Prefrontal gene expression changes in mood disorders and suicide

Zhao, J.

Publication date
2018

Document Version
Other version

License
Other

Citation for published version (APA):
CHAPTER 3

GENE EXPRESSION OF GABA AND GLUTAMATE PATHWAY MARKERS IN THE PREFRONTAL CORTEX OF NON-SUICIDAL ELDERLY DEPRESSED PATIENTS

J. Zhao, A-M. Bao, X-R. Qi, W. Kamphuis, S. Luchetti, J-S Lou and D.F. Swaab

ABSTRACT

Background: The prefrontal cortex (PFC) is presumed to be involved in the pathogenesis of depression.

Methods: We determined the gene expression of 32 markers of the pathways of the two main neurotransmitters of the PFC, gamma-aminobutyric acid (GABA) and L-glutamatic acid (glutamate), by real-time quantitative PCR in human postmortem anterior cingulate cortex (ACC) and dorsolateral PFC (DLPFC) in elderly non-suicidal patients with major depressive disorder (MDD) or bipolar disorder (BD).

Results: We found the transcript levels of GABA-A receptor beta 2 (GABRB2) and post-synaptic density-95 (PSD-95) to be significantly decreased in the ACC in mood disorder. DLPFC mRNA expression of all the detected genes in the mood disorder group did not differ significantly from that of the non-psychiatric controls.

Conclusions: The observed alterations in the GABAergic and glutamatergic pathways indicate a diminished activity. These alterations were only present in the ACC and not in the DLPFC.
INTRODUCTION

Mood disorders are common and have serious consequences. The lifetime prevalence of major depressive disorder (MDD) is estimated to be 16% (Kessler et al., 2003). Neuropsychological, functional neuroimaging and morphological studies indicate that the prefrontal cortex (PFC) is involved in the pathogenesis of depression. A number of studies show that hypofunction of the PFC correlates with disease severity in both MDD and bipolar disorder (BD) (Drevets et al., 2008; Price and Drevets, 2010; Swaab et al., 2000): for example, a strongly altered glucose metabolism was found in the dorsolateral PFC (DLPFC) and anterior cingulated cortex (ACC) (Price and Drevets, 2010). Moreover, BD patients exhibit pronounced impairment of a number of tasks mediated by the PFC (Zihl et al., 1998). In addition, a reduction of grey matter volume was found in the DLPFC in both mood disorders, accompanied by reductions in density and size of neurons and glial cells (Price and Drevets, 2010; Rajkowska et al., 1999; Rajkowska et al., 2001).

Gamma-aminobutyric acid (GABA) and L-glutamatic acid (glutamate) are two major neurotransmitters that may affect PFC activity in depression (Hashimoto, 2011; Krystal et al., 2002; Sanacora and Saricicek et al., 2007). In living patients, an increased glutamate content was reported in BD in both ACC and DLPFC (Frye et al., 2007; Lan et al., 2009), whereas prefrontal GABA and glutamate/glutamine concentrations were either reduced or unchanged in MDD patients (Hasler et al., 2007; Walter et al., 2009). A reduced density of GABAergic neurons was found in the postmortem ACC of BD patients and in the DLPFC of MDD patients (Cotter et al., 2002; Rajkowska et al., 2007). Furthermore, the transcript levels of a number of GABA subunits were decreased in the PFC of depressed suicide victims (Merali et al., 2004). For the glutamate pathway, reduced gene expression of NMDA receptor subunits (NR1 and NR2A) were found in the DLPFC of depressed patients (Beneyto and Meador-Woodruff, 2008). Furthermore, a microarray study showed dysregulation of genes related to the GABA and glutamate pathways in the ACC and DLPFC (Choudary et al., 2005).

However, it should be noted that in the postmortem studies data on the major changes in the GABAergic and glutamatergic systems in depression (Gao et al., 2010) were mainly obtained in younger suicidal patients. Therefore, the present study aimed to study GABA and glutamate pathway changes in non-suicidal elderly depressed patients. We used real-time quantitative PCR (Q-PCR) on
isolated grey matter of the ACC and DLPFC in order to compare the expression of components of the GABAergic and glutamatergic pathways in mood disorder patients and matched controls.

METHODS

Subjects
Brain samples were collected by the Netherlands Brain Bank (NBB), after written informed consent from the patient or their next of kin for a brain autopsy and the use of the material and medical records for research purposes. The depressed patients had been diagnosed in psychiatric clinics either as MDD or BD during their lifetime according to the DSM-III, DSM-IIIR or DSM-IV criteria, and the diagnosis was confirmed on the basis of the DSM-IV criteria by a board-certified psychiatrist using the extensive medical records of the NBB. Alcohol abuse was an exclusion criterium and other causes of depression, such as Parkinson’s and Alzheimer’s disease, were excluded by systematic neuropathological investigation (van de Nes et al., 1998). Control patients had no primary neurologic or psychiatric disease (for exceptions see Table 1). The material consisted of ACC (depression N=12, control N=12) and DLPFC (depression N=14, control N=14). The depressed patients and controls were matched for sex, age, postmortem delay (PMD), clock time and month of death, cerebrospinal fluid (CSF) pH, brain weight, ApoE genotype and Braak stage of Alzheimer pathology.

Tissue from the left DLPFC or ACC (for right side exceptions see Table 1) was dissected, then snap-frozen and 50 µm thick cryostat sections were cut. Grey matter containing all six layers of the neocortex was isolated as described in our previous publication (Bossers et al., 2010).
Table 1 Clinico-pathological information of patients with MDD, BD and control subjects

