Heparins, cancer and thrombosis: clinical and experimental studies
Smorenburg, S.M.

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
THE COMPLEX EFFECTS OF HEPARINS ON CANCER PROGRESSION AND METASTASIS IN EXPERIMENTAL STUDIES

Susanne M. Smorenb urg and Cornelis J.F. van Noorden
ABSTRACT

Patients with cancer are frequently treated with anticoagulants, including heparins, to treat or to prevent thrombosis. Recent randomized trials that compared low molecular weight heparin (LMWH) to unfractionated heparin (UFH) for the treatment of deep vein thrombosis have indicated that heparins affect survival of patients with cancer. Experimental studies support the hypothesis that cancer progression can be influenced by heparins, but results of these studies are not conclusive. Heparins are negatively charged polysaccharides that can bind to a wide range of proteins and molecules and affect their activity. As a consequence, heparins have a wide variety of biological activities other than their anticoagulant effects which may interfere with the malignant process. In the present systematic review, we critically evaluate experimental studies in which heparins have been tested as anti-cancer drugs. All animal studies, published between 1960 and 1999, that report effects of heparins on growth of subcutaneously implanted tumors, spontaneous metastasis or experimentally induced metastasis are reviewed. In addition, we discuss mechanisms by which heparins potentially exert their activity on various steps in cancer progression and malignancy-related processes. It is shown that heparins can affect proliferation, migration and invasion of cancer cells in various ways and that heparins can interfere with adherence of cancer cells to vascular endothelium. Moreover, heparins can affect the immune system and have both inhibitory and stimulatory effects on angiogenesis. Because of the wide variety of activities of heparins, it is concluded that the ultimate effect of heparin treatment on cancer progression is uncertain.

INTRODUCTION

Patients with cancer have an increased risk of venous thromboembolic complications (1). Consequently, numerous cancer patients are treated with anticoagulants, including heparins, to reduce the risk of (recurrent) thrombosis. For many years, unfractionated heparin (UFH) has been the standard initial treatment for venous thromboembolism, but recent randomized trials have shown that low molecular weight heparin (LMWH) is at least as safe and effective as UFH (2). Interestingly, the results of these trials have also indicated that treatment with heparins may affect survival of patients with malignancy. Cancer patients who had been treated with LMWH for their thrombosis had a significantly improved 3 month survival as compared to UFH recipients with cancer, whereas this difference in mortality was not observed in patients without malignant disease (3). The incidence of thrombotic and bleeding complications was similar in both treatment groups, suggesting any direct effect of UFH or LMWH on the malignant process.

The hypothesis that heparins affect cancer progression is supported by numerous experimental studies. These studies have shown that heparins not solely affect cancer by their interaction with the coagulation cascade, but also by various other ways. Heparins are members of a family of polysaccharides, the glycosaminoglycans. In addition to heparins, this family includes heparan
sulfate, chondroitin-4-sulfate, chondroitin-6-sulfate, dermatan sulfate and hyaluronic acid. Glycosaminoglycans are linear carbohydrate polymers, which are composed of alternating uronate and hexosamine saccharides which are linked by glycosidic linkages. Approx. 10-15 glycosaminoglycan chains, each containing 200-300 saccharide units, are attached to a single core protein in UFH. LMWH consists of low molecular weight fragments of UFH produced by controlled enzymatic or chemical depolymerization that yield chains that are less than 18 saccharide units long, with a mean molecular weight of approx. 5000 dalton. UFH and LMWH exert their anticoagulant effects by activating the physiological coagulation inhibitor antithrombin, that neutralizes many of the serine proteases involved in the coagulation system, particularly thrombin.

