Analysis of portwine stain disfigurement and pulsed dye laser treatment results
Koster, P.H.L.

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
Chapter 1

Effect of the timing of treatment of portwine stains with the flashlamp pumped pulsed dye laser

Chantal MAM van der Horst, MD, Amsterdam
Petra HL Koster, MD, Amsterdam
Corianne AJM de Borgie, MSc, Amsterdam
Patrick MM Bossuyt, Prof PhD, Amsterdam
Martin JC van Gemert, Prof PhD, Amsterdam

1 Department of Plastic, Reconstructive and Hand Surgery, Academic Medical Center, University of Amsterdam, NL.
2 Department of Clinical Epidemiology and Biostatistics, University of Amsterdam, NL.
3 Laser Center, Academic Medical Center, University of Amsterdam, NL.

This study was supported by grant 06.52.2031 from the Dutch Health Insurance Council.
Abstract

Background: Portwine stains can be treated with a flashlamp pumped pulsed dye laser, but it is uncertain whether this treatment is more effective if administered early in life, when the skin is thinner and the lesion is smaller.

Methods: We prospectively studied 101 patients with a previously untreated portwine stain of the head or neck. They were treated with the flashlamp pumped pulsed dye laser and divided into four age groups (0 to 3, 4 to 11, 12 to 17, and 18 to 35 yr). The outcome measure was lightening of the portwine stain evaluation in the difference in color between the skin with the stain and contralateral healthy skin as measured with a colorimeter after an average of five treatments (range, three to seven) of the entire lesion.

Results: Of the 101 patients, 11 could not be included in the analysis because they had received fewer than three or more than seven treatments, had an erroneous baseline color measurement, or were lost to follow-up. The sizes, locations, and colors of the portwine stains were similar among the groups. When all 89 patients were analyzed together, the average reduction in the difference in color between the skin with the portwine stain and contralateral healthy skin was 40 percent. The differences between age groups in the average reduction in color differences were not significant (p = .26). By the end of the study, only 7 of 89 patients had completed laser therapy, and in no case was clearance complete. Treatment was discontinued in all seven because the last three treatments did not lead to further lightening.

Conclusions: We found no evidence that treatment of portwine stains with the flashlamp pumped pulsed dye laser in early childhood is more effective than treatment at a later age.
Introduction

Portwine stains are congenital vascular malformations that occur in an estimated 3 children per 1000 births. The stigma of a disfiguring facial birthmark may have a substantial effect on a child's social and psychosocial adjustment. Many methods have been used to reduce the visibility of portwine stains - ionizing radiation, cryotherapy, tattooing, and surgery - but all with unfavorable results. In the 1980s argon-laser therapy became the treatment of choice for adult patients. In children, however, serious scarring was reported with this technique, making it a less attractive alternative. In 1987 the flashlamp pumped pulsed dye laser was introduced. This laser was especially advocated for the treatment of portwine stains in children because of its high specificity and safety. The wavelength of the laser and the duration of the pulse are chosen to produce thermal injury that remains confined to the targeted portwine stain vasculature (selective photothermolysis). Consequently, the scarring of skin seen with other lasers should not occur. Treatment with a flashlamp pumped pulsed dye laser was hypothesized to be more effective in children than adults because the skin in children is thinner and the size of the portwine stain is smaller; fewer treatments would therefore be necessary to achieve optimal clearance. These are all arguments to initiate treatment at an early age. Better results with early treatment were reported by Tan et al.3 but were not unequivocally confirmed by others. However, these studies were all retrospective, and none used objective measurements to assess the results. In a prospective study we investigated whether treatment of a portwine stain at a young age would yield better results than treatment at an older age. We assessed the degree of lightening of the portwine stain by measuring the reduction in the difference in color between the skin with the portwine stain and the contralateral healthy skin with a colorimeter.
Methods

One hundred patients with a previously untreated portwine stain of the head or neck were treated with the flashlamp pumped pulsed dye laser. The study protocol was reviewed and approved by the local hospital review committee. Patients 11 years of age or younger who had had no prior treatment of their portwine stain, were eligible. Consecutive patients who met the entry criteria were seen at the Academic Medical Center in Amsterdam between December 1994 and March 1996. Oral informed consent was obtained from the patients or their parents or guardians. Almost all patients referred their seeing after learning about the laser treatment through the media.