<table>
<thead>
<tr>
<th>NBB number</th>
<th>Sex</th>
<th>Age (y)</th>
<th>PMD (h)</th>
<th>CTD (h)</th>
<th>MTD CSF pH</th>
<th>BW (g)</th>
<th>RIN (ACC)</th>
<th>RIN (DLPFC)</th>
<th>ApoE Braak stage</th>
<th>Brain Region</th>
<th>Medication in the past</th>
<th>Medication in the last 3 months</th>
<th>Suicide attempt</th>
<th>Cause of death</th>
</tr>
</thead>
<tbody>
<tr>
<td>MDD 01-074</td>
<td>M</td>
<td>45</td>
<td>7:00</td>
<td>02:30</td>
<td>6</td>
<td>6.55</td>
<td>1427</td>
<td>7.0</td>
<td>8.0</td>
<td>43</td>
<td>R DLPFC, L ACC</td>
<td>SSRI, BZD</td>
<td>SSRI</td>
<td>No</td>
</tr>
<tr>
<td>MDD 02-051</td>
<td>M</td>
<td>81</td>
<td>6:00</td>
<td>15:30</td>
<td>6</td>
<td>6.50</td>
<td>1345</td>
<td>8.0</td>
<td>7.3</td>
<td>43</td>
<td>L DLPFC, L ACC</td>
<td>BZD, TCA, Hal</td>
<td>Hal</td>
<td>No</td>
</tr>
<tr>
<td>MDD 06-011</td>
<td>F</td>
<td>60</td>
<td>4:20</td>
<td>16:10</td>
<td>1</td>
<td>ND</td>
<td>1080</td>
<td>8.1</td>
<td>8.9</td>
<td>33</td>
<td>L DLPFC, L ACC</td>
<td>SSRI, BZD, Hal, Mo, Tam</td>
<td>Hal, Dex</td>
<td>No</td>
</tr>
<tr>
<td>MDD 06-026</td>
<td>M</td>
<td>70</td>
<td>7:15</td>
<td>08:00</td>
<td>3</td>
<td>6.50</td>
<td>1415</td>
<td>7.9</td>
<td>8.4</td>
<td>43</td>
<td>L DLPFC, L ACC</td>
<td>Met, Hal, ZUC, BZD</td>
<td>BZD, Mo, Clozapine</td>
<td>No</td>
</tr>
<tr>
<td>MDD 07-033</td>
<td>M</td>
<td>88</td>
<td>6:37</td>
<td>21:15</td>
<td>5</td>
<td>6.26</td>
<td>1225</td>
<td>7.0</td>
<td>7.3</td>
<td>43</td>
<td>L DLPFC, L ACC</td>
<td>Li, BZD, Lev, Mo</td>
<td>BZD, Lev, Mo</td>
<td>No</td>
</tr>
<tr>
<td>BD 00-074</td>
<td>M</td>
<td>78</td>
<td>7:35</td>
<td>23:00</td>
<td>6</td>
<td>6.27</td>
<td>1227</td>
<td>6.7</td>
<td>7.3</td>
<td>33</td>
<td>L DLPFC, L ACC</td>
<td>Li, Hal, BZD</td>
<td>Li, Hal, BZD</td>
<td>Yes</td>
</tr>
<tr>
<td>BD 00-088</td>
<td>M</td>
<td>73</td>
<td>5:15</td>
<td>09:30</td>
<td>7</td>
<td>6.38</td>
<td>1260</td>
<td>7.5</td>
<td>7.2</td>
<td>33</td>
<td>L DLPFC, L ACC</td>
<td>Li, CBZ, BZD, ECT</td>
<td>Mo</td>
<td>No</td>
</tr>
<tr>
<td>BD 00-111</td>
<td>M</td>
<td>70</td>
<td>4:50</td>
<td>02:45</td>
<td>10</td>
<td>6.26</td>
<td>1490</td>
<td>-</td>
<td>6.9</td>
<td>33</td>
<td>L DLPFC</td>
<td>Li, Hal, BZD, ECT, ZUC</td>
<td>Mo, ZUC</td>
<td>No</td>
</tr>
<tr>
<td>BD 02-014</td>
<td>M</td>
<td>68</td>
<td>16:46</td>
<td>00:00</td>
<td>2</td>
<td>6.64</td>
<td>1424</td>
<td>7.2</td>
<td>8.1</td>
<td>33</td>
<td>L DLPFC, L ACC</td>
<td>Li, ZUC, CBZ, MAOI, Hal</td>
<td>None</td>
<td>No</td>
</tr>
<tr>
<td>BD 06-021</td>
<td>M</td>
<td>70</td>
<td>6:23</td>
<td>13:07</td>
<td>3</td>
<td>6.53</td>
<td>1488</td>
<td>7.0</td>
<td>7.1</td>
<td>33</td>
<td>L DLPFC, L ACC</td>
<td>Li</td>
<td>Li, BZD</td>
<td>No</td>
</tr>
<tr>
<td>BD 06-075</td>
<td>F</td>
<td>80</td>
<td>9:30</td>
<td>09:30</td>
<td>10</td>
<td>6.33</td>
<td>1190</td>
<td>6.3</td>
<td>6.3</td>
<td>33</td>
<td>L DLPFC, L ACC</td>
<td>Li</td>
<td>Li, Prednisolone</td>
<td>No</td>
</tr>
<tr>
<td>BD 07-076</td>
<td>F</td>
<td>79</td>
<td>7:25</td>
<td>03:10</td>
<td>11</td>
<td>6.26</td>
<td>1231</td>
<td>-</td>
<td>7.2</td>
<td>43</td>
<td>L DLPFC</td>
<td>ECT, BZD, CBZ</td>
<td>Mo, CBZ</td>
<td>No</td>
</tr>
<tr>
<td>BD 97-058</td>
<td>F</td>
<td>90</td>
<td>6:30</td>
<td>10:15</td>
<td>5</td>
<td>ND</td>
<td>1143</td>
<td>7.1</td>
<td>7.4</td>
<td>32</td>
<td>L DLPFC, L ACC</td>
<td>Li, TCA, Parnate, ECT</td>
<td>Parnate</td>
<td>No</td>
</tr>
<tr>
<td>BD 99-118</td>
<td>M</td>
<td>68</td>
<td>5:55</td>
<td>23:15</td>
<td>10</td>
<td>6.82</td>
<td>1204</td>
<td>-</td>
<td>7.7</td>
<td>32</td>
<td>L DLPFC</td>
<td>Li</td>
<td>None</td>
<td>No</td>
</tr>
<tr>
<td>BD 07-060</td>
<td>M</td>
<td>93</td>
<td>6:00</td>
<td>21:10</td>
<td>9</td>
<td>6.37</td>
<td>1459</td>
<td>7.7</td>
<td>-</td>
<td>33</td>
<td>L ACC</td>
<td>BZD, SSRI, TCA</td>
<td>BZD</td>
<td>No</td>
</tr>
</tbody>
</table>

Mean (ACC)

<table>
<thead>
<tr>
<th>NBB number</th>
<th>Sex</th>
<th>Age (y)</th>
<th>PMD (h)</th>
<th>CTD (h)</th>
<th>MTD CSF pH</th>
<th>BW (g)</th>
<th>RIN (ACC)</th>
<th>RIN (DLPFC)</th>
<th>ApoE Braak stage</th>
<th>Brain Region</th>
<th>Medication in the past</th>
<th>Medication in the last 3 months</th>
<th>Suicide attempt</th>
<th>Cause of death</th>
</tr>
</thead>
<tbody>
<tr>
<td>74</td>
<td>7:25</td>
<td>13:27</td>
<td>5</td>
<td>6.43</td>
<td>1307</td>
<td>7.3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
Table 1 Continued, Clinico-pathological information of patients with MDD, BD and control subjects

