Optimising quality of platelet transfusions
Kostelijk, E.H.

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.

UvA-DARE is a service provided by the library of the University of Amsterdam (http://dare.uva.nl)
Chapter 4

Improved platelet compatibility of water vapour glow discharge treated non-woven PET leukocyte reduction filters for different types of platelet concentrates
IMPROVED PLATELET COMPATIBILITY OF WATER VAPOUR GLOW DISCHARGE TREATED NON-WOVEN POLY(ETHYLENE TEREPTHALATE) LEUKOCYTE REDUCTION FILTERS FOR DIFFERENT TYPES OF PLATELET CONCENTRATES

E.H. Kostelijk\(^1\), A.J.A. Klomp\(^2\), G.H.M. Engbers\(^2\), C.W.N. Gouwerok\(^1\), A.J. Verhoeven\(^1\), W.G. van Aken\(^{1,2}\), J. Feijen\(^2\) and D. de Korte\(^1\)

\(^1\)Division CLB of Sanquin Blood Supply Foundation, Amsterdam, The Netherlands.
\(^2\)University of Twente, Department of Chemical Technology, Enschede, The Netherlands.

Abstract

BACKGROUND AND OBJECTIVES: Non-woven poly[ethylene terephthalate] (NW-PET) filter fabric, usually used for leukocyte removal of red cells, was modified by water vapour glow discharge (WVGD) treatment to improve platelet compatibility.

MATERIALS AND METHODS: Modified filter material was evaluated with different kinds of platelet concentrates (PCs). In addition, modified filter materials were \(\gamma\)-sterilised and tested after different time intervals at different storage conditions.

RESULTS: Modification of the filter material resulted in an improved platelet recovery after filtration of PC from 57 to about 80%. No significant difference in platelet recovery was observed when filtering either freshly prepared (79 ± 3.5 %, mean ± SD), overnight-stored single BC-PC (78 ± 3.3 %), overnight-stored single PRP-PC (75 ± 8.8 %) or overnight-stored pooled BC-PC (79 ± 8.9 %). However, freshly prepared pooled BC-PC gave a significantly higher platelet recovery (84 ± 3.5 %). Leukocyte depletion did not differ significantly between the different types of PC. \(\gamma\)-Sterilisation and subsequent storage of the modified filter material for 5, 14 and 26 weeks at 20 °C or 37 °C had no significant influence on the filtration results of overnight-stored pooled BC-PC.

CONCLUSIONS: The results of the present study show that WVGD-treated NW-PET is platelet compatible and can be used for leukocyte removal from preferably BC-PC. It can be \(\gamma\)-sterilised and stored for at least 6 months prior to filtration without affecting the platelet recovery and leukocyte removal.
INTRODUCTION

Transfused platelet concentrates (PCs) containing leukocytes may cause adverse reactions such as HLA allo-immunisation and (non-)febrile transfusion reactions [101]. These reactions can be minimised by removal of leukocytes through filtration of PCs with leukocyte reduction filters [55;59;102;103]. Common whole blood or red cell concentrate filters are not suitable for PC, because platelets become activated, resulting in low platelet recoveries. Water vapour glow discharge (WVGD) treatment of non-woven poly(ethylene terephthalate) (NW-PET) has been shown to render the material more platelet-compatible [70]. During this process, hydrophilic groups are formed at the surface of the NW-PET.

The modified material was tested in a downscaled filtration set-up by measuring flow rate, platelet recovery and leukocyte reduction of small amounts of PC. Because the preparation of PC varies, resulting in different qualities [32], the filtration characteristics may differ. Therefore, the WVGD-treated NW-PET filters were tested with several types of PC prepared via the platelet-rich plasma (PRP) method [104] (after overnight storage of the PC), the single-buffy-coat (BC) method [87] (either freshly prepared or overnight-stored) and the pooled-BC method [105] (either freshly prepared or after overnight storage).