During the first consultation, the extent and location of the portwine stain were recorded as well as the presence of hypertrophy, and neurologic or ophthalmologic symptoms. Patients were divided into four age groups, consisting of 25 patients each: 0 to 5 yr, 6 to 11 yr, 12 to 17 yr, and 18 to 31 yr. Enrollment in an age group ended as soon as 25 consecutive patients had entered the group. All patients were treated with a Candela flashlamp pumped pulsed dye laser (model SPT-1-4) with a wavelength of 585 nm, a pulse duration of 15 ms, a spot size of 5 mm, and a level of radiant exposure of 0.4 J per square centimeter. The pulses overlapped slightly. Each portwine stain was cooled during treatment with gauze dressings drenched with ice water. After treatment, no antibiotic creams were used. Treatment of the same area was repeated at intervals of at least eight weeks.

Laser therapy was provided in an outpatient setting. Most portwine stains could be treated only partially at one visit, especially in children. Several visits were necessary to treat the entire portwine stain once. A series of treatments of the entire portwine stain was required to achieve optimal clearance. If necessary, pain was reduced with a cutaneous mixture of lidocaine and prilocaine. Lidocaine is a mixture whose melting point is lower than the melting points of either lidocaine or prilocaine, nerve block, or both. The need for repeated visits caused increasing anxiety in the children, which sometimes forced us to add midazolam for sedation. If
this was insufficient, subsequent therapy was performed with the patient under general anaesthesia.

Before the first treatment, slides were taken by a professional photographer in a photo-studio under standardized conditions of illumination and with the same type of camera, diaphragm, enlargement, film, and processing technique for each patient. Color-control patches (Eastman Kodak) were photographed at the end of each series of slides. Photographs were taken in full view, profile, and 3/4 position. Copies of all slides were kept in the photographic department, a procedure that allowed patients to be positioned in the same way during each photographic session.

Color was measured with a Minolta chromameter (model CR-300). This hand-held, microprocessor-controlled, operator-independent reflectance photometer with a digital readout uses a measuring area 8 mm in diameter and diffuse daylight illumination (standard illuminant, D65).

The perceived color of the skin is fully quantified on the basis of the proportions of red, green, and blue present in the spectral skin reflectance.

The approach of this method is equivalent to the way in which the human eye perceives light. The chromameter uses the \(L^*a^*b^* \) system, devised in 1976 by the 'Commission Internationale de l'Éclairage' to ensure that equal distances on a chromaticity diagram correspond to equal perceived differences in color. In this system, \(L^* \) denotes lightness, representing the object's reflectance relative to a 100 percent ideal reflecting diffuser on a scale of 0 to 100, in which 0 represents black and 100 white. \(a^* \) denotes values from green to red; negative values indicate green, and positive values red; and \(b^* \) denotes values from blue to yellow; negative values indicate blue, and positive values yellow. The difference in color between the skin with the portwine stain and contralateral healthy skin was calculated from the standard equation:

\[
L^* + a^* + b^* = 100
\]
where A_{p}, A_{r}, and A_{b} represent the differences in the respective measured L_{p}, a_{r}, and b_{b} values. Color variables (i.e., L_{p}, a_{r}, b_{b}, and their differences) have no physical unit because reflectance coefficients as well as their primary color contents are dimensionless. As an example, the L_{p}, a_{r}, and b_{b} values for the darkened portwine stain shown on the left-hand side of Fig. 1A are 48.4 for L_{p}, 32.8 for a_{r}, and 11.8 for b_{b}. For the contralateral healthy skin, the respective values are 50.4, 18.8, and 13.3. Therefore A_{p} equals 8, indicating that the portwine stain is darker than the healthy skin. A_{r} equals 14.2, indicating that the stain is much redder than the healthy skin, and A_{b} equals 15, indicating that the skin with the lesion is slightly less yellow than the healthy skin. The difference in color is thus L_{p}, which is large relative to just perceptible differences in color, with values of about 0.7 to 1.

We analyzed the reproducibility of the color measurements by measuring the same location twice in a single session in each patient before treatment and calculating the intra-class correlation coefficient (the contribution of the true variance to the total variance of measurements). This coefficient was 0.89 for the total patient population, 0.95 percent confidence interval, 0.88 to 0.90, implying that the reproducibility of results was good. Most of the color measurements were performed by the same treating physician, but some were made by two other therapists. The digital readouts of color measurements were stored in a computer in combination with the locations of the measurements. For each patient, subsequent color measurements were made at the same location.