<table>
<thead>
<tr>
<th>Reference</th>
<th>Tumor type</th>
<th>Metastases in primary affected organ</th>
<th>Metastases in other organs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boeryd (7)</td>
<td>Rhabdomyosarcoma iv</td>
<td>↓ (lung)</td>
<td>↑ (liver)</td>
</tr>
<tr>
<td>Boeryd (8)</td>
<td>Rhabdomyosarcoma ip</td>
<td>= (liver)</td>
<td>↑ (lung)</td>
</tr>
<tr>
<td>Beuth et al. (231)</td>
<td>Sarcoma iv</td>
<td>↓ (lung)</td>
<td></td>
</tr>
<tr>
<td>Clifton and Agostino (6)</td>
<td>Walker sarcoma iv</td>
<td>↓ (lung)</td>
<td></td>
</tr>
<tr>
<td>Coombe et al. (197)</td>
<td>Mammary carcinoma iv</td>
<td>↓ (lung)</td>
<td></td>
</tr>
<tr>
<td>Fisher and Fisher (5)</td>
<td>Walker sarcoma ip</td>
<td>↓ (liver)</td>
<td></td>
</tr>
<tr>
<td>Garelik et al. (66)</td>
<td>Melanoma iv</td>
<td>↓ (lung)</td>
<td>= (liver)</td>
</tr>
<tr>
<td>Hagmar and Boeryd (9)</td>
<td>Melanoma iv</td>
<td>↓ (lung)</td>
<td>↑ (various organs)</td>
</tr>
<tr>
<td>Hagmar and Boeryd (233)</td>
<td>Rhabdomyosarcoma iv</td>
<td>= (lung) (NS↓)</td>
<td>= (liver) (NS↑)</td>
</tr>
<tr>
<td>Hagmar and Norrby (10)</td>
<td>Melanoma iv</td>
<td>= (lung)</td>
<td>↑ (various organs)</td>
</tr>
<tr>
<td>Irinuma et al. (198)</td>
<td>Mammary carcinoma iv</td>
<td>↓ (lung)</td>
<td>= (various organs)</td>
</tr>
<tr>
<td>Kooie (234)</td>
<td>Mammary carcinoma iv</td>
<td>↓ (lung)</td>
<td></td>
</tr>
<tr>
<td>Lee et al. (17)</td>
<td>Mammary carcinoma iv</td>
<td>↓ (lung)</td>
<td></td>
</tr>
<tr>
<td>Lee et al. (18)</td>
<td>Mammary carcinoma iv</td>
<td>↓ (lung)</td>
<td></td>
</tr>
<tr>
<td>Maat (11)</td>
<td>Lewis lung carcinoma iv</td>
<td>↓ (lung)</td>
<td>↑ (various organs)</td>
</tr>
<tr>
<td>Nagawa et al. (235)</td>
<td>Colon carcinoma ip</td>
<td>= (liver)</td>
<td>= (various organs) (NS↑)</td>
</tr>
<tr>
<td>Parish et al. (199)</td>
<td>Mammary carcinoma iv</td>
<td>↓ (lung)</td>
<td>= (various organs) (NS↓)</td>
</tr>
<tr>
<td>Sciubata et al. (40)</td>
<td>Melanoma iv</td>
<td>↓ (lung)</td>
<td></td>
</tr>
<tr>
<td>Suemasu and Ishikawa (236)</td>
<td>Anaplastic lung carcinoma iv</td>
<td>↓ (lung)</td>
<td>= (various organs) (NS↓)</td>
</tr>
<tr>
<td>Vlodavsky et al. (196)</td>
<td>Melanoma iv</td>
<td>↓ (lung)</td>
<td></td>
</tr>
<tr>
<td>Milas et al. (20)</td>
<td>Fibrosarcoma iv</td>
<td>↓ (lung)</td>
<td></td>
</tr>
<tr>
<td>Wood jr et al. (23)</td>
<td>Mammary carcinoma iv</td>
<td>↓ (lung)</td>
<td></td>
</tr>
<tr>
<td>Smorenburg et al. (99)</td>
<td>Colonic carcinoma iv</td>
<td>↓ (lung)</td>
<td></td>
</tr>
</tbody>
</table>

| 'iv, intravenously | 'ip, intraportally | 'NS, not statistically significant |

Table 1. Effects of UFH on experimentally induced metastasis to lung or liver, as well as spread to other organs after intravenous injection of cancer cells; only those studies are included that report effects of UFH alone as compared with placebo or no treatment.
and activated factor X (Xa). Heparins bind to antithrombin via a specific high affinity pentasaccharide sequence that is only present in a minor portion of the heparin chains. Binding of the pentasaccharide to antithrombin causes a conformational change in antithrombin that accelerates approx. 1000-fold its interaction with thrombin and Xa (4). Besides binding to antithrombin, UFH and to a lesser extent LMWH bind to a wide range of other proteins and molecules via electrostatic interactions with the polyanionic groups of the glycosaminoglycan chains. These interactions are mediated by physicochemical properties of heparin polymers such as sequence composition, sulfation pattern, charge distribution, overall charge density and molecular size. As a consequence, UFH and LMWH have a wide variety of biological activities other than their anticoagulant effects. Thus far, numerous mechanisms by which heparins potentially affect tumor development and/or metastasis have been described, but the ultimate effects of either UFH or LMWH on cancer progression are still unknown.

In the present review, we systematically evaluate animal studies in which heparins have been tested as anti-cancer drugs. To our knowledge, all reports, published between 1960 and 1999, on the effects of heparins on either development of experimentally induced metastasis, primary tumors or spontaneous metastasis are included in this review and listed in Table 1 and 2, respectively. In addition, we discuss mechanisms by which heparins potentially exert their activity on various steps in cancer progression and malignancy-related processes.

EFFECTS OF HEPARINS ON EXPERIMENTAL PRIMARY TUMOR GROWTH AND METASTASIS

For about 5 decades, the effects of heparins on experimentally induced metastasis have been investigated in various models. In most animal studies, cancer cells were administered in the tail or portal vein, and the number of metastases in lung or liver were evaluated (Table 1). Several of these experiments showed that heparin treatment inhibits metastasis. Fisher and Fisher (5) found fewer and smaller hepatic metastases of intraportally administered Walker carcinoma cells in heparin-treated rats in comparison with untreated animals, particularly when treatment was started prior to cancer cell injection. Clifton and Agostino (6) reported that heparins reduce the incidence of lung tumors in rats that were injected with Walker sarcoma cells. Similar results were obtained in other studies using various types of cancer cells (Table 1). In contrast, other early studies have reported that heparins induce spread of cancer cells to other organs than they were targeted to (7-11). Hagmar and Norrby (10) suggested that heparins alter distribution patterns of cancer cells in experimental animals by their strong negative charges rather than by their anticoagulant effects. As a result of binding of anionic heparins to cancer cells, adherence to the negatively charged endothelium would be prohibited. This hypothesis was supported by observations that anionic chondroitin sulfate, which is structurally identical to heparin but lacks its anticoagulant properties, had similar effects as heparins, whereas cationic protamine, a heparin-antagonist, had opposite effects (10).
Effects of heparins on primary tumor growth and metastasis from spontaneously metastasizing transplanted tumors have been studied as well, albeit less extensively (Table 2). In most studies, heparin treatment did not affect local growth of subcutaneously or intramuscularly transplanted tumors (12-23). Formation of spontaneous metastases was neither affected in some studies (12;14;19;22). Maat and Hilgard (19) concluded that the effects of heparins and other anticoagulants on metastasis after intravenous administration of cancer cells cannot be extrapolated to spontaneous metastasis. This conclusion was based on observations that fibrin was often present on circulating cancer cells after intravascular injection, whereas fibrin could not be found on cancer cells in the circulation that originated from primary solid tumors (19). In some studies, the incidence of spontaneous metastases was increased in heparin treated animals (15;16;22). On the other hand, heparin treatment significantly reduced metastasis from subcutaneously implanted fibrosarcomas, lung, prostate and mamma carcinomas (13;17;18;20;23).