<table>
<thead>
<tr>
<th>NBB number</th>
<th>Sex</th>
<th>Age (y)</th>
<th>PMD (h)</th>
<th>CTD (h)</th>
<th>MTD</th>
<th>CSF pH</th>
<th>BW (g)</th>
<th>RIN (ACC)</th>
<th>RIN (DLPFC)</th>
<th>ApoE</th>
<th>Braak stage</th>
<th>Brain Region</th>
<th>Medication in the past</th>
<th>Medication in the last 3 months</th>
<th>Suicide attempt</th>
<th>Cause of death</th>
</tr>
</thead>
<tbody>
<tr>
<td>Controls</td>
<td>C-1</td>
<td>M</td>
<td>73</td>
<td>12:45</td>
<td>00:01</td>
<td>6</td>
<td>ND</td>
<td>1267</td>
<td>-</td>
<td>7.8</td>
<td>33</td>
<td>L DLPFC</td>
<td>ND</td>
<td>ND</td>
<td>-</td>
<td>Massive lung embolism</td>
</tr>
<tr>
<td></td>
<td>C-2</td>
<td>M</td>
<td>75</td>
<td>6:20</td>
<td>06:10</td>
<td>3</td>
<td>6.18</td>
<td>1180</td>
<td>-</td>
<td>7.3</td>
<td>43</td>
<td>L DLPFC</td>
<td>None</td>
<td>Mo</td>
<td>-</td>
<td>Dehydration, adenocarcinoma, pneumonia</td>
</tr>
<tr>
<td></td>
<td>C-3</td>
<td>M</td>
<td>88</td>
<td>7:00</td>
<td>03:00</td>
<td>7</td>
<td>6.84</td>
<td>1398</td>
<td>-</td>
<td>8.1</td>
<td>32</td>
<td>L DLPFC</td>
<td>BZD, Prednisolone</td>
<td>Mo</td>
<td>-</td>
<td>Heart failure</td>
</tr>
<tr>
<td></td>
<td>C-4</td>
<td>F</td>
<td>77</td>
<td>8:20</td>
<td>07:55</td>
<td>7</td>
<td>6.48</td>
<td>1312</td>
<td>5.9</td>
<td>6.1</td>
<td>32</td>
<td>L DLPFC, L ACC</td>
<td>None</td>
<td>TCA</td>
<td>-</td>
<td>Cachexia and uremia</td>
</tr>
<tr>
<td></td>
<td>C-5</td>
<td>F</td>
<td>81</td>
<td>6:40</td>
<td>13:10</td>
<td>8</td>
<td>7.16</td>
<td>1164</td>
<td>7.5</td>
<td>8.2</td>
<td>33</td>
<td>L DLPFC, L ACC</td>
<td>None</td>
<td>Mo</td>
<td>-</td>
<td>Euthanasia</td>
</tr>
<tr>
<td></td>
<td>C-6</td>
<td>M</td>
<td>74</td>
<td>5:00</td>
<td>02:00</td>
<td>4</td>
<td>6.70</td>
<td>1125</td>
<td>8.1</td>
<td>8.3</td>
<td>43</td>
<td>L DLPFC, L ACC</td>
<td>Fluticasone, Salbutamol</td>
<td>Mo, Hal, BZD</td>
<td>-</td>
<td>Bronchus carcinoma</td>
</tr>
<tr>
<td></td>
<td>C-7</td>
<td>M</td>
<td>56</td>
<td>14:00</td>
<td>00:01</td>
<td>5</td>
<td>7.03</td>
<td>1323</td>
<td>-</td>
<td>8.5</td>
<td>33</td>
<td>L DLPFC</td>
<td>ND</td>
<td>ND</td>
<td>-</td>
<td>Heart failure</td>
</tr>
<tr>
<td></td>
<td>C-8</td>
<td>M</td>
<td>80</td>
<td>7:15</td>
<td>07:15</td>
<td>6</td>
<td>5.80</td>
<td>1376</td>
<td>5.2</td>
<td>5.7</td>
<td>33</td>
<td>L DLPFC, L ACC</td>
<td>None</td>
<td>Mo</td>
<td>-</td>
<td>Cachexia and dehydration</td>
</tr>
<tr>
<td></td>
<td>C-9</td>
<td>M</td>
<td>56</td>
<td>9:15</td>
<td>04:45</td>
<td>10</td>
<td>6.54</td>
<td>1553</td>
<td>7.9</td>
<td>-</td>
<td>43</td>
<td>L ACC</td>
<td>None</td>
<td>None</td>
<td>-</td>
<td>Acute myocardial infarction</td>
</tr>
<tr>
<td></td>
<td>C-10</td>
<td>M</td>
<td>66</td>
<td>7:45</td>
<td>17:45</td>
<td>5</td>
<td>6.70</td>
<td>1590</td>
<td>-</td>
<td>7.8</td>
<td>33</td>
<td>L DLPFC</td>
<td>Met</td>
<td>Met</td>
<td>-</td>
<td>Ruptured abdominal aorta aneurysm</td>
</tr>
<tr>
<td></td>
<td>C-11</td>
<td>M</td>
<td>73</td>
<td>9:10</td>
<td>11:30</td>
<td>5</td>
<td>ND</td>
<td>1500</td>
<td>-</td>
<td>8.5</td>
<td>43</td>
<td>L DLPFC</td>
<td>None</td>
<td>None</td>
<td>-</td>
<td>Cardiac arrest</td>
</tr>
<tr>
<td></td>
<td>C-12</td>
<td>M</td>
<td>87</td>
<td>4:00</td>
<td>15:00</td>
<td>4</td>
<td>7.39</td>
<td>1506</td>
<td>-</td>
<td>8.3</td>
<td>33</td>
<td>L DLPFC</td>
<td>None</td>
<td>None</td>
<td>-</td>
<td>Myocardial infarction</td>
</tr>
</tbody>
</table>
Table 1 Continued, Clinico-pathological information of patients with MDD, BD and control subjects

NBB number	Sex	Age (y)	PMD (h)	CTD (h)	MTD	CSF pH	BW (g)	RIN (ACC)	RIN (DLPFC)	ApoE Braak stage	Brain Region	Medication in the past	Medication in the last 3 months	Suicide attempt	Cause of death	
C-13	97-156	F	77	2:40	08:30	11	6.37	1235	-	8.2	33	1	L DLPFC	None	None	Septic shock, pancreas carcinoma
C-14	98-006	M	50	8:30	11:00	1	6.65	1436	-	7.5	43	0	L DLPFC	None	None	Cardiac arrest, septic shock
C-15	99-111	F	88	5:40	03:05	9	6.67	1054	-	6.9	33	3	L DLPFC	BZD, Prednisolone	None	Cardiac decompensation, peritonitis
C-16	05-017	M	87	10:20	04:00	3	6.32	1356	7.5	-	33	1	L ACC	ND	Mo	Pneumonia, heart infarction, renal insufficiency
C-17	06-080	F	89	6:25	21:30	12	6.46	1210	7.1	-	32	2	L ACC	Hal, BZD	None	Ruptured abdominal aorta aneurysm
C-18	97-143	M	79	6:00	06:10	10	6.51	1392	8.6	-	33	1	L ACC	BZD, Dex	None	Metastasized adeno- and lung carcinoma
C-19	97-043	M	68	10:10	09:05	4	7.08	1547	8.5	-	33	2	L ACC	None	Adrenaline	Heart infarction
C-20	95-062	M	80	4:30	14:30	6	6.22	1400	5.4	-	33	2	L ACC	Dex, Mo, Estramustine	None	Renal failure
C-21	05-073	M	87	6:05	08:05	10	6.96	1568	7.8	-	33	3	L ACC	None	None	ND
C-22	04-020	M	96	5:23	13:27	2	6.70	1204	7.4	-	33	1	L ACC	None	Mo	Pneumonia

Mean (ACC) 79 7:06 10:32 7 6.58 1351 7.2 7.7
Mean (DLPFC) 74 8:21 07:35 6 5.71 1319 - 7.7
SEM (ACC) 3.91 0:34 01:50 1 0.11 44.39 0.33 -
SEM (DLPFC) 2.99 1:26 01:29 1 0.66 42.28 - 0.24
Abbreviations: ACC, anterior cingulate cortex; BD, bipolar disorder; BZD, benzodiazepine; BW, brain weight; CBZ, carbamazepine; CSF, cerebrospinal fluid; CTD, clock time of death; Dex, dexamethasone; DLPFC, dorsolateral prefrontal cortex; MTD, month time of death; ECT, electro-convulsive treatment; F, female; Hal, haloperidol; L, left; Lev, Levetiracetam; Li, lithium; MAOI, MAO inhibitor; MDD, major disorder depression; Met, Methylprednisolone; Mo, morphine; M, male; NBB, Netherlands Brain Bank; ND, no data; None, no medication; PMD, postmortem delay; R, right; RIN, RNA integrity number; SSRI, selective serotonin reuptake inhibitor; Tam, Tamoxifen; TCA, tricyclic antidepressant; ZUC, zuclopenthixol.
Q-PCR analysis

The genes related to GABAergic and glutamatergic pathways were selected according to Figure 1, the gene information and their primers are shown in Supplementary Material Table S-1. RNA isolation, cDNA synthesis and Q-PCR were performed by the same protocol as described in our published paper (Wang et al., 2008).

![Figure 1 Information of GABA and glutamate pathways](image_url)

Left Figure: The production, transport of gamma-aminobutyric acid (GABA). GABA is synthesized from glutamate (Glu) by glutamic acid decarboxylase (GAD). After the GABA is released from presynaptic nerve terminals, the synaptic effects of GABA in the brain are mediated through two major receptor subtypes, termed GABA$_A$ and GABA$_B$, respectively.

Right Figure: The production, transport, and reuptake of Glu. Glu is synthesized from glutamine (Gln) by glutaminase (GLS). Glu is packaged into presynaptic vesicles by the vesicular Glu transporters (VGLUT) and released from the neuron. Glu is cleared from the extracellular space by glial cells. In glial cells, Glu is converted into Gln and is then transported back to the neuron.

Normalization strategy

To remove sampling-related differences (RNA quality and quantity), a normalization strategy based upon the geNorm approach was used (Vandesompele et al., 2002). The relative absolute amount of target genes was calculated by $10^{10 \times E^{-Ct}}$ ($E=10^{(1/slope)}$) (Kamphuis et al., 2001). The geNorm analysis revealed that the transcript level of all reference genes determined in the ACC and DLPFC could be included in the calculation of the normalization factor (More details are shown in the Supplementary Material S1 and S-Table 1).
Statistical analysis
The differences in gene expression levels between groups were determined by Student’s t-test. Because of multiple testing, a stricter level of $P \leq 0.01$ was considered to be statistically significant. All tests were two-tailed.