To test the effects of sterilisation on the WVGD treatment, filter material was subjected to sterilisation. Because steam autoclaving places a severe burden on the NW-PET and ethylene oxide is no longer used because of environmental concerns, it was decided to study the effect of 25 kGray gamma radiation treatment on modified NW-PET with respect to filtration characteristics with PC. The stability of the WVGD treatment and the γ-sterilisation on the NW-PET were tested after both treatments and after storage at 20 and 37°C for at the maximum 26 weeks. During storage of the modified NW-PET, the oxidised non-woven surface shows rearrangements resulting into a decrease of the wettability as result of loss of oxygen containing groups into the top layer of the sample. Therefore, rinsing the modified material with HCl and water tested the stability of the hydrophilic groups on the NW-PET formed by the WVGD modification. After rinsing, the filters were stored at 20°C. All stored and treated filters were tested by filtration with overnight-stored pooled BC-PC.

MATERIALS AND METHODS

Blood collection and PC preparation

PCs were prepared from whole blood in three different ways, the PRP method [104], the single BC method [87] and the pooled BC method [105].

500 ± 50 ml of whole blood was collected in 70-ml of citrate-phosphate-dextrose (CPD) in PVC/DEHP quadruple systems (Biopack Composflex, NPBI, Emmer-Compascuüm, The Netherlands). The pooled BC-PC were prepared in
bottom-and-top bags (NPBI). After storage at 20 ± 2°C for 12-16 hours on butane-diol cooling plates [30], whole blood donations were processed into PRP-PC, single BC-PC or pooled BC-PC.

PRP-PC

For PRP-PC, blood was first separated into red cells and PRP by centrifugation for 7 min at 1,000 x g, brake 3, 20°C (Hettich Roto Silenta R/P, Dépex, De Bilt, The Netherlands). PRP was pressed under reduced flow into an empty satellite bag by an automated device for component preparation, *i.e.* Compomat (G4) with Compomaster software [84](NPBI). PRP was subsequently centrifuged for 6 min at 3,000 x g at 20°C. The Compomat was then used to remove plasma until about 70 ml of plasma was left. The platelet pellet with 70 ml of plasma was left undisturbed for 90 min at room temperature before manual resuspension. Before pooling, PRP-PC were stored overnight in 600-ml PVC/DEHP bags in a platelet incubator (22 ± 2°C) on a horizontal flatbed shaker (1 cycle/s) (Helmer labs Inc, Noblesville, IN, USA). Prior to filtration, the platelet concentration in the PRP-PC was measured and pools of 2 PRP-PC were made by means of a sterile connecting device (SCD 312, Haemonetics, Braintree, MA, USA) so that an equal platelet concentration was reached in each pool. This pool was split again, and PCs originating from one pool were used for paired filtrations with WVGD-treated filter material and control material (Sepacell).

Single BC-PC

Blood for single BC-PC was processed to PC from single donations [87] by use of a Compomat according to standard methods as described before [106].

For each paired experiment, 4 single BC-PCs were pooled by means of a sterile connecting device (SCD 312, Haemonetics). This pool was split in four BC-PCs again and two BC-PCs were used directly for filtration, while the other two were stored overnight in a platelet incubator until filtration on the next day. This allowed pairing for different filter types and fresh *versus* overnight PC storage. The whole procedure was repeated 7 times.

Pooled BC-PC

BCs of the same ABO and Rhesus blood group were prepared in bottom-and-top triple bags (NPBI). Blood was separated into plasma and red cells by centrifugation at 3,990 x g for 15 min., brake 5, 18°C. BCs were prepared by means of a Compomat G4 with Compomaster software. After preparation, BCs were left undisturbed for 1 hour at room temperature. For pooling, 4 BCs and a plasma unit were connected via a sterile docking device, and plasma was added until a net weight of about 550 g. After homogenisation, pools were centrifuged at 1,252 x g.
Water vapour glow discharge treated NW-PET, different types of PC

for 4 min., brake 3, whereafter PCs were pressed into Thrombo pool bags, 1000 ml (Compoflex F501, NPBI). These PCs were directly used or stored overnight in a platelet incubator prior to filtration.