<table>
<thead>
<tr>
<th>Reference</th>
<th>Tumor type</th>
<th>Primary tumor</th>
<th>Spontaneous metastases</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antachopoulos et al. (12)</td>
<td>(Human) Colon carcinoma (nude mice)</td>
<td>= (NS ↑)</td>
<td>=</td>
</tr>
<tr>
<td>Drago et al. (13)</td>
<td>Prostate carcinoma</td>
<td>=</td>
<td>↓ (various organs)</td>
</tr>
<tr>
<td>Hagmar (14)</td>
<td>Rhabdomyosarcoma</td>
<td>=</td>
<td>↑ (lungs) = (lymphnodes)</td>
</tr>
<tr>
<td>Hagmar (15)</td>
<td>Rhabdomyosarcoma</td>
<td>=</td>
<td>↑ (lungs)</td>
</tr>
<tr>
<td>Hagmar (16)</td>
<td>Rhabdomyosarcoma</td>
<td>=</td>
<td>↓ (lungs)</td>
</tr>
<tr>
<td>Lee et al. (17)</td>
<td>Mammary carcinoma</td>
<td>=</td>
<td>↓ (lungs)</td>
</tr>
<tr>
<td>Lee et al. (18)</td>
<td>Mammary carcinoma</td>
<td>=</td>
<td>↓ (lungs)</td>
</tr>
<tr>
<td>Maat and Hilgard (19)</td>
<td>Lewis lung carcinoma</td>
<td>=</td>
<td>↓ (lungs)</td>
</tr>
<tr>
<td>Milas et al. (20)</td>
<td>Fibrosarcoma</td>
<td>=</td>
<td>↓ (lungs)</td>
</tr>
<tr>
<td>Milas et al. (20)</td>
<td>Mammary carcinoma</td>
<td>=</td>
<td>↓ (lungs)</td>
</tr>
<tr>
<td>Ohkoshi et al. (237)</td>
<td>Squamous cell carcinoma</td>
<td>↓</td>
<td></td>
</tr>
<tr>
<td>Owen jr (21)</td>
<td>Walker sarcoma</td>
<td>=</td>
<td></td>
</tr>
<tr>
<td>Retik et al. (22)</td>
<td>Sarcoma (T-241)</td>
<td>=</td>
<td>↑ (lungs)</td>
</tr>
<tr>
<td>Retik et al. (22)</td>
<td>Sarcoma (DBA-49)</td>
<td>=</td>
<td>= (lungs)</td>
</tr>
<tr>
<td>Wood jr et al. (23)</td>
<td>Lewis lung carcinoma</td>
<td>=</td>
<td>↓ (lungs)</td>
</tr>
</tbody>
</table>

Table 2. Effects of UFH on subcutaneously implanted tumors and their spontaneous metastasis; only those studies are included that report effects of UFH alone as compared with placebo or no treatment.

EFFECTS OF HEPARINS ON THE VARIOUS STEPS IN CANCER PROGRESSION

A series of coordinated steps are essential in cancer development and metastasis. These steps include (1) proliferation of cancer cells, (2) defense against attacks of the immune system, (3) formation of new blood vessels, (4) migration of cancer cells after detachment from their original site, (5) invasion of surrounding tissue requiring adhesion and subsequent degradation of extracellular matrix (ECM) components by controlled proteolysis, (6) access of cancer cells to
blood and lymph vessels, and subsequent adhesion to and invasion of the endothelium, allowing colonization at distant sites in the organism (24;25). Potential effects of heparins on these successive steps are discussed in the following paragraphs.

INTERFERENCE OF HEPARINS WITH PROLIFERATION OF CANCER CELLS

Heparins can inhibit proliferation of various cell types, including vascular smooth muscle cells, mesangial cells, fibroblasts and epithelial cells (26-29). The antiproliferative effects of heparins are related to inhibition of expression of proto-oncogenes, such as c-fos and c-myc, via alterations in the protein kinase C-dependent signal transduction pathway (29-33). Recent studies have shown that heparins selectively inhibit the phosphorylation of mitogen-activated protein kinase, an intermediate kinase in the protein kinase C signaling cascade (34-36). Only few studies have evaluated the effects of heparins on proliferation of cancer cells. Results of these studies are inconclusive (17;37-40).