RESULTS

In the ACC, no significant difference between MDD and BD patients was found for the GABAergic pathway markers, with the exception of GABRB1, which showed a trend towards a significant decrease in MDD compared to BD (values of $0.01 < P \leq 0.05$ are considered to be a trend). The data from MDD and BD were subsequently pooled for further analysis. GABRB2 transcript levels were decreased in the pooled depression group compared to the matched controls (Table 2). In the DLPFC, no difference in GABA related gene expression was found, either in the subgroups or in the pooled group, except for GABRB3 which showed a trend towards a significant increase in depression (Table 2).

In the ACC, VGluT1 expression showed a trend towards a significant decrease in MDD compared to BD, while PSD-95 transcript level was significantly lower in the pooled depression group (Table 2). In the DLPFC, NR1 expression was decreased and VGluT1 and mGluR2 transcription showed a trend towards a significant decrease in MDD. After pooling MDD and BD, no significant glutamate related gene expression change was found (Table 2).

The main changes, i.e. reduced GABRB2 and PSD-95 expression, were also present when MDD or BD was compared with their respective controls, for more details see Supplementary Material S-Table 2.
Table 2 Result of gene expression changes in depression (MDD+BD)

<table>
<thead>
<tr>
<th>Gene</th>
<th>Mean ± SEM</th>
<th>P-values</th>
<th>Fold</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MDD</td>
<td>BD</td>
<td>Depression</td>
</tr>
<tr>
<td>GABRA1</td>
<td>1.346±0.080</td>
<td>1.117±0.075</td>
<td>1.213±0.063</td>
</tr>
<tr>
<td>GABRA2</td>
<td>1.035±0.081</td>
<td>1.311±0.121</td>
<td>1.196±0.086</td>
</tr>
<tr>
<td>GABRA3</td>
<td>1.030±0.076</td>
<td>0.867±0.053</td>
<td>0.935±0.049</td>
</tr>
<tr>
<td>GABRA4</td>
<td>0.549±0.051</td>
<td>0.508±0.039</td>
<td>0.525±0.030</td>
</tr>
<tr>
<td>GABRA5</td>
<td>0.718±0.115</td>
<td>0.801±0.047</td>
<td>0.766±0.054</td>
</tr>
<tr>
<td>GABRB1</td>
<td>2.533±0.172</td>
<td>3.186±0.195</td>
<td>2.914±0.161</td>
</tr>
<tr>
<td>GABRB2</td>
<td>0.765±0.139</td>
<td>0.847±0.112</td>
<td>0.813±0.084</td>
</tr>
<tr>
<td>GABRB3</td>
<td>3.220±0.239</td>
<td>3.362±0.134</td>
<td>3.303±0.122</td>
</tr>
<tr>
<td>GABRG2</td>
<td>1.756±0.100</td>
<td>1.696±0.142</td>
<td>1.721±0.090</td>
</tr>
<tr>
<td>GABRD</td>
<td>0.141±0.022</td>
<td>0.129±0.011</td>
<td>0.134±0.011</td>
</tr>
<tr>
<td>GABRE</td>
<td>0.016±0.005</td>
<td>0.024±0.005</td>
<td>0.020±0.003</td>
</tr>
<tr>
<td>GABRQ</td>
<td>0.028±0.008</td>
<td>0.042±0.008</td>
<td>0.034±0.004</td>
</tr>
<tr>
<td>GABBR1</td>
<td>1.422±0.131</td>
<td>1.480±0.102</td>
<td>1.456±0.077</td>
</tr>
<tr>
<td>GABBR2</td>
<td>1.154±0.095</td>
<td>1.170±0.063</td>
<td>1.163±0.051</td>
</tr>
<tr>
<td>GAD1</td>
<td>1.006±0.129</td>
<td>0.837±0.119</td>
<td>0.908±0.088</td>
</tr>
<tr>
<td>GAD2</td>
<td>0.965±0.099</td>
<td>0.799±0.137</td>
<td>0.868±0.090</td>
</tr>
<tr>
<td>GLS</td>
<td>0.459±0.070</td>
<td>0.526±0.054</td>
<td>0.498±0.042</td>
</tr>
<tr>
<td>VGLUT1</td>
<td>1.277±0.157</td>
<td>2.024±0.241</td>
<td>1.713±0.186</td>
</tr>
<tr>
<td>VGLUT2</td>
<td>0.0007±0.00</td>
<td>0.0012±0.00</td>
<td>0.0010±0.00</td>
</tr>
<tr>
<td>GluR1</td>
<td>0.168±0.005</td>
<td>0.182±0.009</td>
<td>0.176±0.006</td>
</tr>
<tr>
<td>GluR2</td>
<td>0.616±0.049</td>
<td>0.656±0.047</td>
<td>0.639±0.033</td>
</tr>
<tr>
<td>GluR3</td>
<td>0.142±0.013</td>
<td>0.165±0.021</td>
<td>0.155±0.013</td>
</tr>
<tr>
<td>GluR4</td>
<td>0.259±0.019</td>
<td>0.281±0.021</td>
<td>0.272±0.015</td>
</tr>
<tr>
<td>GluR5</td>
<td>0.052±0.005</td>
<td>0.062±0.005</td>
<td>0.058±0.004</td>
</tr>
<tr>
<td>NR1</td>
<td>0.365±0.056</td>
<td>0.475±0.030</td>
<td>0.429±0.032</td>
</tr>
</tbody>
</table>
Table 2 Continued, Result of gene expression changes in depression (MDD+BD)

