A Density Functional Study of the Primary Photoprocesses of Manganese Pentacarbonyl Chloride (MnCl(CO)5)
Wilms, M.P.; Baerends, E.J.; Rosa, A.; Stufkens, D.J.

Published in:
Inorganic Chemistry

DOI:
10.1021/ic960688+

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
Density Functional Study of the Primary Photoprocesses of Manganese Pentacarbonyl Chloride (MnCl(CO)₅)

Maikel P. Wilms, Evert Jan Baerends, Angela Rosa, and Derk J. Stufkens

Afdeling Theoretische Chemie, Vrije Universiteit, De Boelelaan 1083, 1081 HV, Amsterdam, The Netherlands, Dipartimento di Chimica, Università della Basilicata, Via N. Sauro, 85, 85100 Potenza, Italy, and Anorganisch Chemisch Laboratorium, J. H. van’t Hoff Research Institute, Universiteit van Amsterdam, Nieuwe Achtergracht 166, 1018 WV, Amsterdam, The Netherlands

Received June 10, 1996

Density functional calculations have been performed on the ground and excited states of MnCl(CO)₅ in order to explain the photochemistry of MX(CO)₅ complexes (M = Mn, Re; X = Cl, Br, I). As found earlier for Mn₂(CO)₁₀ (Inorg. Chem. 1996, 35, 2886), the e₂-type unoccupied orbitals in the pseudooctahedral environment are located rather high in the virtual orbital spectrum, and the corresponding ligand-field (LF) excitations are more than 1 eV above the lowest excitations. Potential energy curves (PECs) nevertheless show that the lowest excited states, which involve transitions to the Mn–Cl σ* orbital at equilibrium geometry, are dissociative for axial and equatorial CO loss. The mechanism is again, as in Mn₂(CO)₁₀, a strongly avoided crossing of the lowest excited state (a¹,3E) with the higher dissociative LF states (different ones for COₐx and COₐₐ dissociation) which rapidly descend upon Mn–CO bond lengthening. In spite of the lowest excitation being to the Mn–Cl σ*-orbital, Mn–Cl homolysis cannot occur out of the lowest excited state. The photochemical behavior of Mn₂(CO)₁₀, MnH(CO)₅, and MnCl(CO)₅ is compared. The mechanisms of CO loss are found to be very similar, but there is a large difference with respect to the breaking of the σ bonding.

1. Introduction

Detailed insight into photochemical pathways of organometallic compounds is rapidly accumulating due to the use of sophisticated equipment for the detection of excited states and reactive intermediates. At the same time, the advances in quantum mechanical methods and computer technology have made feasible extensive calculations on both ground and excited states of simple organometallic complexes. Especially the calculation of potential energy curves (PECs) has proven to be very valuable in describing the photochemistry of transition metal complexes (see also refs 3–5).

In this paper we will focus on the photochemistry of MnCl(CO)₅. Many studies on the photochemistry of metal pentacarbonyl halides show that CO loss is the primary photoprocess. From these studies it is known that in MnCl(CO)₅ only the Mn–CO bond is photolytically cleaved and that no Mn–Cl bond homolysis occurs. In the absence of coordinating species, the photochemistry yields the halide-linked dimer Mn₄(CO)₉Cl₂, while in the presence of coordinating species the cis substituted product is formed. It is somewhat surprising that the photosubstitution reaction is highly stereoselective, yielding only the cis isomer. Within the usual ligand-field picture (cf. Wrighton et al.), one would expect the LUMO to be the metal dₓz orbital, which is assumed to have more antibonding interaction with the axial CO than with the chlorine. Irradiation into the lowest ligand-field (LF) band increases the population of this dₓz orbital and would be expected to result in loss of CO trans to chlorine. The LF view thus predicts a different primary photoproduct than experiment suggests. This inconsistency can be resolved if one assumes that indeed an intermediate resulting from axial CO loss occurs (a square pyramid with Cl in the apical position), but that this intermediate is susceptible to an excited state rearrangement to a square pyramid with Cl in basal position. Subsequent addition of a coordinating ligand then results in a cis substituted product. The possible rearrangement pathways of the MnCl(CO)₅ intermediate have received considerable attention recently (cf. Pierloot et al. and Matsubara et al.). One expects in the LF picture to have the other e₂-type orbital (dₓ,y) at higher energy than the dₓz orbital, because Cl is a weaker σ donor than CO. Occupation