INTERFERENCE OF HEPARINS WITH THE IMMUNE SYSTEM

Heparins can interfere with immune reactions by affecting adhesion of leukocytes to endothelium at sites of inflammation or tumor invasion. In addition, heparins may inhibit leukocyte activation and affect complement activation. The effects of heparins on the immune system have recently been reviewed by Tyrell et al. (41) and, therefore, will be discussed only briefly.

Leukocyte recruitment from the vasculature to sites of inflammation or tumors is a dynamic multistep process that starts with complex interactions between inflammatory cells and endothelium. First, leukocytes tether and roll on the endothelium due to interactions between selectins and their counter ligands, sialyl-Lewis^a^ and sialyl-Lewis^x^. Selectins are expressed on leukocytes (L-selectin), activated endothelium (E- and P-selectin), and platelets (P-selectin) (42;43) and serve to slow down leukocytes, a critical first step in their recruitment. Heparins and heparin oligosaccharides can interfere with the binding of selectins to their carbohydrate ligands (44-48) and have been found to inhibit adhesion of leukocytes to endothelium during acute inflammation (46).

After initial adhesion of leukocytes to the endothelium, rolling is triggered by direct interaction with surface molecules on the endothelium or chemokines and other chemotactic molecules that are secreted by either leukocytes or cancer cells. These chemoattractants, which include C5a, leukotriene-B4, and various chemokines such as interleukin-8 (IL-8), macrophage inflammatory protein-1β (MIP-1β) and the chemokine that is regulated on activation, normal T cell-expressed and secreted (RANTES), induce a second adhesion event in which leukocyte integrins firmly adhere to their counterligands on the endothelium. Chemokines can bind to heparan sulfate proteoglycans, and this binding is thought to enhance leukocyte responses to chemokines (49;50). Interference with binding of chemokines to heparan sulfates has been found to affect migration of immune cells.
through the endothelium and into the ECM. For instance, pretreatment of RANTES and MIP-1β with heparins or release of ECM-bound chemokines with heparinase have been shown to abrogate induction of T cell adhesion by chemokines (51).

Heparins have also been found to affect the second more tightly integrin-dependent adhesion of leukocytes to endothelium. Mac-1 (CD11/CD1), a β2-integrin expressed on activated leukocytes, bind to several cell surface and soluble ligands, including intercellular adhesion molecule-1 (ICAM-1) that can be expressed by activated endothelium (52). It has been shown that Mac-1, isolated from human granulocytes, also binds to heparins, and that association of Mac-1 with heparins or cell surface heparan sulfate chains on endothelial cells complements other receptors such as ICAM-1 in the Mac-1-mediated neutrophil extravasation process (53). In contrast to the previously mentioned studies of Nelson et al. (46) and Norgard-Sumnicht et al. (47), monoclonal antibodies to L-selectin did not inhibit neutrophil adhesion to heparins or heparan sulfate in the study of Diamond et al. (53), and neutrophils of patients with leukocyte adhesion deficiency, that lack Mac-1 but express L-selectin, did not bind to heparins.

The results of these studies indicate that alterations in the binding of selectins, chemokines or integrins to their respective heparan sulfate-binding sites on endothelium or in the ECM can reduce extravasation of leukocytes, for example by the effects of heparinases or competitive glycosaminoglycans such as heparins. However, since various of these adhesion molecules or chemokines have other functions as well, it is unknown whether and how heparins ultimately affect tumor growth by these mechanisms. For example, IL-8 has not only an important role in leukocyte activation, but also acts as promotor of tumor growth via its angiogenic properties (54), whereas production of RANTES by human melanoma cells have been found to be associated with increased tumor formation, irrespective of its possible role in recruitment of T cells and monocytes into tumors (55).

Heparins can also modulate activation of leukocytes. Dependent on the concentration, heparins may increase or inhibit production of superoxide radicals in neutrophils (56;57). Moreover, heparins have been found to inhibit complement activation or complement-dependent experimental inflammation (58-60). In vitro, heparins can act on multiple steps in the complement cascade of both the classical and alternative pathway, including inhibition of C3b, factor H, and C4b (61-65). Furthermore, heparin and modified heparin with diminished anticoagulant activity have been shown to inhibit complement activation and hemolysis in vivo (58).

In addition to direct effects of heparins on the immune system, Gorelik and colleagues have suggested that heparins inhibit metastasis by rendering cancer cells more vulnerable to cytotoxic effects of natural killer (NK) cells (66;67). Heparins did not inhibit NK cell activity in vitro in these experiments, but enhanced the inhibitory effects of stimulated NK cells on formation of
experimentally induced B16 melanoma or Lewis lung carcinoma metastases in mice. In contrast, the antimetastatic effects of heparins were completely abrogated when NK cell reactivity in mice was suppressed by cyclophosphamide.

In conclusion, heparins can affect the immune system directly by their inhibitory effects on extravasation of leukocytes and the complement system, or by enhancing the susceptibility of cancer cells to immunologic attacks. However, it is yet unknown to which extent the various effects of heparins on the immune system contribute to effects of heparins on cancer progression.

