Aryldiazonium Salts as Nitrogen-Based Lewis Acids: Facile Synthesis of Tuneable Azophosphonium Salts
Published in:
Angewandte Chemie, International Edition

DOI:
10.1002/anie.201806913

Citation for published version (APA):
Aryldiazonium Salts as Nitrogen-Based Lewis Acids: Facile Synthesis of Tuneable Azophosphonium Salts

Evi R. M. Habraken, Nicolaas P. van Leest, Pim Hooijschuur, Bas de Bruin, Andreas W. Ehlers, Martin Lutz, and J. Chris Slootweg

Abstract: Inspired by the commercially available azoimidazole dyes (e.g., Basic Red 51) that can be obtained from aryldiazonium salts and N-heterocyclic carbenes, we developed the synthesis of a unique set of aryldazophosphonium salts. A range of colours were obtained by applying readily tuneable phosphine donor ligands and para-substituted aryldiazonium salts as nitrogen-based Lewis acids. With cyclic voltammetry, a general procedure was designed to establish whether the reaction between a Lewis acid and a Lewis base occurs by single-electron transfer or electron-pair transfer.

The metal-free activation and functionalization of dinitrogen is one of the key challenges of modern main-group chemistry. The low-lying N_2 π orbitals (HOMO) and high-lying π* orbital (LUMO) make dinitrogen a weak Lewis base and a weak Lewis acid and, therefore, a relatively inert substrate (Figure 1). Inspired by the recently reported interaction of boranes with metal–N_2 complexes enabling facile N protonation, borylation, and silylation, Stephan and co-workers demonstrated that diphenyldiazomethane, a formal diphenylcarbene–N_2 adduct, can function as a Lewis base (HOMO: −7.31 eV; Figure 1), forming a labile adduct with B(CF_3)_2. While the direct interaction of dinitrogen with boranes has only been observed spectroscopically under forcing conditions, the use of transient borylenes afforded as table 31 while the phosphine–diazonium Lewis acid (C_2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim) by greatly lowering adduct, can function as a Lewis base (HOMO: −6.24 eV; Figure 1). This makes aryldiazonium salts suitable nitrogen-based Lewis acids, which we were keen on investigating.

N Coordination of diazonium salts to Lewis basic N-heterocyclic carbenes is well established and affords the strongly coloured, industrially produced azoimidazolium salts [RN(NHC)][X] (X = Cl, BF_4, PF_6, etc.). Surprisingly, to date the corresponding azoammonium salts [RN(NR)][X] are unknown, while the phosphine–diazo- phosphonium Lewis adducts have been barely studied. Thus far, Horner and Stöhr postulated the red azophosphonium chlorides A (R = H, Me, Cl, NO_2, CO_2H, OMe, OC(O)Me; Figure 2) as unstable species that are susceptible to N_2 elimination, affording the corresponding arylphosphonium salts [ArPPh][Cl] [14]. Later, Yasui and co-workers found that aryldiazonium tetrafluoroborates are readily dediazoniated by triphenylphosphine by single-electron transfer when mixed in alcoholic solvents at room temperature. Flower and co-workers synthesized B, but only reported its 3P NMR resonance (δ31P[H] = 40 ppm; R = 6-naphthalen-2-ol), and Wokaun its π* acceptor orbital (LUMO: from 1.30 (N_2) to −6.24 eV; see Figure 1).

Figure 1. Lewis acid (C_5H_5N) and base (Ph,N,C) augmented activation of N_2, including the HOMO (bottom) and LUMO (top) energies (in eV) calculated at the ωB97X-D/6-311 + G(d,p) level of theory.

Supporting information and the ORCID identification number(s) for the author(s) of this article can be found under: https://doi.org/10.1002/anie.201806913.
Communications

and co-workers characterized C only spectroscopically (R = Cl, CN, SO\textsubscript{2}NH\textsubscript{2}, C(O)OE\textsubscript{t}; Figure 2). Herein, we report on the facile synthesis of readily tuneable azophosphonium salts simply from phosphines and arylazidiodiazomethane tetrafluoroborates in acetonitrile, and provide detailed mechanistic insight by experimental and computational means. Related reactions of phenylazidiodiazomethane tetrafluoroborates with tertiary amines have also been investigated.

