase between the AF and three-sublattice 120° magnetically ordered phases in the parameter range $\theta/\pi \in [0.189(2),0.217(4)]$. This intermediate phase is characterized by (1) translational symmetry, (2) an absence of magnetic and quadrupolar order, i.e., SU(2) spin symmetry is preserved, and (3) a spontaneous rotational symmetry breaking with stronger bonds in x (or y) direction (i.e., lattice nematic order). The above features are reminiscent of the ones of weakly coupled $S = 1$ chains in the Haldane phase, which motivated us to study the anisotropic BBH model. With increasing θ we found that the critical coupling $J_0^*(\theta)$ separating the Haldane and AF phases monotonically increases up to $\theta = 0.189(2)\pi$, after which no phase transition occurs as a function of J_1, i.e., the Haldane phase persists all the way up to the isotropic 2D limit. From this we identified the intermediate phase as a continuous 2D extension of the Haldane phase.

It is interesting to note that a similar situation has previously been encountered in the J_1-J_2 $S = 1$ Heisenberg model on a square lattice [72], in which an intermediate Haldane phase between an AF and a stripe phase appears that also survives up to the isotropic limit. Moreover, our findings provide an additional example of a nematic quantum paramagnet which in Ref. [73] was proposed to likely emerge in spin-1 systems with competing interactions and suggested to be potentially relevant to understand the nematic phase in the iron-based superconductor FeSe.
Finally, our results further highlight the potential of iPEPS as a powerful tool for challenging open problems in frustrated magnetism where quantum Monte Carlo suffers from the negative sign problem. As a future work it will be interesting to see whether the Haldane phase can also be found in or nearby the isotropic 2D limit on the triangular lattice, potentially for providing us quantum Monte Carlo benchmark data and acknowledge insightful discussions with F. Mila, S. Jiang, and T. Okubo. This project has received funding from the European Research Council (ERC) under the European Unions Horizon 2020 research and innovation programme (Grant Agreement No. 677061). This work is part of the Delta-ITP consortium, a program of the Netherlands Organization for Scientific Research (NWO) that is funded by the Dutch Ministry of Education, Culture and Science (OCW). This research was supported in part by Perimeter Institute for Theoretical Physics. Research at Perimeter Institute is supported by the Government of Canada through Industry Canada and by the Province of Ontario through the Ministry of Research and Innovation.

Acknowledgments. We thank K. Harada and M. Matsumoto for providing us quantum Monte Carlo benchmark data and acknowledge insightful discussions with F. Mila, S. Jiang, and M. Matsumoto [27] and Ba$_3$NiSb$_2$O$_9$ [29].

RAPID COMMUNICATIONS

EMERGENT HALDANE PHASE IN THE $S = 1$ BILINEAR- . . . PHYSICAL REVIEW B 95, 180404(R) (2017)

[68] In Ref. [26] a consistent value of $\theta_c = 0.190\pi$ was predicted for the vanishing of the AF order based on fitted series expansion data, from which the authors concluded that there is a continuous or a very weak first-order transition between the AF and the three-sublattice phase.
[69] We have also checked for potential valence-bond solid states in unit cells up to 4×4 but could not find stable solutions.
[70] A special full-update imaginary-time evolution algorithm has been used in this case which will be discussed elsewhere.