<table>
<thead>
<tr>
<th>Gene</th>
<th>Mean ± SEM</th>
<th>P-values</th>
<th>Fold</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MDD</td>
<td>BD</td>
<td>Depression</td>
<td>Control</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MDD vs. BD</td>
<td>Depression vs. Control</td>
<td>MDD/BD</td>
<td>Depression/Control</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NR2A</td>
<td>0.154±0.013</td>
<td>0.182±0.018</td>
<td>0.170±0.012</td>
<td>0.182±0.013</td>
<td>0.276</td>
</tr>
<tr>
<td>NR2B</td>
<td>0.163±0.013</td>
<td>0.151±0.016</td>
<td>0.156±0.010</td>
<td>0.146±0.015</td>
<td>0.605</td>
</tr>
<tr>
<td>mGluR1</td>
<td>0.050±0.008</td>
<td>0.070±0.009</td>
<td>0.062±0.007</td>
<td>0.058±0.008</td>
<td>0.122</td>
</tr>
<tr>
<td>mGluR2</td>
<td>0.052±0.004</td>
<td>0.068±0.009</td>
<td>0.062±0.006</td>
<td>0.062±0.008</td>
<td>0.192</td>
</tr>
<tr>
<td>mGluR3</td>
<td>0.169±0.011</td>
<td>0.189±0.024</td>
<td>0.181±0.014</td>
<td>0.237±0.025</td>
<td>0.532</td>
</tr>
<tr>
<td>PSD-93</td>
<td>0.646±0.067</td>
<td>0.866±0.077</td>
<td>0.775±0.060</td>
<td>0.849±0.073</td>
<td>0.070</td>
</tr>
<tr>
<td>PSD-95</td>
<td>0.111±0.006</td>
<td>0.117±0.010</td>
<td>0.114±0.006</td>
<td>0.170±0.012</td>
<td>0.639</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Gene</th>
<th>Mean ± SEM</th>
<th>P-values</th>
<th>Fold</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MDD</td>
<td>BD</td>
<td>Depression</td>
<td>Control</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MDD vs. BD</td>
<td>Depression vs. Control</td>
<td>MDD/BD</td>
<td>Depression/Control</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GABRA1</td>
<td>0.240±0.040</td>
<td>0.255±0.018</td>
<td>0.250±0.018</td>
<td>0.225±0.014</td>
<td>0.708</td>
</tr>
<tr>
<td>GABRA2</td>
<td>0.037±0.005</td>
<td>0.037±0.004</td>
<td>0.037±0.003</td>
<td>0.033±0.004</td>
<td>0.969</td>
</tr>
<tr>
<td>GABRA3</td>
<td>0.070±0.013</td>
<td>0.062±0.004</td>
<td>0.065±0.005</td>
<td>0.051±0.005</td>
<td>0.470</td>
</tr>
<tr>
<td>GABRA4</td>
<td>0.047±0.011</td>
<td>0.051±0.004</td>
<td>0.050±0.005</td>
<td>0.053±0.005</td>
<td>0.652</td>
</tr>
<tr>
<td>GABRA5</td>
<td>0.025±0.004</td>
<td>0.035±0.003</td>
<td>0.031±0.003</td>
<td>0.026±0.002</td>
<td>0.084</td>
</tr>
<tr>
<td>GABRB1</td>
<td>0.363±0.039</td>
<td>0.441±0.050</td>
<td>0.413±0.036</td>
<td>0.349±0.025</td>
<td>0.311</td>
</tr>
<tr>
<td>GABRB2</td>
<td>0.071±0.014</td>
<td>0.078±0.007</td>
<td>0.076±0.007</td>
<td>0.082±0.005</td>
<td>0.633</td>
</tr>
<tr>
<td>GABRB3</td>
<td>0.156±0.017</td>
<td>0.168±0.013</td>
<td>0.164±0.010</td>
<td>0.136±0.006</td>
<td>0.603</td>
</tr>
<tr>
<td>GABRG2</td>
<td>0.212±0.033</td>
<td>0.263±0.025</td>
<td>0.245±0.020</td>
<td>0.223±0.012</td>
<td>0.241</td>
</tr>
<tr>
<td>GABRD</td>
<td>1.469±0.151</td>
<td>1.215±0.086</td>
<td>1.306±0.081</td>
<td>1.261±0.086</td>
<td>0.141</td>
</tr>
<tr>
<td>GABRE</td>
<td>0.000±0.003</td>
<td>0.000±0.000</td>
<td>0.000±0.000</td>
<td>0.000±0.000</td>
<td>0.137</td>
</tr>
<tr>
<td>GABRQ</td>
<td>0.000±0.005</td>
<td>0.000±0.000</td>
<td>0.000±0.000</td>
<td>0.000±0.000</td>
<td>0.152</td>
</tr>
<tr>
<td>GABBR1</td>
<td>0.045±0.010</td>
<td>0.058±0.003</td>
<td>0.054±0.004</td>
<td>0.057±0.005</td>
<td>0.161</td>
</tr>
</tbody>
</table>

Anterior cingulate cortex and Dorsolateral prefrontal cortex.
Table 2 Continued, Result of gene expression changes in depression (MDD+BD)

<table>
<thead>
<tr>
<th>Gene</th>
<th>MDD</th>
<th>BD</th>
<th>Depression</th>
<th>Control</th>
<th>MDD vs. BD</th>
<th>Depression vs. Control</th>
<th>MDD/BD</th>
<th>Depression/Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>GABBR2</td>
<td>0.058±0.012</td>
<td>0.081±0.010</td>
<td>0.073±0.008</td>
<td>0.066±0.004</td>
<td>0.171</td>
<td>0.462</td>
<td>0.713</td>
<td>1.103</td>
</tr>
<tr>
<td>GAD1</td>
<td>0.040±0.006</td>
<td>0.037±0.004</td>
<td>0.038±0.003</td>
<td>0.037±0.004</td>
<td>0.664</td>
<td>0.830</td>
<td>1.086</td>
<td>1.029</td>
</tr>
<tr>
<td>GAD2</td>
<td>0.120±0.017</td>
<td>0.107±0.015</td>
<td>0.112±0.011</td>
<td>0.116±0.013</td>
<td>0.61</td>
<td>0.796</td>
<td>1.117</td>
<td>0.961</td>
</tr>
<tr>
<td>GLS</td>
<td>0.054±0.013</td>
<td>0.069±0.008</td>
<td>0.064±0.007</td>
<td>0.070±0.007</td>
<td>0.319</td>
<td>0.544</td>
<td>0.784</td>
<td>0.916</td>
</tr>
<tr>
<td>VGLUT1</td>
<td>0.344±0.049</td>
<td>0.527±0.039</td>
<td>0.462±0.038</td>
<td>0.481±0.053</td>
<td>0.015↓</td>
<td>0.775</td>
<td>0.652</td>
<td>0.961</td>
</tr>
<tr>
<td>VGLUT2</td>
<td>0.0003±0.00</td>
<td>0.0004±0.00</td>
<td>0.0003±0.00</td>
<td>0.0004±0.00</td>
<td>0.659</td>
<td>0.336</td>
<td>0.854</td>
<td>0.789</td>
</tr>
<tr>
<td>GluR1</td>
<td>0.020±0.004</td>
<td>0.029±0.002</td>
<td>0.026±0.002</td>
<td>0.024±0.002</td>
<td>0.068</td>
<td>0.590</td>
<td>0.685</td>
<td>1.066</td>
</tr>
<tr>
<td>GluR2</td>
<td>0.171±0.022</td>
<td>0.227±0.022</td>
<td>0.207±0.017</td>
<td>0.180±0.011</td>
<td>0.130</td>
<td>0.202</td>
<td>0.755</td>
<td>1.151</td>
</tr>
<tr>
<td>GluR3</td>
<td>0.060±0.009</td>
<td>0.074±0.005</td>
<td>0.069±0.005</td>
<td>0.062±0.005</td>
<td>0.177</td>
<td>0.318</td>
<td>0.812</td>
<td>1.116</td>
</tr>
<tr>
<td>GluR4</td>
<td>0.027±0.005</td>
<td>0.033±0.004</td>
<td>0.031±0.003</td>
<td>0.026±0.002</td>
<td>0.409</td>
<td>0.255</td>
<td>0.831</td>
<td>1.163</td>
</tr>
<tr>
<td>GluR5</td>
<td>0.005±0.001</td>
<td>0.006±0.000</td>
<td>0.006±0.000</td>
<td>0.005±0.000</td>
<td>0.609</td>
<td>0.846</td>
<td>0.927</td>
<td>1.022</td>
</tr>
<tr>
<td>NR1</td>
<td>0.045±0.008</td>
<td>0.083±0.006</td>
<td>0.070±0.007</td>
<td>0.081±0.007</td>
<td>0.003↓↓</td>
<td>0.293</td>
<td>0.541</td>
<td>0.865</td>
</tr>
<tr>
<td>NR2A</td>
<td>0.017±0.003</td>
<td>0.020±0.002</td>
<td>0.019±0.002</td>
<td>0.0178±0.001</td>
<td>0.418</td>
<td>0.486</td>
<td>0.849</td>
<td>1.084</td>
</tr>
<tr>
<td>NR2B</td>
<td>0.008±0.003</td>
<td>0.011±0.002</td>
<td>0.010±0.002</td>
<td>0.011±0.001</td>
<td>0.483</td>
<td>0.365</td>
<td>0.728</td>
<td>0.832</td>
</tr>
<tr>
<td>mGluR1</td>
<td>0.005±0.001</td>
<td>0.009±0.001</td>
<td>0.007±0.001</td>
<td>0.006±0.001</td>
<td>0.071</td>
<td>0.378</td>
<td>0.572</td>
<td>1.200</td>
</tr>
<tr>
<td>mGluR2</td>
<td>0.007±0.001</td>
<td>0.013±0.002</td>
<td>0.011±0.001</td>
<td>0.010±0.001</td>
<td>0.036↑</td>
<td>0.390</td>
<td>0.544</td>
<td>1.140</td>
</tr>
<tr>
<td>mGluR3</td>
<td>0.016±0.004</td>
<td>0.019±0.001</td>
<td>0.018±0.002</td>
<td>0.020±0.002</td>
<td>0.455</td>
<td>0.297</td>
<td>0.866</td>
<td>0.884</td>
</tr>
<tr>
<td>PSD-93</td>
<td>0.060±0.009</td>
<td>0.075±0.007</td>
<td>0.069±0.006</td>
<td>0.066±0.005</td>
<td>0.225</td>
<td>0.648</td>
<td>0.796</td>
<td>1.052</td>
</tr>
<tr>
<td>PSD-95</td>
<td>0.026±0.005</td>
<td>0.031±0.003</td>
<td>0.029±0.003</td>
<td>0.032±0.002</td>
<td>0.484</td>
<td>0.425</td>
<td>0.856</td>
<td>0.908</td>
</tr>
</tbody>
</table>

Abbreviations: BD, bipolar disorder; MDD: major depressive disorder. For abbreviations of gene see S-Table 1.