1. Vrije Universiteit.
2. Università della Basilicata.
3. Universiteit van Amsterdam.
of this orbital would lead to equatorial CO loss. In view of the dramatic increase of the quantum yield when going to higher excitation energies and the temperature dependence of both the quantum yield and the lifetime, Wrighton et al.\(^7\) concluded indeed such a higher lying photoactive excited state with \(d_{\pi} \rightarrow \sigma^*\) character is present. These results were supported by the calculations by Pierloot et al.\(^4,5\)

This picture of the photochemistry of MnCl(CO)\(_5\) is based on the accepted paradigm of photolabilization of metal–carbonyl bonds by ligand field excitation. We have, however, recently found\(^3b\) in the case of Mn\(_2\)(CO)\(_{10}\) that this picture may require considerable adjustment and refinement. The calculation of PECs for CO dissociation and Mn–Mn bond breaking, and an analysis of the electronic structure of the ground and excited states,\(^28\) revealed that among the lowest excited states the \(1,3\) \(E_1\) \(d_{\pi} \rightarrow \sigma^*\) state is Mn–CO\(_{ax}\) dissociative, although it is not Mn–CO antibonding and cannot unequivocally be assigned as a LF excited state. There are, however, strongly Mn–CO antibonding \(3d–e_g\)-type orbitals located at fairly high energy in the virtual orbital spectrum. Excitations to such orbitals lead to LF excited states with strongly dissociative PECs. These PECs rapidly become lower in energy with increasing Mn–CO distance and cross the low-lying excited \(1,3\) \(E_1\) states. In this way these low-lying excited states become Mn–CO dissociative, although the avoided crossing may lead to a barrier. This picture is at variance with the LF picture indicated above for the photochemistry of MnCl(CO)\(_5\), which assumes a population of dissociative LF states directly upon low-energy irradiation.

The MnCl(CO)\(_5\) system is well-suited for further investigation of this issue, since it offers the additional possibility of photochemical cleavage of a metal–ligand \(\sigma\) bond and may thus be compared to other well-studied Mn(CO)\(_2\)S systems such as MnH(CO)\(_5\) and Mn\(_2\)(CO)\(_{10}\). In Mn\(_2\)(CO)\(_{10}\) the Mn–Mn bond is broken with approximately equal probability as the Mn–CO bond upon irradiation into the lowest absorption band. This may be attributed\(^3b\) to transition to the low-lying \(3\) \(B_2\), of Mn–Mn \(\sigma \rightarrow \sigma^*\) character, which is nearly degenerate with the Mn–CO dissociative \(1,3\) \(E_1\) states. However, the Mn–H bond of MnH(CO)\(_5\) is broken only upon high-energy irradiation, with relatively low quantum yield, although Mn–CO dissociation occurs as in Mn\(_2\)(CO)\(_{10}\) from the low-lying excited states. Veillard et al. explained the wavelength dependent photochemistry of MnH(CO)\(_5\) by calculating CASSCF/CCI correlation diagrams for both axial CO and H loss.\(^8\) It was found that the lowest excited state is dissociative with respect to axial CO, whereas higher excited states are dissociative with respect to both axial CO and hydrogen. This conclusion was confirmed by full calculation of the PECs by Daniel,\(^2\) although these PECs demonstrated that the picture is complicated by several avoided crossings, resulting in small barriers.

In order to elucidate the photochemistry of MnCl(CO)\(_5\) and study the similarities and differences with other Mn(CO)\(_2\)S derivatives, we have calculated PECs for both axial and equatorial CO loss and for Cl homolysis. The results are discussed in section 4 and indicate that both axial and equatorial CO loss can occur, but only due to a (strongly) avoided crossing with the lowest excited state by a dissociative LF excited state, which is high-lying at the equilibrium geometry but descends rapidly upon Mn–CO bond lengthening. Mn–Cl bond breaking does not occur. The CO loss mechanisms of MnH(CO)\(_5\), MnCl–(CO)\(_3\), and Mn\(_2\)(CO)\(_{10}\) are compared as well as the breaking of the \(\sigma\) bond (Mn–Mn, Mn–H, Mn–Cl). The first are very similar, the latter are very different in these compounds.

