Software architecture reconstruction
Krikhaar, R.

Citation for published version (APA):
Krikhaar, R. (1999). Software architecture reconstruction

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.

Download date: 27 Dec 2018
Acknowledgements

During my work at the Philips Research Laboratories I had the opportunity to analyse software architectures. This work eventually resulted in this thesis, which could not have been written without the support of my group leader, Jaap van der Heijden, and my cluster leader, Henk Obbink. I also want to thank the director of the Information and Software Technology, Eric van Utteren, who gave me this opportunity.

Loe Feijs encouraged me to write a thesis on my research performed since 1994. Without his work on Relation Partition Algebra my work would never have reached the current level of maturity. He was always willing to discuss subjects and he has always supported my work in many cases.

I would like to thank Jan Bergstra, my promotor at the University of Amsterdam, for his support in discussing many topics and giving advice in writing this thesis. Comments on earlier versions of my thesis were very useful and always utmost to the point. It was a pleasure to work with Jan.

The ready knowledge of Chris Verhoef about reverse engineering research in the world was of great help in relating it to software architecture reconstruction research. Discussions with Chris were fruitful and they improved the quality of this thesis.

Throughout the years, I had the opportunity to analyse many systems at Philips. Many Philips’ sites (in Europe) were willing to discuss the ins and outs of their systems with me. I appreciate their dedication and the time they have invested despite their often very busy daily work. Although many people were involved, I would like to thank especially Lothar Baum-bauer (Germany/Nuremberg), Ad Zephat and Jan Willem Dijkstra (the Netherlands/Best), Paul Schenk (Austria/Vienna), Reinder Bril and Thijs Winter (the Netherlands/Hilversum), and Paul Krabbendam (the Netherlands/Eindhoven). Research of software architectures can indeed only be performed in cooperation with people who actually build large systems.
Therefore, it is of great importance to have access to such systems. Without the support of these people, research into this topic is not practicable.

In various projects in which I participated over the past years I worked together with a number of colleagues for some amount of time. First of all, I would like to thank Jan Gerben Wijnstra with whom I spent about eight months in Nuremberg in Germany. As colleagues we worked together in the Building Block project which aimed to establish an abstraction of the software architecting method used to develop telecommunication systems. During our stay in Nuremberg we were sentenced to spend a lot of spare time together and I still cherish good memories of that time. The initial idea to develop a more structured method for reverse engineering large systems originated in that time.

In 1996 and 1997 Jeroen Medema participated in two reverse architecting projects (Med and Switch). Jeroen carried out a good deal of practical work and was of great help in pushing our research in the right direction. Jeroen is also responsible for the Java implementation of Relation Partition Algebra described in the appendix. This implementation proved most valuable in the introduction of our research results at various development sites at Philips.

I thank Henk Obbink who often participated in our discussions of software architecture. I also want to thank my colleague Jürgen Müller with whom I discussed a variety of related and unrelated topics. Rob van Ommering supported the work by discussing with me his experiences in creating software for televisions. He was also one of the persons behind the mathematical foundation of Relation Partition Algebra, and participated in the AWK implementation of this theory.

Initial versions of (parts of) the thesis have been reviewed by Reinder Bril, Loë Feijs, Robert Jagt, Jeroen Medema, André Postma and Marc Stroucken. I thank them all for their critical and constructive comments. I also want to thank Maarten Pennings, who helped me with the peculiarities of \LaTeX{} [GMS93, Lam85], Noor Krikhaar for correcting the Dutch grammar, Philips Translation Services for correcting the English grammar of an earlier version of this thesis, Frans Willemsen for his text writing advice and Aad Knikman, who helped to create the picture on the cover.

I want to thank the reading committee for reading and for approving my thesis: Peter van Emde Boas (University of Amsterdam), Loë Feijs (Eindhoven University of Technology), Rick Kazman (Carnegie Mellon University and Waterloo University, USA) and Paul Klint (University of Amsterdam).
Finally, I would like to thank all the people I have not mentioned so far, but who have also supported my work and life in a spiritual or technical way.

René L. Krikhaar