After an average of five treatments (range three to seven) of the entire portwine stain, color measurements and standardized photography were repeated at least eight weeks after the last visit. Treatment was discontinued if either the portwine stain had disappeared or the three previous consecutive treatments had not resulted in any further lightening.

The outcome measure in each face group was the average reduction in the difference in color between the skin with the portwine stain and the contralateral healthy skin after an average of five treatments of the entire lesion. We used one-way statistical analysis of variance to compare the
distribution of and reduction in color differences between the four age
groups. All calculations of p values were two-tailed.

Table 1: Baseline characteristics of the 89 patients.

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>0 - 3 yr (n = 21)</th>
<th>6 - 11 yr (n = 24)</th>
<th>12 - 17 yr (n = 20)</th>
<th>18 - 31 yr (n = 23)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sex - male:female</td>
<td>7:14</td>
<td>14:14</td>
<td>6:15</td>
<td>8:15</td>
</tr>
<tr>
<td>Age - yr</td>
<td>2.1 ± 1.9</td>
<td>7.9 ± 1.6</td>
<td>14.0 ± 1.7</td>
<td>22.7 ± 3.3</td>
</tr>
<tr>
<td>Portwine stain</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Absolute surface area - cm²</td>
<td>7.4 ± 6.3</td>
<td>12.3 ± 14.7</td>
<td>9.2 ± 7.9</td>
<td>13.9 ± 17.2</td>
</tr>
<tr>
<td>Location - no. of patients</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Left side</td>
<td>4</td>
<td>11</td>
<td>9</td>
<td>15</td>
</tr>
<tr>
<td>Right side</td>
<td>15</td>
<td>9</td>
<td>11</td>
<td>5</td>
</tr>
<tr>
<td>Left and right side</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Hypertrophy</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>no. of patients C+</td>
<td>4 (90)</td>
<td>9 (38)</td>
<td>4 (19)</td>
<td>4 (171)</td>
</tr>
<tr>
<td>Ophthalmologic disorders</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>no. of patients C+</td>
<td>2 (40)</td>
<td>5 (21)</td>
<td>0</td>
<td>3 (13)</td>
</tr>
<tr>
<td>Neurologic disorders</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>no. of patients C+</td>
<td>0</td>
<td>2 (8)</td>
<td>0</td>
<td>2 (9)</td>
</tr>
</tbody>
</table>

1 Plus-minus values are means ± sd.
2 The disorders consisted of elevated eye pressure and glaucoma.
3 The disorders consisted of epilepsy, seizures, and hemiplegia.
Results

Eleven of the 180 patients could not be included in the analysis. Three patients (2 to 17 yr of age) received fewer than three treatments, and none had complete clearance of the portwine stain. One patient in the group of patients who were 2 to 17 yr of age was lost to follow-up after four treatments without complete clearance and without a final color measurement having been obtained. One patient in the oldest age group had her pretreatment color measurement when there was a technical problem with the equipment. The problem was discovered after laser treatment had been started, so the measurement could not be repeated. The other six patients had received more than seven treatments; they had had no color measurement between treatments 5 and 7, but none had complete clearance of the portwine stain. Four of the six were in the group that was 2 to 5 yr of age (8, 8, and 8 treatments; one was in the group that was 6 to 11 yr of age (6 treatments), and one was in the group that was 18 to 31 yr of age (8 treatments). The baseline characteristics of the 89 patients included in the analysis are shown in Table 1. There were more females than males in every age group. The mean size of the lesion was largest in the oldest age group, although there was no significant difference in the size of the lesion between the groups $p = 0.39$ by the Kruskal–Wallis test. The locations of the portwine stains were similar among the four groups. The cheek was the area most often involved. The pretreatment color measurements were similar among groups.

Treatments characteristics, complications, and results are given in Table 2. Examples of the clinical results are shown in Fig. 1. General anaesthesia had to be used in at least the 45 children in the youngest age group. In the absence of general anaesthesia in these two groups, fewer pulses could be given per visit. With the use of anaesthesia, the mean number of pulses per visit was similar in the four groups. There were few local complications. The blue discoloration of the skin that occurred during the first 7 to 10 days after treatment was perceived as annoying. Small blisters or crusting was reported, but in no case resulted in scarring or infection.

Eighteen patients reported headaches after treatment that in some cases
mimicked migraine headaches. No patient required hospitalization because of complications.

