Calcium and phospholipid signalling in permeabilized Chlamydomonas moewusii cells
Kuin, H.M.A.

Citation for published version (APA):
Kuin, H. M. A. (2000). Calcium and phospholipid signalling in permeabilized Chlamydomonas moewusii cells

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.

UvA-DARE is a service provided by the library of the University of Amsterdam (http://dare.uva.nl)

Download date: 10 Oct 2018
References

Allen GJ and Sanders D (1994) Osmotic stress enhances the competence of Beta vulgaris vacuoles to respond to inositol 1,4,5 trisphosphate. Plant J 6: 687-695

Blumwald E and Poole RJ (1986) Kinetics of Ca\(^{2+}\)/H\(^{+}\) antiport is isolated tonoplast vesicles from storage tissue of Beta vulgaris L. Plant Physiol 80: 766-731

Campbell KP, MacLennan DH, Jorgensen AO, Mintzer MC (1983) Purification and characterization of calsequestrin from canine cardiac sarcoplasmic reticulum and identification of the 53,000 dalton glycoprotein. J Biol Chem 258: 1197-1204

Drobak BK and Ferguson IB (year?) Release of Ca\(^{2+}\) from plant hypocotyl microsomes by inositol-1,4,5-trisphosphate. Biochem Biophys Res Com 130: 1241-1246

Drobak BK and Watson PAC (1994) Inositol(1,4,5)trisphosphate production in plant cells: stimulation by the venom peptides, melittin and mastoparan. Biochem Biophys Res Comm 205: 739-745

Evans DE (1994) Calmodulin-stimulated calcium pumping ATPases located at higher plant intracellular membranes: a significant divergence from other eukaryotes? Physiol Plant 90: 420-426

Ferrol-N and Bennet AB (1996) A single gene may encode differentially localized Ca\(^{2+}\)-ATPases in tomato. Plant Cell 8: 1159-1169

References

rhodopsin is the functional photoreceptor for phototaxis in the unicellular eukaryote *Chlamydomonas*. Nature 311: 756-759

Frank W, Munnik T, Kerkman K, Salamini F and Bartels D 2000 Water deficit triggers phospholipase D activity in the resurrection plant *Craterostigma plantagineum*. Plant Cell 12, 111-124

Franklin-Tong VE, Drobak BK, Allan AC, Watkins PAC and Trewavas AJ Growth of pollen tubes of *Papaver rhoes* is regulated by a slow-moving calcium wave propagated by inositol 1,4,5-trisphosphate. Plant Cell 8: 1305-1321

Huang L, Franklin AE and Hoffman NE (1993) Primary structure and characterization of an
References

Irvine RF (1990) ‘Quantal’ Ca²⁺ release and the control of Ca²⁺ entry by inositol phosphates - a possible mechanism. FEBS Lett 263: 5-9

References

Liang F and Sze H (1998) A high-affinity Ca$^{2+}$ pump, ECA1, from the endoplasmic reticulum is inhibited by cyclopiazonic acid but not by thapsigargin. Plant Physiol 118: 817-825

Muir SR and Sanders D (1996) Pharmacology of Ca$^{2+}$ release from red beet microsomes suggests the presence of ryanodine receptor
homologs in higher plants. FEBS Lett 395: 39-42
O’Neill SD, Bennett AB and Spanswick RM (1983) Characterization of a NO\(_3\)-sensitive H\(^-\)

O’Rourke K, Soons K, Flaumenhauft R, Watras J, Bailleul C, Matthews E, Feinstein MB (1994) Ca\(^{2+}\) release by inositol 1,4,5-trisphosphate is blocked by the K*-channel blockers apamin and tetrapentylammonium ion, and a monoclonal antibody to a 63 kDa membrane protein: reversal of blockade by K\(^{+}\)-ionophores nigericin and valinomycin and purification of the 63 kDa antibody-binding protein. Biochem J 300: 673-683

Puskin JS, Gunter TE, Gunter KK and Russell PR (1976) Evidence for more than one Ca\(^{2+}\) transport mechanism in mitochondria. Biochemistry 15: 3834-3842

References

Rüffer U and Nultsch W (1991) Flagellar photoreponses of Chlamydomonas cells held on micropipettes. II. Change in flagellar beat pattern. Cell Motil 18: 269-278

Scott DA, Moreno SNJ and Docampo R (1995) Ca$^{2+}$ storage in Trypanosoma brucei: the
References

influence of cytoplasmic pH and importance of vacuolar acidity. Biochem J 310: 789-794

Styler J, Pozzan T and Rudolph HK (1999) Steady-state free Ca2+ in the yeast endoplasmic reticulum reaches only 10 μM and is mainly controlled by the secretory pathway pump pmr1. EMBO J 18: 4733-4743

Tan Z and Boss WF (1992) Association of phosphatidylinositol kinase, phosphatidylinositol monophosphate kinase and diacylglycerol kinase with the cytoskeleton and F-actin fractions of carrot (Daucus carota L.) cells grown in suspension culture: response to cell wall degrading enzymes. Plant Physiol 100: 2116-2120

Wang X (1999) Phospholipase D in signaling. PI Physiol 120: 645-651

