The birational geometry of the moduli space of curves
Farkas, G.M.

Citation for published version (APA):
Farkas, G. M. (2000). The birational geometry of the moduli space of curves

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
Contents

Introduction

- 0.1 Algebraic curves and their moduli .. 1
- 0.2 How rational is \(M_g \)? .. 2
- 0.3 The Brill-Noether Theorem .. 3
- 0.4 Outline of the results ... 4

1 The geometry of the moduli space of curves of genus 23

- 1.1 Introduction ... 7
- 1.2 Multicanonical linear systems and the Kodaira dimension of \(M_g \) 8
- 1.3 Deformation theory for \(g^r_s \)'s and limit linear series 10
- 1.4 A few consequences of limit linear series 15
- 1.5 The Kodaira dimension of \(M_{23} \) 16
 - 1.5.1 The divisor \(\overline{M}_{32} \) .. 17
 - 1.5.2 The divisor \(\overline{M}_{17} \) .. 17
 - 1.5.3 The divisor \(\overline{M}_{20} \) .. 17
- 1.6 The slope conjecture and \(M_{23} \) 26

2 The geography of Brill-Noether loci in the moduli space of curves

- 2.1 Introduction ... 29
- 2.2 Deformations of maps and smoothing of algebraic space curves 30
- 2.3 Linear series on \(k \)-gonal curves 32
- 2.4 Existence of regular components of moduli spaces of maps to \(\mathbb{P}^1 \times \mathbb{P}^r \) 36
- 2.5 The gonality of space curves .. 42
 - 2.5.1 Preliminaries ... 42
 - 2.5.2 Linear systems on smooth quartic surfaces in \(\mathbb{P}^3 \) 44
 - 2.5.3 Brill-Noether special linear series on curves on \(K3 \) surfaces 45
 - 2.5.4 The gonality of curves on quartic surfaces 47
- 2.6 Miscellany ... 53

3 Divisors on moduli spaces of pointed curves

- 3.1 Introduction ... 57
- 3.2 The Picard group of the moduli space of pointed curves 59
3.3 Counting linear series on curves via Schubert calculus ... 60
3.4 Divisors on $\overline{M}_{g,1}$... 61
3.5 A divisor on $\overline{M}_{g,2}$... 67
3.6 The divisor of curves with two triple ramification points .. 70
 3.6.1 Counting pencils with two triple points ... 71
 3.6.2 A divisor class on $\overline{M}_{2,1}$.. 73
 3.6.3 The class of the divisor $\overline{T_R}$... 74
3.7 The Kodaira dimension of the universal curve ... 75

Bibliography ... 77