INTERFERENCE OF HEPARINS WITH ANGIOGENESIS

Angiogenesis, the formation of new blood vessels from existing vessels, is required for further development of tumors once they have reached a diameter of approx. 5 mm, and for facilitating the escape of cancer cells from the primary tumor (68). Angiogenesis is a complex multistep process involving endothelial cell activation, controlled proteolytic degradation of ECM, proliferation and migration of endothelial cells, and formation of capillary vessel lumina (69). These processes can be initiated and controlled by a number of compounds that are secreted by cancer cells, including growth factors, inhibiting factors, proteolytic enzymes and ECM-proteins. Both animal and *in vitro* experiments have shown that heparins interfere with the angiogenic process, and that these effects are not exclusively related to the anticoagulant function of heparins.

HEPARINS AND ANGIOGENIC GROWTH FACTORS

Tumors release a number of angiogenic growth factors, including vascular endothelial growth factor (VEGF), basic fibroblast growth factor (bFGF) and scatter factor (70-73). In concert with other cytokines, these growth factors stimulate angiogenesis via interactions with their high affinity receptors on endothelial cells, that possess intracellular intrinsic tyrosine kinase activity (74;75). The angiogenic growth factors can bind to heparan sulfate proteoglycans that are present on the endothelial cell surface and in the ECM (76-79). Binding to heparan sulfates results in stabilization and relative inactivation of the growth factors as well as prevention of their diffusion and proteolytic degradation (80;81). Therefore, it has been proposed that heparan sulfates in the ECM have an important role in storing active growth factors that can be released when needed to exert their effects immediately upon release (82-84). Soluble heparins compete with heparin sulfates for binding of growth factors and other proteins, and may cause release of these proteins from the ECM (82;85). In man, therapeutic dosages of UFH indeed can cause an increase in plasma levels of growth factors, such as scatter factor and bFGF (86-88).

Binding of growth factors to heparins or heparan sulfates is also thought to have a crucial role in the modulation of activity of the high affinity receptors (78;89-91). This phenomenon has been thoroughly studied for bFGF (89). BFGF activates the high affinity receptors by inducing dimerization, i.e. bridging of the specific signaling receptors on endothelial cells (92). Formation of
a multivalent complex of bFGF and heparins or heparan sulfates promotes bFGF receptor dimerization and activation (81;89). Interestingly, it has been shown that LMWH, in contrast to UFH, can hinder binding of growth factors to their affinity receptors as a result of its smaller size. Indeed, in vitro heparin fragments of less than 18 saccharide residues reduce activity of VEGF and fragments of less than 10 saccharide residues inhibit activity of bFGF (93;94). Small molecular heparin fractions have also been shown to inhibit VEGF- and bFGF-mediated angiogenesis in vivo, in contrast to UFH (95-98). Nevertheless, treatment with either UFH or LMWH had no effect on tumor-associated angiogenesis in an experimental model of colon cancer metastasis in rat liver (99). Heparins can also interfere with the activity of growth factors other than VEGF and bFGF which are involved in angiogenesis and tumor development. Transforming growth factor-β (TGFβ) is a potent immunosuppressor (100) and an important regulator of growth, differentiation and adhesion of a wide variety of cells (101). In cooperation with VEGF and bFGF, TGFβ induces tumor-associated angiogenesis (102-104). Cancer cells have been found to produce TGFβ in vivo and in vitro (105;106) and production of TGFβ or levels of TGFβ in plasma often correlate with progression of the disease (107-110).

In vivo, TGFβ is complexed to alpha-2 macroglobulin and inactive (111;112). Alpha-2 macroglobulin, which can be produced and secreted by cancer cells (113), binds both various cytokines and growth factors and proteinases to inhibit them irreversibly. When heparins or heparan sulfates bind to inactive TGFβ/alpha-2 macroglobulin complexes, the binding site of TGFβ is exposed to cell surface receptors (114;115). As a result, biological activity of TGFβ is potentiated by heparins (114).

Heparins and other processes involved in angiogenesis

Effects of heparins on angiogenesis have been explained mainly by their interference with activity of angiogenic growth factors, but heparins may modulate angiogenesis as well by either their anticoagulant function, interference with activity of proteolytic enzymes, binding to ECM components, or by their potential effects on pericytes.

Effects on angiogenesis via the anticoagulant function of heparins are mainly inhibitory. Cancer cells express tissue factor (TF)-like protein, vitamin K-dependent procoagulants or direct activators of factor X (116-119), which contribute to thrombin and fibrin formation (120). TF appears to have an important regulatory role in tumor-associated angiogenesis (121-123). It has been demonstrated that overexpression of TF in sarcoma and melanoma cells can enhance growth of well-vascularized subcutaneous tumors and metastasis, whereas low TF expression can result in reduced vascularization and poor tumor growth (122;124). In the study of Zhang et al., VEGF was upregulated by overexpression of TF, whereas expression of thrombospondin, an angiogenesis suppressor, was downregulated (122). Moreover, TF and VEGF mRNA and protein have been found to co-localize in various cancers of the lung, and there appears to exist a strong relationship
between synthesis of TF and VEGF levels in human breast cancer cell lines (125). Heparins induce elevated levels of TF pathway inhibitor in plasma, and have been shown to inhibit TF production in stimulated human monocytes (126;127).