Before dealing with the photochemistry of the title compound, we first elucidate in section 3 the electronic structure of MnCl–(CO)\(_3\), which is a prerequisite for understanding the photochemistry. The electronic structure of manganese pentacarbonyl halides has been the subject of many theoretical,\(^9,10\) ultraviolet photoelectron spectroscopic (UPS),\(^11–16\) and UV–vis spectroscopic studies.\(^7,17–19\) For the present purpose in particular the molecular orbital structure and the excitation spectrum are relevant and will be discussed in section 3. Section 4 discusses the photochemistry and section 5 contains the Conclusions, in particular with respect to the role of LF excited states in the photodissociation process.

2. Computational Details

All calculations have been performed using the Amsterdam density functional program package ADF.\(^23\) The computational scheme is characterized by the use of a density-fitting procedure to obtain accurate Coulomb and exchange potentials in each self-consistent field (SCF) cycle, by the accurate and efficient numerical integration\(^24\) of the Hamiltonian matrix elements and the possibility to freeze core orbitals. We used an uncontracted double-\(\zeta\) STO basis set with one polarization function for all atoms, except for the manganese orbitals for which a triple-\(\zeta\) 3d,4s basis with one 4p function was used. The 1s oxygen and carbon cores were kept frozen as well as the 1s–2p cores for manganese and chlorine.

The ground and excited state energies included Becke’s\(^25\) nonlocal corrections to the local exchange energy and Perdew’s\(^27\) nonlocal corrections to the local expression (Vosko–Wilk–Nusair\(^28\) parametrization of electron gas data) for the correlation energy.

The original proof of the Hohenberg–Kohn theorem\(^\text{29}\) is only valid for the ground state of a system, and while it has been extended to the lowest state of any given symmetry,\(^\text{30}\) this still does not suffice for a full description of the photochemical properties of molecules. However, the approximate method introduced by Ziegler et al.\(^\text{31}\) for the calculation of excited states has been used with good results for both atomic\(^\text{32}\) and molecular systems.\(^\text{33}\) It has recently been applied successfully for the calculation of a two-dimensional potential energy surface for the photodissociation of H\(_2\)O in its first excited state\(^\text{34}\) and compared to \textit{ab initio} calculations and experiment. The photochemistry of Mn\(_2\)(CO)\(_{10}\) has also been investigated with this method.\(^\text{3b}\) In its simplest form, the method of ref 31 incorporates the relaxation effects in the excited state by an SCF calculation on a single-determinantal state, representing one of the multiplet states. Although this method yields results which are in keeping with experiment, it is only formally justified for the lowest state of each symmetry. Therefore, we will avoid drawing conclusions from the quantitative results of calculations on higher states. We feel, however, justified to use these results qualitatively.

The geometry of MnCl(CO)\(_5\) as specified in Figure 1a was taken from an earlier density functional theory (DFT) study on this molecule.\(^\text{35}\) In order to be able to compare the dissociation with experiment, geometry optimizations have been performed for the Mn(CO)\(_5\) and MnCl(CO)\(_4\) photoproducts using gradient techniques.\(^\text{36}\) The results are shown in Figure 1b–d. The photoproducts resulting from axial CO or Cl loss have geometries which have only relaxed a little. MnCl(CO)\(_4\) with an equatorial vacancy, however, shows considerable relaxation. In order to keep calculations tractable, geometry optimizations were not carried out at all points on the PEC. However, in order to assess at which point during the dissociation relaxation can come into play, we have optimized the geometry of the MnCl(CO)\(_5\) fragment at a fixed distance Mn–CO\(_{eq}\) of 2.3 Å, at which point the PECs approach their asymptotic shape (see below). The optimized geometry at this point differed only slightly from the

\[\text{Figure 1. Geometry of (a) MnCl(CO)\(_5\), (b) apical MnCl(CO)\(_4\), (c) basal MnCl(CO)\(_4\), and (d) Mn(CO)\(_5\) (bond distances in angstroms).}\]

\(^{35}\) van Eis, M. Internal report; Free University: Amsterdam, 1995.