The differences between gene expression levels were determined by Student's t-test. Because of multiple testing, a stricter level of P≤0.01 was considered to be statistically significant.

↓ decrease, ↑ increase.
DISCUSSION

We observed alterations in the GABAergic and glutamatergic pathways in the PFC in depression. A significant decrease in transcript levels of two genes was found, i.e. of GABRB2, one of the subunits of the GABA-A receptor, and of PSD-95, a scaffold protein related to the glutamatergic pathway, which indicates diminished activity in these pathways in depression. These alterations were only present in the ACC and not in the DLPFC. The possible confounders - age, CSF-pH and PMD - did not affect our conclusions, for more details see Supplementary Material S2.

As the GABRB2 subunit contains the GABA binding site (Choudary et al., 2005; Blednov et al., 2003; Sur et al., 2001), the decreased expression in depression may have functional implications. Our experiments did not confirm the altered expression of several GABA receptor subunits in the ACC found by microarray (Sequeira et al., 2009). It should be noted, however, that in the latter study only male MDD patients who committed suicide were examined. We did not confirm the increase in GABRB2/3 in the DLPFC of BD subjects either (Ishikawa et al., 2004) but only showed an increased trend in GABRB3. In our study, however, the subjects were much older than in the Ishikawa study (73 ± 3 vs 48 ± 15 years of age).

The postsynaptic scaffold protein PSD-95 directly binds to the NMDA receptor. The observed decreased PDS-95 expression may thus cause a disturbed NMDA receptor clustering, anchoring or receptor-mediated intracellular signaling (Lau and Zukin, 2007; Ziff, 1997). This may also affect synaptic plasticity since PSD-95 can indirectly bind to AMPA receptors, determine the density of AMPA receptors at synapses (Schnell et al., 2002) and participate in synaptic plasticity (Gardoni et al., 2009).

Our finding of only a minor impairment of GABA and glutamate neurotransmission is in accordance with in vivo studies in younger patients (Berrettini et al., 1986; Roy et al., 1991; Kaufman et al., 2009). In younger depressed suicide victims, more extensive changes have been reported for GABA and glutamate receptor subunit genes in the PFC (Sequeira et al., 2009), in particular of calbindin GABAergic neurons (Chana et al., 2003; Cotter et al., 2002; Rajkowska et al., 2007). In addition, in the PFC of younger depressed suicide victims several alterations were reported in glutamate and GABA receptor subunits (Choudary et al., 2005) and in GABA-A/benzodiazepine binding sites (Cheetham et al., 1988). These studies were not suited to distinguish between the alterations in GABA and...
glutamate that are related to depression and those related to suicide because of
the high proportion of suicide cases in the depressed patient groups. The strong
alterations in the GABAergic and glutamatergic pathways may thus rather be
related to depression at a younger age or to suicide.

Several limitations of our study should be mentioned. Firstly, the groups are
relatively small in size. However, the frozen brain material for Q-PCR analysis
was collected from clinically well-documented patients and well-matched control
subjects with a relatively short post-mortem time and good quality of RNA.
Samples meeting these criteria are extremely difficult to obtain. Furthermore, one
of the inherent potential confounding factors in a postmortem study is medication.
Mood-stabilizer effects on cortical GABA levels have not been studied in patients
with mood disorders. However, our study showed no differences regarding the
significantly changed genes between the depressed patients treated with mood-
stabilizers (benzodiazepine and carbamazepine) and the depressed patients who
never took mood-stabilizers (GABRB2: P = 0.662; PSD-95: P = 0.164) or took
them only during their last 3 months (GABRB2: P = 0.502; PSD-95: P = 0.186).
Studies evaluating the impact of electroconvulsive therapy and serotonin reuptake
inhibitors suggest that both treatments eliminate the GABA deficit in depressed
patients (Sanacora et al., 1998; Sanacora et al., 2000). However, our data did show
decreased GABA related gene expression in depressed patients, so the differences
might have been even more pronounced without this type of medication. In
addition, an MRS study showed no significant changes in the glutamatergic and
GABAergic systems in the ACC after lithium treatment (Shibuya-Tayoshi et al.,
2008), while PSD-95 showed a significant up-regulation by antipsychotic-mood
stabilizing treatment in ACC (Tomasetti et al., 2010). Our study showed decreased
PSD-95 expression in depressed patients, which means that the difference in
PSD-95 might also have been more pronounced without this type of medication.
Moreover, we did not find that the significantly changed genes in our study
were any different in the depressed patients who were treated by antipsychotic
medication compared to the depressed patients who never received antipsychotic
treatment (GABRB2: P = 0.169; PSD-95: P = 0.958) or received them only during
their last 3 months (GABRB2: P = 0.696; PSD-95: P = 0.885). Since postmortem
tissue of mood disorder patients who did not receive medication is hard to come
by, additional information will have to come from in vivo imaging studies of
medication-free patients. Another possible confounding effect is the different
causes of death which might have affected brain metabolism for extended periods.
However, the CSF-pH value is a good indicator of ante-mortem events in brain tissue (Monoranu et al., 2008) and with the groups so well-matched it is highly unlikely that differences in agonal state influenced the data.

In conclusion, the present study shows that markers of the GABAergic and glutamatergic neurotransmission in the ACC are differentially expressed in elderly non-suicidal depression. The possibility should be considered that the more extensive alterations in the GABAergic and glutamatergic pathways in mood disorder as reported in the literature might be related to younger age and suicide rather than to depression per se. The present results support the possibility that the GABA and glutamate pathways may be useful therapeutic targets in depression (Hashimoto, 2011; Sanacora and Saricicek et al., 2007).

ACKNOWLEDGMENTS

We are indebted to the Netherlands Brain Bank (Director Dr. I. Huitinga) at the Netherlands Institute for Neuroscience for providing us with the brain material and patient information. We thank Dr. M.A. Hofman and Dr. R.W.H. Verwer for statistical assistance, Dr. K. Bossers, Dr. T. Zhou, S-F Gao, D.J. van Wamelen, B.Fisser, R.A. Balesar and A.Sluiter for their technical advice, and W. Verweij for her secretarial help.
REFERENCES

Chapter 3

Tomasetti, C., Dell'Aversano, C., Iasevoli, F., Marmo, F., de Bartolomeis, A., 2010. The acute and chronic effects of combined antipsychotic-mood stabilizing treatment on the expression of cortical and striatal

S-Table 1 Information of Gene Selection, sequence of the primers, gene bank accession numbers, amplicon length for the target genes and reference genes

