Observations and analysis of early-type stars at infrared wavelengths
Zaal, P.A.

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.

UvA-DARE is a service provided by the library of the University of Amsterdam (http://dare.uva.nl)
Contents

1 Introduction
  1.1 Infrared spectroscopy ................................................. 3
    1.1.1 The ISO-mission .................................................. 4
    1.1.2 The infrared spectral region of hot stars ....................... 5
  1.2 Overview of the different sub-classes of OB stars .................. 6
    1.2.1 The "normal" OB stars ........................................... 8
    1.2.2 The OB supergiants .............................................. 10
    1.2.3 The Be stars .................................................... 11
  1.3 Modeling of OB stars ................................................ 13
    1.3.1 Photospheric models ............................................ 13
    1.3.2 Wind models .................................................... 15
    1.3.3 Disc models ................................................... 15
  References ......................................................... 16

2 The HI infrared line spectrum for Be stars with low-density discs. 19
  2.1 Introduction ....................................................... 19
  2.2 The HI line calculations ............................................. 21
    2.2.1 The line optical depth .......................................... 21
    2.2.2 The curve of growth ............................................ 22
    2.2.3 The simple approximation ...................................... 26
    2.2.4 An example; A full HI IR spectrum for τ Sco, a B0 star sur-
      rounded by a low-density disc .................................... 29
  2.3 A study of B stars surrounded by a low-density disc ............... 31
    2.3.1 The Hα and IR line profile calculations with the disc model. 32
    2.3.2 The approximate HI IR line fluxes in the low-density limit. 33
    2.3.3 The density range for low-density discs ....................... 35
  2.4 Discussion .......................................................... 36
  References .......................................................... 37
3 Emission features in Br\(\alpha\) and Br\(\gamma\) spectra of normal O and B stars. 39
  3.1 Introduction .................................................. 39
  3.2 The observations .............................................. 43
  3.3 Description of the observed spectra ......................... 44
    3.3.1 The late-O and early-B stars with \(v \sin i < 180\ \text{km s}^{-1}\) 45
    3.3.2 The rapidly rotating B stars ............................. 49
    3.3.3 The \(\beta\) Cephei stars .................................. 53
    3.3.4 Others .................................................. 54
  3.4 Conclusions ................................................... 56
  3.5 Acknowledgments ................................................ 58
References .......................................................... 58

4 On the nature of the H I infrared emission lines of \(\tau\) Scorpii 61
  4.1 Introduction ................................................... 62
  4.2 The observations .............................................. 63
    4.2.1 The INT data ............................................ 64
    4.2.2 The UKIRT data .......................................... 65
    4.2.3 The ISO data ............................................ 66
  4.3 The model calculations ........................................ 69
    4.3.1 Atomic physics .......................................... 69
    4.3.2 The influence of turbulent velocity ..................... 70
  4.4 The formation of emission lines due to non-LTE effects ..... 71
    4.4.1 The principle of non-LTE line emission .................. 71
    4.4.2 The \(T(r)\) and \(b_n(r)\) effect within TLUSTY .......... 73
  4.5 Alternative effects that may produce IR emission lines .... 75
    4.5.1 Emission from a circumstellar disc around \(\tau\) Sco ... 76
    4.5.2 The stellar wind of \(\tau\) Sco ............................ 76
  4.6 Results .......................................................... 78
    4.6.1 The Equivalent Width dependence on \(T_{\text{eff}}\) and \(\log g\) 79
    4.6.2 The dependence of the line profile on \(T_{\text{eff}}\) and \(\log g\) 81
    4.6.3 Comparison of observed and predicted profiles ........ 83
  4.7 Discussion & Conclusions ...................................... 86
References .......................................................... 88

5 Infrared Spectral classification of OB stars with ISO-SWS. 91
  5.1 Introduction ................................................... 92
  5.2 The observations .............................................. 94
    5.2.1 Description of observed spectra ......................... 100
  5.3 The H I infrared lines as a diagnostic for \(T_{\text{eff}}\) ........ 102
  5.4 The validity of the H&He model .............................. 108
    5.4.1 Equivalent width predictions from LTE models ......... 108
## Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.4.2</td>
<td>The effect of including line blanketing</td>
<td>110</td>
</tr>
<tr>
<td>5.4.3</td>
<td>The effect of turbulence</td>
<td>110</td>
</tr>
<tr>
<td>5.4.4</td>
<td>The effects of a stellar wind</td>
<td>111</td>
</tr>
<tr>
<td>5.5</td>
<td>Discussion</td>
<td>112</td>
</tr>
<tr>
<td>5.6</td>
<td>Summary</td>
<td>114</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>115</td>
</tr>
</tbody>
</table>

### 6 Wind effects on the infrared hydrogen lines of O-type stars

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1</td>
<td>Introduction</td>
<td>118</td>
</tr>
<tr>
<td>6.2</td>
<td>The grid of models</td>
<td>119</td>
</tr>
<tr>
<td>6.2.1</td>
<td>Photospheric models</td>
<td>119</td>
</tr>
<tr>
<td>6.2.2</td>
<td>Wind models</td>
<td>119</td>
</tr>
<tr>
<td>6.3</td>
<td>The validity domains of TLUSTY and ISA-WIND</td>
<td>122</td>
</tr>
<tr>
<td>6.3.1</td>
<td>The weak wind limit</td>
<td>123</td>
</tr>
<tr>
<td>6.3.2</td>
<td>The strong wind limit</td>
<td>126</td>
</tr>
<tr>
<td>6.3.3</td>
<td>Errors in equivalent width due to the Sobolev Approximation</td>
<td>127</td>
</tr>
<tr>
<td>6.4</td>
<td>The hydrogen infrared lines as a diagnostic of mass loss</td>
<td>128</td>
</tr>
<tr>
<td>6.4.1</td>
<td>&quot;Curve of growth&quot; method</td>
<td>130</td>
</tr>
<tr>
<td>6.5</td>
<td>Summary</td>
<td>132</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>132</td>
</tr>
</tbody>
</table>

### 7 Nederlandse Samenvatting

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1</td>
<td>Introductie</td>
<td>135</td>
</tr>
<tr>
<td>7.2</td>
<td>Infrarood waarnemingen van massieve sterren</td>
<td>138</td>
</tr>
<tr>
<td>7.3</td>
<td>Het modelleren van ster spectra</td>
<td>139</td>
</tr>
<tr>
<td>7.4</td>
<td>Resultaten</td>
<td>140</td>
</tr>
</tbody>
</table>

### Publications

<table>
<thead>
<tr>
<th>Publication</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>143</td>
</tr>
</tbody>
</table>

### Nwoord

<table>
<thead>
<tr>
<th>Nwoord</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>147</td>
</tr>
</tbody>
</table>