We found that treatment of the phenylazidonium salt [PhN\textsubscript{2}][BF\textsubscript{4}] with triphenylphosphine (1.0 equiv) in acetonitrile at 0°C afforded the red azophosphonium salt [PhN\textsubscript{2}-(PPh\textsubscript{3})][BF\textsubscript{4}] 1 (δ31P[H] = 39.4 ppm; Scheme 1; ΔE = −43.5 kcal mol-1 at the oB97X-D/6–311+G(d,p) level of theory)10 in near-quantitative yield after work-up; only a minor side product could be detected by 31P NMR spectroscopy (ca. 2%; δ31P[H] = 43.9 and 52.5 ppm, J\textsubscript{PP} = 18.8 Hz),10 which we tentatively ascribed to the bis-phenylphosphine adduct [PhN(PPh\textsubscript{3})\textsubscript{2}][BF\textsubscript{4}].10 As Horner and Stöhr had indicated10 that compound 1 is unstable both in solution and in the solid state,10 we resorted to the stronger and sterically more encumbered donor tri-tert-butylphosphine, which, according to DFT calculations at the oB97X/D-6–311+G(d,p) level of theory, should provide a more stable product (ΔE = −53.2 kcal mol-1).10 The reaction of phenylazidiodiazomethane tetrafluoroborates with Bu\textsubscript{3}P (1.1 equiv) in acetonitrile resulted in an immediate colour change from colourless to pink and afforded azophosphonium salt [PhN\textsubscript{2}(PBU\textsubscript{3})][BF\textsubscript{4}] 2a (δ31P[H] = 69.4 ppm; Scheme 1) as the sole product in 95% yield upon isolation. Gratifyingly, this cationic Lewis adduct is stable towards air, moisture, and even an aqueous 2M HCl solution (only the tetrafluoroborate anion hydrolysed over time).21 The molecular structure of 2a (Scheme 1),22,23 determined by X-ray crystal-structure analysis of suitable crystals of its tetraphenylborate analogue (obtained after anion exchange with NaBPh\textsubscript{4} in DCM),24 displays an almost planar (P1-N1-N2-C1 173.4(7)°) trans azophosphonium moiety with a disordered azo group. The C–N and N–N bond lengths (1.437(7) and 1.245(6) Å, respectively) are comparable to those of the related arylazodiazonium borates [ArN\textsubscript{2}(IMes)][BPh\textsubscript{4}] (Ar = Mes, o/p-C\textsubscript{6}H\textsubscript{4}Cl\textsubscript{2} reported by Severin and co-workers (C–N: 1.411(2)/1.395(4)/1.455(13); N–N: 1.265(2)/1.266(9)/1.24(2) Å, respectively),11 illustrating that in these cationic azo dyes, phosphines behave similar to carbenes.

As the colour of the azophosphonium salts can be readily tuned by changing the donor ligand (1 (L = PPh\textsubscript{3}); red; 2a (L = Bu\textsubscript{3}P; pink), we next investigated the influence of the \textit{para} substituent on the aren ring on the photophysical properties of 2. Treatment of the 4-substituted phenylazidium salts [(p-R-C\textsubscript{6}H\textsubscript{4})\textsubscript{2}N][BF\textsubscript{4}] (R = NO\textsubscript{2} (b), Br (e), OMe (d), NMe\textsubscript{2} (e))11 with tri-tert-butylphosphine (1.1 equiv) in acetonitrile afforded the intensely coloured (from purple to red/brown) azophosphonium salts [(p-R-C\textsubscript{6}H\textsubscript{4})\textsubscript{2}N-(PBU\textsubscript{3})][BF\textsubscript{4}] 2b–e in 87–96% yield upon isolation (Scheme 1 and Figure 3).11 Evidently, the \textit{para} substituent has a direct influence on the 31P NMR chemical shift as well as the colour (see Table 1 and Figure 3), which we further substantiated by UV/Vis spectroscopy. Compounds 2a–

\textbf{Scheme 1.} Synthesis of azophosphonium tetrafluoroborates 1 and 2a–e and molecular structure of [(C\textsubscript{6}H\textsubscript{5})\textsubscript{2}N(PBU\textsubscript{3})][BF\textsubscript{4}] (2a–BP\textsubscript{3}). Displacement ellipsoids are set at 30% probability, hydrogen atoms and the noncoordinating BPh\textsubscript{4} anion are omitted for clarity, one disordered component is shown. Selected bond lengths [Å] and torsion angles [°] (values for the second disorder component in square brackets): P1–N1A 1.742(5) [1.766(7)], N1A–N2A 1.245(6) [1.245(8)], N2A–C1A 1.437(7) [1.439(8)], P1-N1A-N2A-C1A 173.4(7) [167.3(11)].

