Molecular studies of fresh and aged triterpenoid varnishes
van der Doelen, G.A.

Citation for published version (APA):
## Contents

1. **Triterpenoid varnishes: the ageing process**  
   1.1. Use of dammar and mastic resin as painting varnishes  
   1.2. Ageing of triterpenoid varnishes  
   1.3. Thesis outline  
   1.4. Main results: chemical changes in triterpenoid varnishes  
   1.4.1. Oxidation  
   1.4.2. Cross-linking  
   1.4.3. Degradation  
   1.4.4. Yellowing  
   1.5. Implications for painting conservators  
   References  

2. **Triterpenoid compounds in fresh dammar and mastic resin**  
   Abstract  
   2.1. Introduction  
   2.2. Literature review of dammar resin  
   2.3. Literature review of mastic resin  
   2.4. GCMS analysis  
   2.5. HPLC-APCI-MS analysis  
   2.6. DTMS analysis  
   2.7. Conclusions  
   2.8. Experimental  
   References  

### Appendix to Chapter 2  
Abstract  
1. Analysis of the precipitated fraction in fresh dammar varnish  
2. Conclusions  
3. Experimental  
References
3. Aged triterpenoid varnishes from paintings

Abstract 45
3.1. Introduction 45
3.2. Discrimination between several types of aged varnishes from paintings by DTMS 48
3.3. Oxidative changes in varnish composition 51
3.3.1. Analysis by GCMS 51
3.3.2. Analysis by HPLC-APCI-MS 55
3.3.3. Molecular changes during ageing on a painting 59
3.3.4. Structural interpretation of the DTMS peaks 62
3.4. Cross-linking 64
3.5. Light absorbing characteristics of aged triterpenoid varnishes 67
3.6. Aspects of cleaning 72
3.7. Conclusions 74
3.8. Experimental 75
Acknowledgements 78
References 78

4. Artificially light aged varnishes

Abstract 83
4.1. Introduction 83
4.2. Xenon-arc light ageing of varnish resins 85
4.2.1. Introduction 85
4.2.2. Ageing of dammar and mastic 86
4.2.3. Interpretations of earlier research 96
4.3. Fluorescent tube light ageing of varnish resins 96
4.3.1. Introduction 96
4.3.2. Ageing of dammar and mastic varnishes 97
4.3.3. Effect of the light stabiliser (Tinuvin 292) in fluorescent tube light aged dammar varnish 100
4.3.4. Effects of different methods of preparation of the varnish 102
4.4. Conclusions 103
4.5. Experimental 104
Acknowledgements 105
References 106
5. Artificial ageing of varnish triterpenoids in solution 109
   Abstract 109
   5.1. Introduction 109
   5.2. Effect of solvents 112
   5.3. Effect of the addition of photosensitisers 115
   5.4. Solvent ageing of dammar and mastic resin 122
   5.5. Cross-linked fractions in solvent aged resins 126
   5.6. Conclusions 131
   5.7. Experimental 132
   References 134

6. Mass spectrometric analysis of triterpenoids in dammar and mastic under EI and APCI conditions 137
   Abstract 137
   6.1. Introduction 137
   6.2. Effect of the instrumental parameters on the appearance of the APCI mass spectrum 138
   6.3. Comparative EI-MS and APCI-MS studies of triterpenoid compounds 140
   6.3.1. Dammaranes 140
   6.3.2. Oleananes and ursanes 146
   6.3.3. Euphanes 150
   6.3.4. Hopanes 150
   6.4. Fragmentation behaviour under APCI-MS-MS conditions 150
   6.5. Conclusions 153
   6.6. Experimental 153
   References 154

Atlas of mass spectra of triterpenoid compounds in varnishes 157

Summary 169

Samenvatting 173

Dankwoord 177