<table>
<thead>
<tr>
<th>Gene</th>
<th>Official full name</th>
<th>Primer sequences (Forward)</th>
<th>Primer sequences (Reverse)</th>
<th>Accession numbers</th>
<th>Amplicon length (bp)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GABA related molecules</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GABRA1</td>
<td>gamma-aminobutyric acid (GABA) A receptor, alpha 1</td>
<td>ATGCCCAACAAACTCCTGC</td>
<td>ATAGGGAAGTCCCTCAAATGC</td>
<td>NM_000806</td>
<td>103</td>
</tr>
<tr>
<td>GABRA2</td>
<td>gamma-aminobutyric acid (GABA) A receptor, alpha 2</td>
<td>CTTGGGATGGGAAGAGTGTAGT</td>
<td>GTTCTGTATCATAACGGAAGCCT</td>
<td>NM_000807</td>
<td>64</td>
</tr>
<tr>
<td>GABRA3</td>
<td>gamma-aminobutyric acid (GABA) A receptor, alpha 3</td>
<td>GCCCGACTGAGACCAAGACC</td>
<td>ATGGCAAAGAGCACAGGAAGAAGA</td>
<td>NM_000808</td>
<td>81</td>
</tr>
<tr>
<td>GABRA4</td>
<td>gamma-aminobutyric acid (GABA) A receptor, alpha 4</td>
<td>TGGGCAAACGTATCAAGTG</td>
<td>GAGGTGAAGTAACCGTCATAA</td>
<td>NM_000809</td>
<td>74</td>
</tr>
<tr>
<td>GABRA5</td>
<td>gamma-aminobutyric acid (GABA) A receptor, alpha 5</td>
<td>CAGTCTTTTGTGCGACTTCTTCA</td>
<td>GAGAGCGGCTCTTTAT</td>
<td>NM_000810</td>
<td>80</td>
</tr>
<tr>
<td>GABRB1</td>
<td>gamma-aminobutyric acid (GABA) A receptor, beta 1</td>
<td>AGCCAGAGTCGACTAGGAAT</td>
<td>CCAGCAGAGCCAGAACAC</td>
<td>NM_000812</td>
<td>148</td>
</tr>
<tr>
<td>GABRB2</td>
<td>gamma-aminobutyric acid (GABA) A receptor, beta 2</td>
<td>CGTGAGTAGATCCTCTG AA</td>
<td>TGGCAATGTCATAATGTCATC</td>
<td>NM_000813</td>
<td>91</td>
</tr>
<tr>
<td>GABRB3</td>
<td>gamma-aminobutyric acid (GABA) A receptor, beta 3</td>
<td>TGACACCATCAAACACC</td>
<td>CAAAGACGAAAGCAGCCATAA</td>
<td>NM_021912</td>
<td>93</td>
</tr>
<tr>
<td>GABRD</td>
<td>gamma-aminobutyric acid (GABA) A receptor, delta</td>
<td>ATCGTGAACGCCAAGTCG</td>
<td>TGGAGTGATTCGAGTGCT</td>
<td>NM_000815</td>
<td>104</td>
</tr>
<tr>
<td>GABRE</td>
<td>gamma-aminobutyric acid (GABA) A receptor, epsilon</td>
<td>CATCCTGTATCAATAGCGTG</td>
<td>GCTCCTTCTCATCCATTTCCCT</td>
<td>NM_004961</td>
<td>123</td>
</tr>
<tr>
<td>GABRG2</td>
<td>gamma-aminobutyric acid (GABA) A receptor, gamma 2</td>
<td>CGTCTCATTCTGGGTGCCTTTC</td>
<td>CAATGGTGCTGAGGTTGTC</td>
<td>NM_000816</td>
<td>102</td>
</tr>
<tr>
<td>GABRQ</td>
<td>gamma-aminobutyric acid (GABA) receptor, theta</td>
<td>CCTGGGAAGGAGATTACT</td>
<td>CCCTCTGAACCTGGAACCTT</td>
<td>NM_018558</td>
<td>85</td>
</tr>
<tr>
<td>Gene</td>
<td>Official full name</td>
<td>Primer sequences (Forward)</td>
<td>Primer sequences (Reverse)</td>
<td>Accession numbers</td>
<td>Amplicon length (bp)</td>
</tr>
<tr>
<td>------------</td>
<td>--</td>
<td>----------------------------</td>
<td>---------------------------</td>
<td>-------------------</td>
<td>----------------------</td>
</tr>
<tr>
<td>GABBR1</td>
<td>gamma-aminobutyric acid (GABA) B receptor, 1</td>
<td>ATTACCGACCAAATCTACCG</td>
<td>CGCTGGCATCAAACACC</td>
<td>NM_021904</td>
<td>78</td>
</tr>
<tr>
<td>GABBR2</td>
<td>gamma-aminobutyric acid (GABA) B receptor, 2</td>
<td>TCACGGGTCAAGTTGTATCC</td>
<td>CCTTCACCTCCCTGCTGCTT</td>
<td>NM_005458</td>
<td>83</td>
</tr>
<tr>
<td>GAD1</td>
<td>glutamate decarboxylase 1 (brain, 67kDa)</td>
<td>CGGCTAAGAAGGGTGAAGGA</td>
<td>CTTGCGGACATAGTGGAGGAGT</td>
<td>NM_000817</td>
<td>76</td>
</tr>
<tr>
<td>GAD2</td>
<td>glutamate decarboxylase 2 (pancreatic islets and brain, 65kDa)</td>
<td>CCAACAAGATGATGGGAGTC</td>
<td>TGCTGAAGAGGAGGAGGC</td>
<td>NM_000818</td>
<td>106</td>
</tr>
<tr>
<td>GLS</td>
<td>glutaminase</td>
<td>GCTTTCCATGTTGTCCTCC</td>
<td>ACACCTGTTGCCCATCTTATCC</td>
<td>NM_014905</td>
<td>118</td>
</tr>
<tr>
<td>VGLUT1 (SLC17A7)</td>
<td>solute carrier family 17 (sodium-dependent inorganic phosphate cotransporter), member 7</td>
<td>TCTTCTACGGGGTCCTTTGCTT</td>
<td>CACACTTCTCCCTGCTCATCT</td>
<td>NM_020309</td>
<td>74</td>
</tr>
<tr>
<td>VGLUT2 (SLC17A6)</td>
<td>solute carrier family 17 (sodium-dependent inorganic phosphate cotransporter), member 6</td>
<td>TAAAAGCTACATCAGACCC</td>
<td>ATCCAGAATAGACAAATACACA-CA</td>
<td>NM_020346</td>
<td>102</td>
</tr>
<tr>
<td>GluR1 (GRIA1)</td>
<td>glutamate receptor, ionotropic, AMPA 1</td>
<td>ATCCCAAGCAATCCATCAA</td>
<td>ACCCGACCATTCTCTCCAC</td>
<td>NM_000827</td>
<td>100</td>
</tr>
<tr>
<td>GluR2 (GRIA2)</td>
<td>glutamate receptor, ionotropic, AMPA 2</td>
<td>ATGGTGGAGGTGAGGTG</td>
<td>TAAGTGGCCGTGTTAGGAGGA</td>
<td>NM_000826</td>
<td>62</td>
</tr>
<tr>
<td>GluR3 (GRIA3)</td>
<td>glutamate receptor, ionotrophic, AMPA 3</td>
<td>TACTTGTCCGAGGTCTGGG</td>
<td>GTGAGTTATCATGCGTTGGG</td>
<td>NM_000828</td>
<td>90</td>
</tr>
<tr>
<td>GluR4 (GRIA4)</td>
<td>glutamate receptor, ionotrophic, AMPA 4</td>
<td>TCACTACGAATGGAAACTTGGTTT</td>
<td>AGTATCGAGTATCCCTGCTG</td>
<td>NM_001077244</td>
<td>59</td>
</tr>
<tr>
<td>GluR5 (GRIK1)</td>
<td>glutamate receptor, ionotropic, kainate 1</td>
<td>CCCAGGAGAAGCAACAAAGGA</td>
<td>GGCAGCCAGAAACATGAAGAT</td>
<td>NM_000830</td>
<td>74</td>
</tr>
</tbody>
</table>
S-Table 1 Continued, Information of Gene Selection, sequence of the primers, gene bank accession numbers, amplicon length for the target genes and reference genes