At the time of evaluation, only 7 of the 89 patients had completed laser therapy. In no patient did the difference in color between the skin with the lesion and the contralateral healthy skin reach a value of zero. All seven discontinued therapy because no further clearance of the portwine stain had been achieved in the last three treatments. Four of these seven patients perceived the level of clearance as adequate: one (in the group 12 to 17 yr of age) after four treatments, one after three treatments, one after five treatments, and one after seven treatments (all three in the group 18 to 31 yr of age). Three of the seven patients had incomplete clearing of the portwine stain: one (in the group 6 to 11 yr of age) after seven treatments, one (in the group 12 to 17 yr of age) after five treatments, and one (in the group 18 to 31 yr of age) after six treatments. Analysis of variance showed that the differences among age groups in the average reduction in the difference in color between the skin with the portwine stain and the contralateral healthy skin were not significant (p = 0.26). When all patients were analyzed together, the average reduction in the difference in color was 40 percent.
Table 2: Treatment characteristics and the average difference in color before and after an average of five treatments of the entire portwine stain in the four age groups.*

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>0 - 5 yr (n = 26)</th>
<th>6 - 11 yr (n = 42)</th>
<th>12 - 17 yr (n = 21)</th>
<th>18 - 31 yr (n = 23)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average number of portwine spots on patient</td>
<td>2.7 (2.2 - 4.4)</td>
<td>4.4 (3.2 - 5.6)</td>
<td>4.7 (4.3 - 5.8)</td>
<td>6.6 (5.2 - 8.8)</td>
<td>0.001</td>
</tr>
<tr>
<td>Face (times)</td>
<td>1</td>
<td>0.8 (0.7 - 1.0)</td>
<td>1.0 (0.9 - 1.0)</td>
<td>1.1 (1.0 - 1.2)</td>
<td>0.34</td>
</tr>
<tr>
<td>Number of treatments per patient</td>
<td>2.0 (1.8 - 2.6)</td>
<td>2.5 (2.0 - 3.0)</td>
<td>2.2 (1.8 - 2.6)</td>
<td>2.8 (2.4 - 3.2)</td>
<td>0.001</td>
</tr>
<tr>
<td>General characteristics of patient</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Head (times)</td>
<td>1</td>
<td>1</td>
<td>1.5 (1.0 - 2.0)</td>
<td>2.1 (1.5 - 2.6)</td>
<td>0.003</td>
</tr>
<tr>
<td>Upper body (times)</td>
<td>1</td>
<td>1.5 (1.0 - 2.0)</td>
<td>2.1 (1.5 - 2.6)</td>
<td>2.1 (1.5 - 2.6)</td>
<td>0.001</td>
</tr>
<tr>
<td>Complicated treatments</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Face of patient</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>0.01</td>
</tr>
<tr>
<td>With complicated treatments</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0.02</td>
</tr>
<tr>
<td>Difference in color between portwine stain and contralateral healthy skin</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Before treatment</td>
<td>14.5 (13.4 - 15.6)</td>
<td>16.7 (15.2 - 18.2)</td>
<td>16.4 (14.9 - 17.9)</td>
<td>16.6 (15.3 - 18.0)</td>
<td>0.59</td>
</tr>
<tr>
<td>After treatment</td>
<td>14.5 (13.4 - 15.6)</td>
<td>16.7 (15.2 - 18.2)</td>
<td>16.4 (14.9 - 17.9)</td>
<td>16.6 (15.3 - 18.0)</td>
<td>0.59</td>
</tr>
<tr>
<td>Improvement</td>
<td>0.0 (0.0 - 0.0)</td>
<td>0.0 (0.0 - 0.0)</td>
<td>0.0 (0.0 - 0.0)</td>
<td>0.0 (0.0 - 0.0)</td>
<td>0.59</td>
</tr>
<tr>
<td>Relative improvement</td>
<td>0.0 (0.0 - 0.0)</td>
<td>0.0 (0.0 - 0.0)</td>
<td>0.0 (0.0 - 0.0)</td>
<td>0.0 (0.0 - 0.0)</td>
<td>0.59</td>
</tr>
</tbody>
</table>

* This number is rounded.

* During each of the largest appearance of the portwine stain was treated, several
cuts were required to treat the entire portwine stain.