In addition to TF, other coagulation proteins, including thrombin and fibrin, are necessary for the formation of new capillaries in tumors (128-130). Deposition of fibrin in connective tissue, which occurs when fibrinogen is cleaved at thrombin-specific cleavage sites, provides a temporary scaffolding for activated endothelial cells. Furthermore, structural and mechanical properties of the fibrin matrix have been found to play a regulatory role in angiogenesis in vitro (131;132). Heparins inhibit the function of thrombin by potentiation of antithrombin, resulting in suppression of fibrin formation. Moreover, recent in vitro experiments have indicated that heparins can also affect angiogenesis by altering the structure of fibrin matrices (133). When UFH and LMWH are present during polymerization of fibrin matrices, they enhance or restrict formation of capillary-like structures after activation of microvascular endothelial cells, respectively.

Besides coagulation activation, activation of proteolytic enzymes is necessary for angiogenesis to enable endothelial cells to invade into the ECM. Three classes of proteases have been associated with angiogenesis: serine proteases, especially plasminogen activators (PAs), matrix metalloproteases (MMPs) and cathepsins (134-136). Stimulatory as well as inhibitory effects of heparins on the expression of PAs and MMPs, but not of cathepsins have been reported (137-141). Endothelial cells need binding to adhesive proteins in the ECM for invasion and migration. Heparins can bind to various adhesive proteins such as fibronectin, vitronectin and laminin and thus affect invasion of endothelial cells (142).

In addition, heparins may affect angiogenesis via inhibition of proliferation and migration of pericytes (26;143;144). Pericytes are closely related to smooth muscle cells and a gradual transdifferentiation of smooth muscle cells into pericytes occurs in walls of both terminal arterioles and venules (145). Smooth muscle cells, that are present in the media of arteries and to a lesser extent of veins, give mechanical support and stability to the vessel wall and have a regulatory role in venular and capillary permeability. Pericytes are also thought to have an important regulatory role in the control of angiogenesis, particularly in the maturation of newly formed vessels (145;146).

Finally, various experimental studies have reported that angiogenesis can be inhibited by treatment with combinations of UFH and corticosteroids, whereas treatment with corticosteroids alone has no or little effect (147-154). Although the mechanism by which this combination inhibits angiogenesis is unknown, it has been postulated that heparins concentrate the steroid on the surface of vascular endothelial cells by hydrophilic binding to sulfated polyanions. The steroid then suppresses endothelial cell proliferation (155). The effects of combined application of heparins and corticosteroids have also been studied in mouse models of cancer (147). Folkman et al. (147)
showed that tumor growth was arrested or even regressed by combined administration of heparins and corticosteroids, whereas metastasis to the lungs was prevented. However, studies in other laboratories reported inconclusive results of this combined treatment (20;156-158).

In conclusion, heparins may affect angiogenesis by modulating expression and function of angiogenic growth factors and inhibitors. Whereas UFH and high molecular weight heparins appear to enhance binding of these growth factors to their receptors, LMWH and small heparin fractions inhibit this binding. In addition, heparins can affect other steps in the process of angiogenesis, including fibrin formation, migration of endothelial cells and degradation of the ECM. However, it is still unknown whether and how heparin treatment affects tumor-associated angiogenesis in man because of the complex and often opposite effects of heparins.

INTERFERENCE OF HEPARINS WITH MIGRATION OF CANCER AND ENDOTHELIAL CELLS

Migration of cells is an important process in both metastasis and angiogenesis. After detachment from their original site, cancer cells and vascular endothelial cells migrate into surrounding ECM. Therefore, the structure of the ECM has functional consequences for migration or spread of cells (159;160). Both cancer cells and endothelial cells adhere to and detach from components of surrounding ECM by regulated expression of specific cell surface molecules, including integrins (161-163). Integrins bind to specific components of the ECM, such as collagen, laminin, fibrinogen, fibronectin and vitronectin (164). These components possess specific binding domains that promote cell attachment and spreading. They also possess heparin-binding domains, which have affinities for heparins or heparin-like molecules (142;165;166). Interactions between heparin-like molecules on the cell surface and heparin-binding domains on fibronectin, vitronectin or laminin can enhance cell migration (167-172). It has been postulated that extracellular or soluble heparins act as inhibitors of such auxiliary interactions and may consequently lead to inhibition of cell migration. Indeed, heparins and other glycosaminoglycans such as chondroitin sulfate and dextran sulfate inhibit adhesion and migration of carcinoma cells on fibronectin and laminin substrates (173-175). Besides, heparins and heparin fractions may modulate biosynthesis of ECM proteins. Injections of UFH into the allantoic sac of chick embryo eggs induced overexpression of fibronectin (176). On the other hand, UFH reduced production and release of fibronectin by stimulated mesangial cells in vitro in a concentration-dependent manner, whereas LMWH treatment can decrease levels of laminin mRNA and protein (177;178).

In conclusion, heparins may restrain migration of cells by inhibiting adhesion of cells to ECM proteins. Moreover, heparins can either stimulate or inhibit synthesis of ECM proteins, which may indirectly modulate migration of cells. However, the net effects of heparins on in vivo migration of cells are not yet well established.
INTERFERENCE OF HEPARINS WITH INVASION OF CANCER AND ENDOTHELIAL CELLS

Cancer cells and endothelial cells use specific proteolytic enzymes during invasion of the ECM (25;179;180). Degradation of the matrix takes place in highly localized regions close to the cancer or endothelial cell-surface where active proteolytic enzymes outbalance natural protease inhibitors that are present in the extracellular environment (181). The proteinases are produced either by inflammatory cells, stromal cells or the cancer cells themselves (179;182). An important enzyme in this process is plasmin, a broad serine proteinase, which catalyzes degradation of a variety of proteins present in the ECM, including fibrin, fibronectin and laminin (183). In addition, plasmin amplifies pericellular proteolysis by activating pro-enzymes of the MMP family, such as MMP-2 and MMP-9 or the pro-enzyme of urokinase PA (uPA), thereby catalyzing its own activation (184-186). uPA and tissue-type PA (tPA), a second activator of plasminogen, activate plasminogen to plasmin by proteolytic cleavage. Especially uPA is involved in cancer invasion and metastasis (187). Elevated levels of uPA and its receptor uPA-R are associated with poor prognosis in man (183;188;189).