Cell counts
Platelet counting was performed on a Cell-Dyn whole blood counter (Sequoia-Turner Co, Mountain View, CA, USA). Prior to filtration, leukocytes were counted electronically with a Coulter Multisizer II (Coulter Electronics, Mijdrecht, the Netherlands). After filtration, leukocytes were counted by fluorescence light microscopy in a Nageotte bright-line counting chamber (Superior, Bad Mergentheim, FRG). For this measurement 100-μl of filtered PC was added to 400 μl of acridine orange solution (0.05 mg/ml in PBS).

Water vapour glow discharge treatment of NW-PET
NW-PET filter material (obtained from NPBI) was treated with WVGD in a radio frequent glow discharge process [94;95] during which water vapour is brought into a reactor in which the NW-PET is placed. A discharge process initiates reactive plasma formation of the water vapour, producing ions and radicals. This reactive plasma initiates formation of hydrophilic groups on the surface of the NW-PET [95].

Preparation, sterilisation, storage and rinsing of the filters
Filter discs were cut with a diameter of 26 mm from untreated and WVGD-treated NW-PET material. To remove water soluble polymer surface groups, part of the gas-plasma-treated NW-PET material was rinsed with 50 ml, 10mM HCl solution on a Vibrax VXR flatbed shaker (1 cycle/s, Labortechnik, Staufen, Germany) for 1 hour at room temperature [95]. Rinsing with water (25 ml for 30s) and drying overnight at room temperature followed this treatment. Subsequently, all glow discharge-treated NW-PETs including the rinsed ones were γ-sterilised (25kGray, Gammaster, Ede, the Netherlands). The gas-plasma-treated NW-PET discs (non-sterilised, γ-sterilised and, rinsed and γ-sterilised material) were stored at room temperature in closed containers. For accelerated ageing, γ-sterilised WVGD-treated NW-PET material was stored at 37°C in closed containers.

Sepacell filter material (PL10(II)A, Asahi, Medical CO., Tokyo, Japan) was used as control. For this purpose, 6 filter discs with a diameter of 26 mm were cut out of the non-coarse section (21 layers most close to the outlet) of the Sepacell filter.
Downscaled filtration

To allow performance of paired experiments with limited volumes of PC a 6:1 downscaled filtration was performed. For each filtration experiment, 6 filter discs of the same type were put in a specially made perspex filter holder (made at the University of Twente or at the CLB). For filtration, 50 g of PC were poured in an 50-ml disposable Combitip (Eppendorf, Hamburg, Germany) which was connected to the filterholder with 15.5-cm tube (3 x 4.55 mm, NPBI). The distance between the upper edge of the Combitip and the filter discs inside the filter holder was 26 cm and 29 cm till the outlet.

The time between entrance of the PC in the filter and the first visible drop in the outlet of the filter was called the wetting time. The filtration time was measured as the time between PC entering the filter holder and the first air entering the filter holder after the PC had flowed through. Weights were converted into volume by applying specific gravity for PC (plasma) of 1.026 g/cm³. When the flow rate became lower than 2 ml/min for more than 60 s or when the total filtration time exceeded 720 s, filtration was stopped. This filter was called blocked. The leukocyte retention and platelet recovery were calculated as follows:

\[
\text{Leukocyte retention (\%)} = \left\{ \frac{L \times V}{L_0 \times V_0} \right\} \times 100 \%
\]

\[
\text{Platelet rec. (\%)} = \left\{ \frac{T \times V}{T_0 \times V_0} \right\} \times 100 \%
\]

$L = \text{leukocyte concentration in total filtered PC (sum of fractions)}$; $L_0 = \text{leukocyte concentration in PC before filtration}$; $T = \text{platelet concentration in total filtered PC}$; $T_0 = \text{platelet concentration in PC before filtration}$; $V = \text{volume of the filtered PC}$; $V_0 = \text{volume of PC used for filtration}$
Platelet morphology

For morphological evaluation of the PC, 50 μl of PC was fixed with 250 μL of 0.5% glutardialdehyde in PBS and stored for future evaluation at 4°C. Morphology was judged by a modification of the Kunicki score [107] evaluated by light microscopy (Leitz, Wetzlar, Germany) with oil immersion (1000x). The number of cellular discs per 100 cells was multiplied by 4, the number of filled dendrites by 2 and the number of spheres by 1. A score higher than 250-300 indicated a good PC quality.