† The values were obtained in 50% of the patients as described in the Methods section.
Discussion

We did not confirm the hypothesis that treatment of portwine stains at an early age is more effective than treatment at a later age. After an average of five treatments (range, three to seven) of the entire portwine stain in 89 patients, the difference in color between the skin with the portwine stain and contralateral healthy skin was reduced by 40 percent on average, regardless of age. Some portwine stains require far more than 7 treatments, in some cases as many as 25, to achieve the best possible clearance.\(^{20}\) It is therefore likely that with further therapy a higher average rate of clearance would have been achieved.

The rates of clearance, which were based on objective measurements, were relatively low as compared with some previously published data. However, the earlier studies were all retrospective and used subjective methods of evaluation.\(^{3,16-19}\) Furthermore, recent data suggest that a small portwine stain or a superficial location of vessels with large diameters correlates with a good response to treatment with the flashlamp pumped pulsed dye laser.\(^{12,20}\) Often, the size of the lesion was either not reported\(^{15,16,19}\) or smaller than in our series,\(^{16,20}\) or more treatments were given at the time of evaluation.\(^{16,20}\)

Tan et al.\(^3\) treated 35 children and reported a fast response and high clearance rates, especially in those under seven years of age. However, they used a wavelength of 577 nm and included only patients with light (pink-red) stains, a combination that is generally found to have the best response to treatment with the flashlamp pumped pulsed dye laser.\(^{21,22}\) Often, the size of the lesion was either not reported\(^{15,16,19}\) or smaller than in our series,\(^{16,20}\) or more treatments were given at the time of evaluation.\(^{16,20}\)

Reves and Geronemus\(^7\) reported fast rates of clearance of portwine stains among children, but their laser values were not specified.\(^{12}\) A wavelength of either 577 or 585 nm and a pulse duration of either 0.36 or 0.45 ms. Alster and Wilson\(^{12}\) without specifying the initial color of the lesion and with lesions of smaller average size than in our study, reported that the number of treatments necessary to clear portwine stains in children \(^9\) to 16 yr of age and patients over 16 yr of age was not greater
than the number required to treat portwine stains in infants (0 to 2 yr of age) and children who were less than 8 yr of age. Ashmott and Geronemus,12 studying a group of only 12 infants under seven months of age who mainly had pale-pink portwine stains, reported that results were optimal when treatment was begun before the age of seven months. We cannot compare our data with theirs, because only five children in our study were younger than seven months at the beginning of treatment. These children did not finish treatment early.

General anaesthesia was necessary in 30 percent of the children who were under 12 years of age. Although some investigators reported they did not use general anaesthesia,6,7 our experience has been confirmed by others.13,14

Only 7 of the 80 patients completed treatment during the study. This confirms14-22 that the number of treatments required for maximal clearance of portwine stains is more than previously reported.5 Our results have implications for the timing of therapy in children. Although facial portwine stains can be treated effectively and safely early in life, treatment at a later age leads to similar results. Therefore, the age at which therapy is initiated should be based on a careful weighing of the anticipated benefit21 and the discomfort of treatment.

Acknowledgment

We are indebted to Jokelies Knoppert, research nurse, for her contributions.
Fig. 1: Examples of clinical results.

The reported degree of lightening is measured with a colorimeter.

Panel A shows a 3 yr old child before treatment (left-hand side) and 2½ years later, after six treatments (right-hand side). The degree of lightening is 48 percent.
Panel B shows a 9 yr old girl before treatment (left-hand side) and 1½ years later, after five treatments (right-hand side). The degree of lightening is 40 percent.
Panel C shows a 17 yr old patient before treatment (left-hand side) and 1½ years later, after six treatments (right-hand side). The degree of lightening is 84 percent.
Panel D shows a 31 yr old woman before treatment (top) and 2 years later, after seven treatments (bottom). The degree of lightening is 55 percent.
References

To the editor,

Van der Horst et al. (April 9 issue)\(^1\) report no additional benefit from early treatment of portwine stains with the pulsed dye laser, which is in contradiction to our experience\(^2\) and that of others. Several issues should be raised about the methods of the study, which may account for the unexpected results.

The authors enrolled consecutive patients in their treatment groups without controlling for the types or locations of the lesions. There were more "hypertrophic" lesions in the younger treatment groups (29 percent) than in the older treatment groups (18 percent). Hypertrophy of portwine stains in childhood has not been reported previously, suggesting that lesions with an arterial or venous component may have been treated. Such lesions are known to be poorly responsive to pulsed dye laser treatment. Van der Horst et al. also failed to control for the location of lesions on the head and neck, which we have reported\(^3\) to affect the response to pulsed dye laser treatment.