<table>
<thead>
<tr>
<th>Gene</th>
<th>Official full name</th>
<th>Primer sequences (Forward)</th>
<th>Primer sequences (Reverse)</th>
<th>Accession numbers</th>
<th>Amplicon length (bp)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NR1</td>
<td>glutamate receptor, ionotropic, N-methyl D-aspartate 1</td>
<td>ATCCAGATGGCTCTGTCCGGT</td>
<td>GGTGGGAGTGAAGTGCTGGT</td>
<td>NM_007327, NM_021569, NM_000832</td>
<td>101</td>
</tr>
<tr>
<td>NR2A</td>
<td>glutamate receptor, ionotropic, N-methyl D-aspartate 2A</td>
<td>TCAAGAAGTAAATGGCAGCG</td>
<td>CATCATCACCAGACAGAGG</td>
<td>NM_000833, NM_001134407</td>
<td>71</td>
</tr>
<tr>
<td>NR2B</td>
<td>glutamate receptor, ionotropic, N-methyl D-aspartate 2B</td>
<td>CTGAGAATAAACAGACAGG</td>
<td>AAGGATGTCAATACAGAACCC</td>
<td>NM_000834</td>
<td>70</td>
</tr>
<tr>
<td>mGluR1</td>
<td>glutamate receptor, metabotropic 1</td>
<td>CCTACGCCTCTGTCAATCTGC</td>
<td>CTCTGGCTTTGCTTTGCTTTTCT</td>
<td>NM_000838, NM_00114329</td>
<td>91</td>
</tr>
<tr>
<td>mGluR2</td>
<td>glutamate receptor, metabotropic 2</td>
<td>GCAAGTATGTGAGGAGG</td>
<td>CTGTTAGTGGTTCCGAGG</td>
<td>NM_000839, NM_001130063</td>
<td>98</td>
</tr>
<tr>
<td>mGluR3</td>
<td>glutamate receptor, metabotropic 3</td>
<td>ATTGCCTGTCTGAGGTGGG</td>
<td>AAGGATGTGTTGTTGCT</td>
<td>NM_000840</td>
<td>70</td>
</tr>
<tr>
<td>PSD-93</td>
<td>discs, large homolog 2</td>
<td>TATTCCTCTGGTGCTTGTA</td>
<td>ACGAGTGGTGCTGGTCTATGT</td>
<td>NM_001364, NM_001142699</td>
<td>119</td>
</tr>
<tr>
<td>PSD-95</td>
<td>discs, large homolog 4</td>
<td>GGGTAATCAGGTCTCGGCC</td>
<td>CTTGGTGATGAAATGGAGTG</td>
<td>NM_001365, NM_001128827</td>
<td>84</td>
</tr>
</tbody>
</table>

Reference genes

<table>
<thead>
<tr>
<th>Gene</th>
<th>Official full name</th>
<th>Primer sequences (Forward)</th>
<th>Primer sequences (Reverse)</th>
<th>Accession numbers</th>
<th>Amplicon length (bp)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RN18s</td>
<td>185 ribosomal RNA</td>
<td>TTCTGATTTGGCCCCTCTAGA</td>
<td>TGGCAATGCTTGCCTCT</td>
<td>NR_003286</td>
<td>70</td>
</tr>
<tr>
<td>ACTβ1-2</td>
<td>actin, beta</td>
<td>CCCAGCGATGTACGCTTCTA</td>
<td>TCACCGGAGTTCATACGAT</td>
<td>NM_001101</td>
<td>65</td>
</tr>
<tr>
<td>GAPDH2</td>
<td>glyceraldehyde-3-phosphate dehydrogenase</td>
<td>CAATTCCATGGCACCCTGC</td>
<td>TCTGGCTCTGGAGATGCT</td>
<td>NM_002046</td>
<td>62</td>
</tr>
<tr>
<td>HPRT1</td>
<td>hypoxanthine phosphoribosyltransferase 1</td>
<td>GGACAGGACTGAACGCTTGC</td>
<td>ATAGCCCCCTGAGGACAC</td>
<td>NM_000194</td>
<td>88</td>
</tr>
<tr>
<td>TUBa1-2</td>
<td>tubulin, alpha 1b</td>
<td>CTTCGAGCCAGGCAAACCTA</td>
<td>GTACAAACGGCAGGACAC</td>
<td>NM_006082</td>
<td>72</td>
</tr>
<tr>
<td>UBC</td>
<td>ubiquitin C</td>
<td>GCTGCTCTTAAAGACTCCGGCC</td>
<td>GTACACCAAGGTCCTCGCTCTA</td>
<td>NM_021009</td>
<td>70</td>
</tr>
<tr>
<td>TUBB41-2</td>
<td>tubulin, beta 4</td>
<td>GGGCAAGTTTGAGGAGGT</td>
<td>CACTGTCCCCTGACTGAT</td>
<td>NM_006087</td>
<td>71</td>
</tr>
</tbody>
</table>

1 The normalization factors used in ACC. 2 The normalization factors used in DLPFC.
Supplementary Material S1: Normalization strategy
Quantification of the set of 7 different reference genes (reflecting different cellular processes) showed no statistically significant differences between controls and depression in both ACC (P ≥ 0.24) and DLPFC (P ≥ 0.34). Yet there was a good overall correlation between the expression levels of the reference genes showing that the variation observed was correlated and at least partly caused by variations in the amount of cDNA in the samples which is compensated for by the normalization factor derived from the geomean value of the 7 reference genes. Furthermore, we tested the effect of the normalization procedure on the variation of the target genes; the overall variation of the raw data was 40.7% and after normalization this was reduced to 30.2% (P = 0.001). So, although effective, the reduction of variation was modest probably as a result of the fact that we started all cDNA reactions with exactly the same amount of RNA and that the quality of the RNA (RIN-values) were within a narrow range.

S-Table 2 Significant level of the comparison between different groups

<table>
<thead>
<tr>
<th>Gene</th>
<th>MDD vs. Control</th>
<th>BD vs. Control</th>
<th>Depression vs. Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>GABRB2</td>
<td>0.068</td>
<td>0.006</td>
<td>0.001</td>
</tr>
<tr>
<td>PSD-95</td>
<td>0.002</td>
<td>0.019</td>
<td>0.001</td>
</tr>
</tbody>
</table>

Supplementary Material S2: Possible confounders in the current post-mortem study
Age, CSF-pH and PMD were very carefully matched between patients and controls. There was no significant difference between two groups (see Table 1 in the manuscript). We have also correlated these factors to every single target gene in our study. In the DLPFC, none of these factors was correlated to any of the target gene; In the ACC, none of the target gene was correlated with PMD. However several target genes (GABRA4, GABRB1, GLS, mGluR1 and PSD-93) correlated either with age or CSF-pH. Therefore we performed Univariate test with these genes and put age or CSF-pH as covariance (depending on which factor was correlated with target gene). As shown in the S-Table 3, the Univariate test of all these five target genes showed no significance between depression and control groups, just as same as Student’s t-test. Concluding, age, CSF-pH and PMD did not influence our results.

S-Table 3 Comparison of significant level between different statistics

<table>
<thead>
<tr>
<th>Gene</th>
<th>Student’s t-test</th>
<th>Covariance</th>
<th>Univariate test</th>
</tr>
</thead>
<tbody>
<tr>
<td>GABRA4</td>
<td>0.345</td>
<td>age</td>
<td>0.676</td>
</tr>
<tr>
<td>GABRB1</td>
<td>0.557</td>
<td>CSF-pH</td>
<td>0.517</td>
</tr>
<tr>
<td>GLS</td>
<td>0.749</td>
<td>CSF-pH</td>
<td>0.781</td>
</tr>
<tr>
<td>mGluR1</td>
<td>0.741</td>
<td>CSF-pH</td>
<td>0.734</td>
</tr>
<tr>
<td>PSD-93</td>
<td>0.444</td>
<td>CSF-pH</td>
<td>0.443</td>
</tr>
</tbody>
</table>