Statistical analysis

Statistical comparisons and correlation coefficient calculations were carried out with the computer programmes Instat 2.03 (GraphPad Software, San Diego, CA, USA) for two-tailed Student t-tests. The statistical programme SPSS (SPSS7.5, SPSS Inc., Chicago, Illinois, USA) was used for multiple comparison analysis in case of the filter storage study. p-values < 0.05 were considered significant.

RESULTS

Preparation of different types of PC

Table 4.1 shows quality characteristics of the different PCs. All PC had comparable platelet concentrations (1 x 10^9/ml). The leukocyte concentration in overnight-stored single PRP-PC was significantly higher than in fresh and overnight-stored single BC-PC. PRP-PC and overnight-stored pooled BC-PC scored lower in morphology (p < 0.01 and p < 0.001) compared to single BC-PC, fresh and stored overnight, and pooled BC-PC, stored overnight.
Table 4.1: Characteristics of differently prepared PC

<table>
<thead>
<tr>
<th>PC type</th>
<th>n</th>
<th>platelet concentration (*10^9/ml)</th>
<th>leukocyte concentration (*10^6/ml)</th>
<th>morphology score</th>
</tr>
</thead>
<tbody>
<tr>
<td>single PRP-PC overnight</td>
<td>8</td>
<td>0.9 ± 0.38</td>
<td>0.24 ± 0.086</td>
<td>263 ± 35</td>
</tr>
<tr>
<td>single BC-PC overnight</td>
<td>6</td>
<td>1.0 ± 0.12</td>
<td>0.06 ± 0.029</td>
<td>335 ± 24</td>
</tr>
<tr>
<td>single BC-PC fresh</td>
<td>6</td>
<td>1.0 ± 0.09</td>
<td>0.07 ± 0.025</td>
<td>346 ± 17</td>
</tr>
<tr>
<td>pooled BC-PC overnight</td>
<td>12</td>
<td>1.0 ± 0.10</td>
<td>0.17 ± 0.127</td>
<td>249 ± 37</td>
</tr>
<tr>
<td>pooled BC-PC fresh</td>
<td>4</td>
<td>1.1 ± 0.33</td>
<td>0.25 ± 0.257</td>
<td>353 ± 35</td>
</tr>
</tbody>
</table>

Testing downscaled set-up with control material

To monitor the downscaled filtration set-up, besides NW-PET, for every PC an aliquot was filtered with control material (6 layers of Sepacell) as well. The Sepacell filter material never blocked and gave platelet recoveries of 88 ± 5.5% (mean ± SD; n = 34; range 70-96%). The average flow rate was 14.8 ± 5.20 ml/min. Leukocyte reduction was 96 ± 2.2% (n = 34).

Untreated NW-PET

Before using NW-PETs modified by WVGD treatment, these filters were tested without this modification [70]. For this purpose, overnight-stored pooled-BC-PC were used. Including 3 out of 12 experiments in which the untreated filter was blocked, we found a platelet recovery of 57 ± 14% (n = 12).

Influence of different types of PC on filtration results tested with PET-H_2O

Platelet recovery did not differ significantly between freshly prepared or overnight-stored single BC-PC or overnight-stored PRP-PC. However, freshly prepared pooled BC-PC showed a significant higher platelet recovery compared to the other types of PC (table 4.2). Flow rates of freshly prepared pooled BC-PC were
Water vapour glow discharge treated NW-PET, different types of PC

significantly higher (p < 0.05) than those of single or pooled overnight-stored pooled BC-PC, flow rates of single freshly prepared BC-PC were higher than those of overnight-stored pooled BC-PC (table 4.2). Leukocyte reduction and flow rate did not differ significantly per type of PC and between control (Sepacell material) and WVGD-treated NW-PET material (table 4.2; Sepacell data not shown). Morphological scores before and after filtration did not differ significantly (scores after filtration not shown).