\textbf{Figure 3.} UV/Vis spectra and colours of azophosphonium salts 2a–e in solution (0.006 M in CH\textsubscript{3}CN) and in the solid state (from left to right: 2a, 2b, 2c, 2d, and 2e).
show an intense absorption maximum ranging from $\lambda_{\text{max}} =$ 303 to 464 nm along with a weak absorption in the visible region at $\lambda_{\text{max}} =$ 453–523 nm that displays a gradual bathochromic shift from electron-withdrawing to electron-donating para substituents (Table 1). Changing the solvent from acetonitrile to DCM led to a small bathochromatic shift ($\Delta \lambda_{\text{max}} =$ 4–11 nm), indicating a minor influence of the solvent. \[\text{Time-dependent DFT calculations at the CAM-B3LYP/6-31G level of theory}^{[0,24]} \] reveal two low-lying excitations for 2a–e with $n \rightarrow \pi^*$ (E_{S1}) and $\pi \rightarrow \pi^*$ (E_{S2}) character. The first excitation corresponds to the HOMO–LUMO transition (with 89–95\% weight contribution) from the n orbital, which is an out-of-plane combination of lone pairs on the two azo nitrogen atoms (Figure S10). As the azophosphonium dyes are not perfectly planar, this excitation has non-zero oscillator due to the admixture of π-orbitals from the aromatic ring (TD-DFT: 508 nm, $f = 0.0005$ for 2a). The change in colour is determined by the para substituents, which have a stabilizing effect on HOMO and HOMO-1 and to a lesser extent on the LUMO (Table 1). The second excitation ($\pi \rightarrow \pi^*$ transition) is allowed (295 nm, $f = 0.5749$ for 2a), but outside the visible range (except for 2e, R = NMe$_2$). The π and π^* orbitals involved in these two excitations are bonding/antibonding orbitals centred mostly on the N=N moity (Figure S10).

Intuitively, the phosphine–diaminobenzene Lewis adducts 1 and 2 are the result of classical donor–acceptor reactivity. Yet, aryldiazonium salts are also known to undergo single-electron reduction in the presence of organic electron donors, generating aryldiazao radicals (ArN$_3^\cdot$).\[23\] Subsequent radical coupling with the concomitantly formed phosphine radical cation (R$^\cdot$P$_2^+$) presents an alternative pathway to afford these readily tunable azophosphonium salts. As N-based Lewis bases, such as arylamines, are known to undergo single-electron oxidation by Lewis acids to generate the corresponding radical cations,\[24\] we also included triphenylamine and triisopropylamine ([Bu$_3$N] is still elusive)\[27\] in our mechanistic study.

In contrast to the reaction with triphenylphosphine, treatment of phenyldiazonium tetrafluoroborate with triphenylamine yields azobenzene 3 (Scheme 2)\[26\] by electrophilic aromatic substitution of the arylamine.\[29\] Blocking the para position resulted in a different outcome. We discovered that treatment of [PhN$_3^+$][BF$_4^-$] with tri-p-tolyldiazonium in CH$_2$CN afforded an immediate colour change to deep blue, characteristic of the formation of the radical cation [p-tol,N$^+$], which was confirmed by EPR spectroscopy (Figure S6).\[30\] Compared to the cyclic voltammogram of triphenylamine ($E_{\text{on}} =$ 0.97 V vs. Fe/Fe$^\cdot$), the oxidation potential of the more electron-rich p-tolyldiazonium is shifted to more negative potentials ($E_{\text{on}} =$ 0.78 V vs. Fe/Fe$^\cdot$; Table 2), which supports the notion that tri-p-tolyldiazonium is more prone to one-electron oxidation than triphenylamine ($\Delta G^\circ =$ 20.3 vs. 24.7 kcal mol$^{-1}$, respectively; Table 2).