The use of ice cubes to cool lesions during treatment may have led to chilling of dermal vessels in younger patients, who have thinner skin, thereby interfering with the efficacy of laser treatment. By treating portwine stains only partially at each visit and by requiring several sessions to treat the entire portwine stain, van der Horst et al. provided few complete treatments early on, potentially missing a therapeutic window of opportunity, when the skin is thinner and the stain smaller.

The treatment technique and technology that were used are outdated. Improved therapeutic outcomes\(^1\) have been demonstrated with the use of larger spot sizes - 7 to 10 mm - rather than the 5 mm spot size used by van der Horst et al. Additional benefit has been derived from the use of

\(^1\) Van der Horst et al. (April 9 issue)

\(^2\) Our experience

\(^3\) We have reported

Chapter 1
longer wavelengths (595 nm) as compared with 585 nm and longer pulse
duration 4.5 ms, as compared with 2.45 ms, in particular for
hypertrophic lesions. Selective epidermal cooling can be achieved with
exygen-spray cooling, which is now being utilized in conjunction with
585 nm and 595 nm pulsed dye laser treatment, decreasing the pain of
treatment and the time needed for recovery.

Archie N B, Kauvar, MD
Ray C. Geononous, MD
11-144th St.
New York NY 10031

1. Aramadi OM, MAM, Katar F, Alikhan C, AL, AL, MAM, Katar F, Alikhan C, AL, MAM, Katar F, Alikhan C, AL, MAM, Katar F, Alikhan C, AL
5. Kauvar ANB, Walker CH, Geononous EM. Effect of 5 mm spot size on pulsed
Authors' reply:

To the editor,

At the start of our study it was clear from other series involving small numbers of patients that portwine stains in children could be treated safely with the flashlamp pumped pulsed dye laser.¹ Our prospective study, using objective color measurements and validated instruments to measure disfigurement, tested the hypothesis that portwine stains in children could be treated more effectively than those in adults.²,³ We included patients with capillary malformations alone. We defined hypertrophic portwine stains in this population as lesions that were abnormally swollen in comparison with the healthy skin on the contralateral side. Patients with combined malformations (venous, arteriovenous, and lymphatic) were excluded. In our opinion, patients with Sturge-Weber syndrome have capillary malformations, and there is no evidence that treatment of portwine stains that are part of such a syndrome is less effective than treatment of portwine stains that are not part of a syndrome.

Before beginning treatment, we recorded the extent and location of the portwine stain in each patient. We made an anatomical diagram of the face and neck in 64 regions and then regrouped these regions into 18 principal regions. We evaluated the response to treatment of the portwine stain in relation to these regions within the age groups. We did not observe differences in responses that were related to the anatomical locations of the portwine stains. In determining the response to treatment, we found that the initial size and depth of the lesion were more important predictive factors than the location of the lesion.

We only used gauze drenched in ice water, not ice cubes, for a short period after the laser pulses. The question is whether the vascular response to this type of pain relief differs from the vasoconstriction induced by a eutectic mixture of lidocaine and prilocaine (EMLA cream), which is not known to interfere with the efficacy of treatment.⁴ Therapy was standardized; therefore, we did not change the laser settings.
during the study period. The use of a faster laser with a larger spot size (7
mm) would not have influenced the use of general anaesthesia in our
youngest age groups. In children with portwine stains that could be
treated partially during one visit, the entire lesion was treated within six
to eight weeks. We included only a few children under the age of one
year; therefore, it is still unclear whether such patients will ultimately
have better treatment results than those treated at an older age. The
additional benefit of the use of longer wavelengths and pulse durations
remains to be established. Nonetheless, our main conclusion—that
treatment of portwine stains in early childhood is effective, but not more
so than treatment at a later age—is unlikely to change.

Chantal M.A.M. van der Horst, MD
Corinne A.J.M. de Borge, MS
Patrick M.M. Bossuyt, PhD
Academic Medical Center, Amsterdam.

1. Aueron R, Germonius K. Er:YAG-pumped pulsed dye laser for portwine stains in
2. Koster P.H.L, Bossuyt P.M., van der Horst M.A.M., Bossuyt P.M., van Gemert M.M.
Assessment of clinical outcome following pulsed dye laser treatment of portwine stains: a