Table 4.2: Filtration characteristics of differently prepared PC

<table>
<thead>
<tr>
<th>PC type</th>
<th>P rec. (%)</th>
<th>L red. (%)</th>
<th>Flow rate (ml/min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single PRP-PC overnight</td>
<td>75 ± 8.8 (n=8)</td>
<td>94 ± 1.4</td>
<td>10 ± 3.7</td>
</tr>
<tr>
<td>Single BC-PC overnight</td>
<td>78 ± 3.3 (n=6)</td>
<td>95 ± 0.6</td>
<td>10 ± 1.2</td>
</tr>
<tr>
<td>Single BC-PC fresh</td>
<td>79 ± 3.5 (n=6)</td>
<td>93 ± 1.6</td>
<td>15 ± 4.8</td>
</tr>
<tr>
<td>Pooled BC-PC overnight</td>
<td>79 ± 8.9 (n=6)</td>
<td>99 ± 0.3</td>
<td>7 ± 3.0</td>
</tr>
<tr>
<td>Pooled BC-PC fresh</td>
<td>84 ± 3.5 (n=4)</td>
<td>96 ± 2.4</td>
<td>15 ± 2.8</td>
</tr>
</tbody>
</table>

Platelet recovery (P rec.; %) and leukocyte reduction (L red.; %) after filtration and flow rate (ml/min) during filtration measured with different PC types filtered with 6 layers of water vapour gas-plasma-treated NW-PET material.

Influence of storage, γ-sterilisation and rinsing with HCl on WVGD-treated filters

WVGD-treated NW-PET filters were tested after storage of the filters for 5, 14 and 26 weeks with overnight-stored pooled BC-PC. After γ-sterilisation, filters were stored at room temperature or at 37°C. The stability of WVGD treatment was tested after rinsing these filters with HCl before γ-sterilisation and storage. Filter material that had been stored at room temperature and not γ-sterilised was used for control experiments. After 5, 14 and 26 weeks of storage, no difference in overall platelet recovery was measured after filtration. Storage temperature, γ-sterilisation or rinsing with HCl did not influence the results (table 4.3). After 26 weeks, platelet recoveries of filtrations with the non-sterilised material, stored at 20°C, gave a high standard deviation (SD), caused by two out of four filtrations that blocked (total filtration time longer than 720 s). Due to this high SD and the low number of tests, a significant difference with other filter types was not demonstrable.
There was no influence of the treatments and storage conditions on the flow rates of PC through the filters (table 4.3). Moreover, flow rates of PC through filters with Sepacell control material and WVGD-treated NW-PET did not differ (data not shown). However, glow discharge-treated NW-PET material stored at 20°C, without γ-sterilisation, showed variation in flow rate due to blockage of two filters out of 4. The γ-sterilised NW-PET showed a more reproducible flow rate and gave no blockage. Leukocyte reduction did not differ significantly for different treatments of the WVGD-treated filters (99.0-99.9%). Morphological scores before and after each filtration were not significantly different (248 ± 37.5 and 250 ± 37.1 respectively).

Table 4.3: Filtration characteristics after storage of WVGD-treated NW-PET filter material under different circumstances