\begin{table}[h]
\centering
\caption{\cite{Angewandte Chemie} NMR chemical shifts, optical properties, and energies of the frontier orbitals for azophosphonium salts 2a–e\[2\]}
\begin{tabular}{ccccccc}
\hline
 & δ_{H} & λ_{max} & HOMO & HOMO-1 & LUMO & ΔG°
\
 & (ppm) & (log ϵ_{max}) & [eV] & [eV] & [eV] & [eV]
\hline
2a & 69.4 & 316 (4.21) & 515 (2.16) & -12.1 & -12.2 & -4.3
2b & 73.8 & 303 (4.29) & 453 (2.68) & -12.6 & -12.8 & -4.9
2c & 70.3 & 336 (4.33) & 517 (2.18) & -11.6 & -12.2 & -4.4
2d & 65.8 & 373 (4.44) & 500 (2.49) & -11.9 & -11.9 & -4.0
2e & 59.6 & 464 (4.62) & -2° & -10.3 & -11.3 & -3.8
\hline
\end{tabular}
\end{table}

\begin{table}[h]
\centering
\caption{\cite{Angewandte Chemie} Frontier molecular orbitals and oxidation potentials of selected Lewis bases (LB), including the free energy changes for radical cation formation.\[2\]}
\begin{tabular}{cccccc}
\hline
 & HOMO & LUMO & E_{on}(LB/LB$^\cdot$) & ΔG°
\
 & [eV] & [eV] & vs. Fe/Fe$^\cdot$ & [eV]
\hline
Ph$_3$N & -7.10 & 0.95 & 0.97 V & 24.3
(p-tol,N) & -6.80 & 1.04 & 0.78 V & 20.3
[Pr$_3$N] & -7.33 & 1.69 & 1.20 V & 30.0
[Ph$_3$P] & -7.97 & 0.92 & 1.23 V & 30.7
[tBu$_3$P] & -7.69 & 1.53 & 0.90 V & 23.1
\hline
\end{tabular}
\end{table}

Interestingly, the bulky triisopropylphenyl (1P$_2^+$) provided a different reaction course. Treatment of phenyldiazonium tetrafluoroborate with tBu$_3$P$_2$ (2 equiv) in CH$_2$CN resulted in the formation of triazene PhN$_3$NiPr$_3$ (72\%;\[25\]dissipophos- miumborate $[\text{H}_2\text{NiPr}_3][\text{BF}_4]$) (Scheme 2).\[30\] Cyclic voltammetry shows that the reaction of triisopropylamine with [PhN$_3$][BF$_4$] is, for thermodynamic reasons, unlikely to be initiated by single-electron transfer (E_{on}°(tBu$_3$P$_2$/NiPr$_3$)$/N^\cdot$) = 1.20 V vs. Fe/Fe$^\cdot$; $\Delta G^\circ =$ 30.0 kcal mol$^{-1}$; Table 2). Therefore, we postulate the transient azocommonium salt 4 to undergo Hofmann elimination, which is commonly observed for sterically hindered tri-tert-alkylamines.\[27\] Next, we recorded the cyclic voltammograms of triphenylphosphine ($E_{\text{on}}^\circ =$ 1.13 V vs. Fe/Fe$^\cdot$) and tri-tert-butylphosphine ($E_{\text{on}}^\circ =$ 0.80 V vs. Fe/Fe$^\cdot$) in acetonitrile (0.1 M tBu$_3$N$^-$/[BF$_4$]$^-$) and compared them to the reduction potential of the

\begin{scheme}
\caption{\cite{Angewandte Chemie} Reaction of [PhN$_3$][BF$_4$] with tertiary amines.}
\begin{tabular}{c}
\includegraphics[width=\textwidth]{Scheme}
\end{tabular}
\end{scheme}
phenylazidionium cation \((E_{p}^{\text{irr}}(\text{PhN}_{3}^{2-}/\text{PhN}_{2}) = -0.10 \text{ V vs. Fe/Fe}^+))\),[32] Based on the sizable free energy change for radical cation formation by one-electron oxidation of the phosphines \((\Delta G^0 > 23 \text{ kcal mol}^{-1});\) Table 2) and the facile formation of 1 and 2 at low temperatures (even at \(-20^\circ \text{C})\),[30] we conclude that these azophosphonium salts are most likely formed by a two-electron Lewis acid–base coupling rather than single-electron transfer followed by radical coupling.