Recently, it has been reported that sulfated glycosaminoglycans such as heparins and heparan sulfates enhance invasion of human melanoma cells into fibrin by stimulating activation of plasminogen (141). Plasminogen activation was found to be enhanced in several ways. Glycosaminoglycans stimulated both pro-uPA activation by plasmin, and plasminogen activation by uPA. Furthermore, the glycosaminoglycans partially protected plasmin from inactivation by α2-antiplasmin. Stimulation of pro-uPA and plasminogen activation at the cell surface by heparins have been reported by others as well (190;191) and a specific binding site for heparins in the urokinase kringle domain has been described (192). Thus, heparins may stimulate pericellular proteolysis and ECM degradation by activation of uPA and plasminogen.

On the other hand, heparins may reduce invasion of cancer cells by inhibition of heparan sulfates, a family of endoglycosidases. Heparanases hydrolyze internal glycosidic linkages of heparan sulfates in basement membranes and ECM. Cancer cells secrete heparanases, which synergize with proteinases to achieve efficient degradation of host tissue and subsequent invasion (193-195). Heparanase activity has been found to correlate with metastatic potential of various types of cancer cells (195). Although heparins are structurally related to heparan sulfates, heparins are poor substrates for heparanases and they interfere with heparan sulfate degradation (195). In several experimental studies, heparins inhibit heparanase activity of cancer cells in vitro and reduce metastasis to lungs in vivo after intravenous administration of cancer cells (37;196-199). Chemically modified heparins without anticoagulant properties were also found to inhibit metastasis significantly, and a good correlation was found between the anti-heparanase and anti-
metastatic effects of the heparins. It has been suggested that the presence of sulfate groups at N- or O-positions as well as the number of saccharide units are important for the capacity of heparins to inhibit heparanase activity and metastasis (196;200).

In addition to effects on serine proteinases and heparanases, heparins have been found to inhibit various MMPs in vitro in a dose-dependent manner, including MMP1, 2, 3 and 9 (137;139;201). MMPs 2 and 9 are thought to be major MMPs that are involved in metastasis (202;203).

In conclusion, heparins may affect cellular invasion by modifying the activity of various proteolytic enzymes. Heparins potentially stimulate uPA activity and plasminogen activation, but inhibit heparanases and MMPs. Since all these proteinases may be involved in invasion of cancer cells and endothelial cells, it is difficult to predict how heparins ultimately affect invasion in vivo.

INTERFERENCE OF HEPARINS WITH ADHESION OF CANCER CELLS TO VASCULAR ENDOTHELIUM

The arrest of cancer cells in small vessels is an important step in metastasis. At present, it is still controversial whether cancer cells are arrested in small vessels simple by mechanical entrapment, or by specific cancer cell-endothelial cell interactions (204-206). Nevertheless, it is thought that cancer cells can adhere to vascular endothelium in a way that is similar to that in the regulated recruitment of leukocytes to tissue sites of damage and inflammation (207). Cancer cells first attach loosely to the endothelium, using selectins as described above for leukocytes. Selectins bind to carbohydrate-ligands such as sialyl-Lewisx and sialyl-Lewisα. These ligands normally function as leukocyte enrollment receptors, but cancer cells have been found to express sialyl-Lewisx and sialyl-Lewisα as well (208-210). Expression of these ligands correlates with metastatic potential of the cancer cells (211). Moreover, serum levels of sialyl-Lewisx have been found to correspond with survival time and number of metastases in patients with non-small cell lung cancer (212). As discussed earlier, heparins can interfere with the binding of selectins to their carbohydrate ligands (45-47). As a result, heparins not only can restrain enrollment of leukocytes, but also initial adhesion of cancer cells to endothelium.