<table>
<thead>
<tr>
<th>Filter type</th>
<th>Storage time (weeks)</th>
<th>P rec. (%) (n=4)</th>
<th>Flow rate (ml/min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H₂O PET</td>
<td>5</td>
<td>79 ± 8.9</td>
<td>7 ± 3.0</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>85 ± 5.1</td>
<td>6 ± 2.0</td>
</tr>
<tr>
<td></td>
<td>26</td>
<td>54 ± 37.7</td>
<td>5 ± 3.8</td>
</tr>
<tr>
<td>H₂O PET, γ</td>
<td>5</td>
<td>83 ± 5.2</td>
<td>7 ± 1.7</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>87 ± 3.4</td>
<td>7 ± 1.7</td>
</tr>
<tr>
<td></td>
<td>26</td>
<td>83 ± 4.2</td>
<td>6 ± 2.1</td>
</tr>
<tr>
<td>H₂O PET, γ, 37°C</td>
<td>5</td>
<td>82 ± 3.4</td>
<td>6 ± 0.9</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>84 ± 4.5</td>
<td>6 ± 2.2</td>
</tr>
<tr>
<td></td>
<td>26</td>
<td>83 ± 5.8</td>
<td>6 ± 3.2</td>
</tr>
<tr>
<td>H₂O PET, γ, HCl</td>
<td>5</td>
<td>81 ± 6.1</td>
<td>7 ± 0.9</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>83 ± 4.8</td>
<td>6 ± 1.9</td>
</tr>
<tr>
<td></td>
<td>26</td>
<td>82 ± 1.9</td>
<td>6 ± 1.5</td>
</tr>
</tbody>
</table>

Platelet recoveries (P rec.; %) and flow rates (ml/min) of differently treated WVGD NW-PET material at different time points, filtered with overnight-stored pooled BC-PC. Modifications: γ-sterilisation (γ), storage at 37°C (37°C) and rinsing with HCl (HCl).
DISCUSSION

Morphological scores of platelets are used to assess the quality, notably the degree of platelet activation of PC [108]. The unexpected differences in morphological scores between the differently prepared PC could not completely be explained by the preparation method or handling of the PC. In case of PRP-PC, the low morphology score correlates with a higher activation rate of this type of PC [32], due to the preparation method in which platelets are pelleted against the plastic container. In contrast to the PRP-PC, we have no explanation for the unexpectedly low morphology score of the overnight-stored pooled BC-PC. However, we observed this effect in other (unpublished) studies as well, in which the morphology score improved within the first 3 days of storage. According to morphological score, overnight-stored pooled BC-PC and PRP-PC are the most activated PC. However, in comparison with single BC-PC, which were not activated, these ones do not give a lower platelet recovery after filtration. So, the degree of platelet recovery after filtration cannot be explained by the degree of activation of the PC, because in activated and in non-activated PC, platelet recoveries after filtration are similar.

After storage of the treated filters for 26 weeks at room temperature or 37°C, a statistically significant decline in filter performance is not demonstrable. However, the filtration results from non-sterilised filters vary more than the filtration results from γ-sterilised filters, including blockage of some non-sterilised filters. This might be caused by a stabilising effect of γ-sterilisation on the surface characteristics of WVGD-treated NW-PET. An explanation could be a possible cross-linking effect of the WVGD-treated NW-PET by γ-sterilisation. Good filtration results were obtained with WVGD-treated NW-PET stored at 37°C for 26 weeks, indicating that this modification of the material might be stable till almost two years at room temperature (storage at 37°C is used for accelerated ageing; 26 weeks storage at 37°C is approximately similar to 2 years storage at room temperature [109;110]).

In all filtration experiments, the control material (Sepacell) shows a significantly higher platelet recovery than did WVGD-treated NW-PET (differences between 5 and 16%). This can be due to the total filter surface of this material, which is smaller than the NW-PET. Experiments by Klomp et al [70] showed that 1.4 times more platelets adhere to the Sepacell surface compared to the NW-PET (2.4 versus 3.2 x 10^6 platelets/ cm^2). This means that if equal filter surfaces (of NW-PET and Sepacell filter material) are compared with each other instead of equal layers, the difference might be minimal. The leukocyte reduction for WVGD-treated NW-PET filters and the control (Sepacell) material does not differ significantly.

We conclude that WVGD treatment of NW-PET modifies the surface of the NW-PET, which changes the chemical composition of the surface structure of this material, resulting in a material that is more platelet-compatible. If used as a filter
material, this results in significantly improved filtration characteristics, an increased flow rate, increased leukocyte retention and increased platelet recovery [70]. Subsequent γ-sterilisation seems to be essential to stabilise WVGD treatment-induced modifications.