Oxidation of tri-tert-butylphosphine by single-electron transfer (SET) is feasible when using stronger oxidants. Treatment of \(\text{fBu}_{3}\text{P}\) with the nitrosonium salt [NO][BF\(_4\)] \((E_{p}^{\text{irr}}(\text{NO}^+/\text{NO}) = 0.87 \text{ V vs. Fe/Fe}^+))\)[32] in acetonitrile resulted in the formation of \([\text{fBu}_{3}\text{P}][\text{BF}_4]\) as the major product \((\delta^{13}\text{P} = 56.1 \text{ ppm}, \delta_{\text{J}_{\text{P-H}}} = 445.6 \text{ Hz};\) Scheme 3).[10,33]

\[
\begin{align*}
\text{fBu}_3\text{P} + \text{NO}[\text{BF}_4] & \rightarrow \text{fBu}_3\text{P}^+ + \text{NO}^- + \text{fBu}_3\text{P}[\text{BF}_4] \\
\text{fBu}_3\text{P} + \text{NO}^- & \rightarrow \text{fBu}_3\text{P}-\text{NO}^- + \text{BF}_4^-
\end{align*}
\]

Scheme 3. Reaction of \(\text{fBu}_3\text{P}\) with [NO][BF\(_4\)] together with the experimental (black) and simulated (red) EPR spectra of \(\text{fBu}_3\text{P}-\text{NO}^-\).

Simulated g value and hyperfine coupling constants (A): \(g_{\text{iso}} = 2.0071, A_{\text{iso}} = +29.55 \text{ MHz}, A_{\text{iso}} = -34.10 \text{ MHz.}\)

which could be attributed to H atom abstraction from the solvent by the reactive \([\text{fBu}_3\text{P}^+])\) radical cation intermediate \((\Delta G^0 = 0.7 \text{ kcal mol}^{-1}))\).[34] In addition, we detected small amounts of a radical species by EPR spectroscopy (Scheme 3) that features a six-line pattern at \(g_{\text{iso}} = 2.0071\), which is consistent with an organic doublet with hyperfine coupling interactions (A) with nitrogen \((A_{\text{iso}} = +29.55 \text{ MHz})\) and an \(I = \frac{1}{2}\) nucleus, likely phosphorus \((A_{\text{iso}} = -34.10 \text{ MHz};\) Scheme 3).[10] We postulate this to be the nitrosyl–phosphine adduct \(\text{fBu}_3\text{P}-\text{NO}^-\) \((\Delta \text{E} = -0.5 \text{ kcal mol}^{-1}))\)[30] which can be formed by the capture of the in situ generated NO by residual \(\text{fBu}_3\text{P}\).

In summary, in acetonitrile, aryldiazonium salts react as nitrogen-based Lewis acids with phosphines, enabling the facile synthesis of tuneable azophosphonium salts. The corresponding azosoxonium salts \([\text{RN}((\text{NR})_3)]\) are still elusive, but should be accessible with strongly donating tertiary amines that lack β-hydrogen atoms. We have shown that in addition to the established donor–acceptor reactivity, Lewis acids and bases can undergo one-electron processes, which will have profound impact on (frustrated) Lewis acid/ base chemistry and catalysis.[35] Currently, we are exploring the synthesis of azophosphonium salts by the direct functionalization of dinitrogen with aryl cations[36] and phosphines.

Acknowledgements

This work was supported by the Council for Chemical Sciences of The Netherlands Organization for Scientific Research (NWO/CW) by a VIDI grant (J.C.S.). We gratefully acknowledge Ed Zuidinga for mass spectrometric analyses and Albert M. Brouwer and Joeri Hessels for fruitful discussions.

Conflict of interest

The authors declare no conflict of interest.

Keywords: diazonium salts · donor–acceptor adducts · N-based Lewis acids · phosphines · single-electron transfer

How to cite: Angew. Chem. Int. Ed. 2018, 57, 11929–11933

Angew. Chem. 2018, 130, 12015–12109

Manuscript received: June 14, 2018
Accepted manuscript online: July 26, 2018
Version of record online: August 20, 2018