After initial adhesion, endothelial cells and cancer cells are activated by the release of chemokines by cancer and/or endothelial cells, as is the case for leukocytes (see above) (213). Activation results in enhanced expression of integrins, which leads to a tighter adhesion of cancer cells to endothelium. Of special interest in this process is integrin αIIβ3, also known as glycoprotein IIb/IIIa. Various studies have found that solid cancer cells express αIIβ3, an integrin which was thought to be exclusively expressed by platelets (214-216). The physiological ligand for αIIβ3 is fibrinogen, which normally links the αIIβ3 on one platelet to the integrin receptor on another platelet, thereby mediating platelet aggregation. Interestingly, αIIβ3 also plays a major role in
mediating adhesion of cancer cells to endothelial cells and to platelets (217-219). Pretreatment with antibodies against \(\alpha \text{II}\beta 3 \) inhibits both activated cancer cells to adhere to endothelial cells and fibronectin, and cancer cell-induced platelet aggregation (220-222). Expression of \(\alpha \text{II}\beta 3 \) on cancer cells and platelets is stimulated by thrombin, that is either generated directly by cancer cells or as a result of vascular damage (223-225). Thrombin formation thus promotes adhesion of cancer cells to the endothelium (223-225). In addition, thrombin induces cancer cell-platelets interactions, platelet aggregation and thrombus formation, which enhance survival of the cancer cells that are arrested in the vessel by protection against mechanical stress and the attack by immunocompetent cells. Aggregated platelets also release various mediators, including adhesive glycoproteins, growth factors, cytokines, vasoactive amines and arachidonic acid metabolites, which stimulate cancer cell proliferation, extravasation and interactions between cancer cells and compounds of the ECM (217). Production of thrombin and induction of platelet aggregation by cancer cells is positively correlated with cancer progression and metastatic potential (217;226;227). In addition, pretreatment of cancer cells by thrombin prior to intravenous administration has been shown to enhance metastasis 10 to 160-fold (224). As a consequence, heparins and other anticoagulants may inhibit adhesion of cancer cells to the endothelium by inactivation of thrombin, or inhibition of platelet aggregation and thrombus formation. Indeed, some studies have shown that heparins reduce arrest of cancer cells and subsequent metastases in lungs after intravenous administration, without affecting development of extrapulmonary metastases (17;197). In the study of Lee et al. (17), heparin treatment also reduced spontaneous formation of lung metastases in mice from a subcutaneously implanted mammary carcinoma and improved survival of the animals.

In summary, the importance of platelets, thrombin and clot formation for intravascular arrest and survival of cancer cells has been demonstrated \textit{in vitro} and \textit{in vivo} (217;224;227). Moreover, human cancer cells express procoagulants and patients with cancer often show signs of intravascular activation of coagulation (228;229). Therefore, it is conceivable that platelet aggregation and clot formation are also involved in extravasation and metastasis of cancer cells in men. As a consequence, antithrombotic drugs such as heparins may interfere with intravascular arrest and extravasation of metastasizing cancer cells. However, results of studies focused on the effects of heparins on these processes are still not conclusive.

CONCLUSIONS

Heparins affect progression of cancer in many ways. Due to their anticoagulant function, they can inhibit thrombin and fibrin formation induced by cancer cells. Therefore, heparins may potentially inhibit intravascular arrest of cancer cells and thus metastasis. Besides their anticoagulant function, heparins bind to growth factors and ECM proteins, and consequently can affect proliferation and migration of cancer cells and angiogenesis in tumors. Furthermore, heparins have been found to
inhibit expression of oncogenes and to affect the immune system. They also have both stimulatory and inhibitory effects on proteolytic enzymes, which are essential for invasion of cancer cells through the ECM.

As a result of the wide variety of activities of heparins, the ultimate effect of heparin treatment on cancer progression is unpredictable. This conclusion on the basis of experimental studies of the effects of heparins on cancer progression is in agreement with the outcome of a recent systematic clinical review of the effects of UFH versus placebo or no treatment on survival of patients with malignancy (230). Significant effects of UFH could not be established. Various trials reported improved survival of UFH-treated patients with cancer, whereas others showed no or adverse effects of UFH.

Effects of LMWH on cancer are less thoroughly investigated as is the case for UFH. Some of the effects of LMWH may differ from those of UFH, especially on angiogenesis. Moreover, there is suggestive evidence from clinical trials that LMWH treatment, as compared with UFH, prolongs survival of cancer patients with venous thromboembolic complications. At present, both experimental and clinical studies are being performed to evaluate whether LMWH indeed affects cancer progression, both in patients with and without concurrent venous thromboembolism.

ACKNOWLEDGMENTS
We thank Prof. Dr. H.R. Büller and Dr. M. Levi for their constructive comments, Mr. M. Te Lintelo for his assistance with preparation of the tables, and Mrs. T.M.S. Pierik for preparation of the manuscript.

REFERENCES

45 Handa K, Nudelman ED, Stroud MR, Shiozawa T, Hakomori S. Selectin GMP-140 (CD62; PADGEM) binds to sialosyl-Le(a) and sialosyl-Le(x), and sulfated glycans modulate this binding. Biochem Biophys Res Commun 1991;181:1223-1230.

70 Schmidt NO, Westphal M, Hagel C, Ergun S, Stavrou D, Rosen EM, Lamszus K. Levels of vascular
73 Senger DR, Perruzzi CA, Feder J, Dvorak HF. A highly conserved vascular permeability factor secreted by a variety of human and rodent tumor cell lines. Cancer Res 1986;46:5629-5632.
90 Mason JJ. The ins and outs of fibroblast growth factors. Cell 1994;78:547-552.

CHAPTER 3 HEPARINS AND CANCER; EXPERIMENTAL STUDIES

162 Albelda SM. Role of integrins and other cell adhesion molecules in tumor progression and metastasis. Lab Invest 1993;68:4-17.

164 Horwitz AF. Integrins and health. Sci Am 1997;276:68-75.

179 Liotta LA. Cancer cell invasion and metastasis. Sci Am 1900;266:54-59.

205 Morris VL, Schmidt EE, MacDonald IC, Groom AC, Chambers AF. Sequential steps in hematogenous metastasis of cancer cells studied by in vivo videomicroscopy. Invas Metast 1997;17:281-296.