“frozen” geometry. Furthermore femtosecond resolved experiments showed that the Mn—CO dissociation in Mn2(CO)10 occurs at a time scale of 20 fs. Since we find similar dissociative PECs as in Mn2(CO)10, the photodissociation process may be similar and thus much faster than the vibrations, which occur on the picosecond time scale. Therefore, it is not obvious that full geometry optimization along a Mn—CO dissociation coordinate would be justified, and we choose to calculate the PECs using a frozen geometry of the photodissociation fragments.

3. Electronic Structure

Ground State Electronic Structure. In order to better understand the photochemical behavior of MnCl(CO)5, it is first of all necessary to know the characters of the highest occupied and lowest unoccupied molecular orbitals. These characters as well as the orbital energies are presented in Table 1. An orbital interaction diagram for the formation of MnCl(CO)5 out of Mn(CO)5 and Cl is shown in Figure 2.

The relevant occupied orbitals of Mn(CO)5 are the fully occupied dπ and the E pair of dπ⊥ or dσ orbitals, which together correspond to the t2g orbitals in O₃h symmetry, and the singly occupied σxy orbital, which is a 3dₓ² - 4pₓ - 2π⊥ hybrid, with its lobe directed toward the vacancy (the 2π⊥ denotes an a₁ combination of 2π₊ orbitals of the equatorial CO’s that are perpendicular to the equatorial plane). We refer to ref 3a for a detailed explanation of the orbital structure of Mn(CO)5. In particular, it has been stressed that in Mn(CO)5 one does not have a simple e_g-type (mostly 3d₃/₂) LUMO, but due to mixing with the 4p₅ of Mn and the 2π₊ of the equatorial CO’s, there are two a₁ orbitals with considerable d₂ character. The lowest one, the present σhy orbital (10a₁ in ref 3a) has little axial CO

Table 1. Orbital Energies and Percent Composition (Based on Mulliken Population Analysis per MO) of the Lowest Unoccupied and Highest Occupied MnCl(CO)₅ Orbitals in Terms of Mn, Cl, COₐx, and COₐq Fragments

<table>
<thead>
<tr>
<th>orbital</th>
<th>orbital character</th>
<th>ε (eV)</th>
<th>percent composn OP</th>
<th>Chemicals</th>
<th>Ofa</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Mn Cl COₐx COₐq</td>
<td>Mn—Cl Cl—COₐx Mn—COₐq</td>
<td></td>
</tr>
<tr>
<td>16e</td>
<td>CO π⁺</td>
<td>-1.944</td>
<td>2 (d₃z²) 1 (pₓ) 37 (2π⁺) 59 (2π⁺)</td>
<td>0.02</td>
<td>-0.04</td>
</tr>
<tr>
<td>15e</td>
<td>t₂g</td>
<td>-2.785</td>
<td>22 (d₃z²) 42 (2π⁺) 35 (2π⁺)</td>
<td>-0.04</td>
<td>-0.05</td>
</tr>
<tr>
<td>23a₁</td>
<td>e_g : dₓσ⁺</td>
<td>-2.796</td>
<td>39 (dₓ) 2 (pₓ) 16 (5σ) 41 (34 2π⁺, 7 5σ)</td>
<td>-0.01</td>
<td>-0.16</td>
</tr>
<tr>
<td>8b₁</td>
<td>CO π⁺</td>
<td>-2.796</td>
<td>11 (dₓz, dᵧ) 88 (80 2π⁺, 8 2π⁺)</td>
<td>-0.03</td>
<td>-0.39</td>
</tr>
<tr>
<td>3b₂</td>
<td>t₁g</td>
<td>-2.983</td>
<td>31 (dₓ) 69 (2π⁺)</td>
<td>-0.11</td>
<td>-0.11</td>
</tr>
<tr>
<td>7b₁</td>
<td>e_g : dₓ₋₋₋σ</td>
<td>-2.994</td>
<td>49 (dₓ₋₋₋) 50 (31 5σ, 19 2π⁺)</td>
<td>-0.14</td>
<td>-0.14</td>
</tr>
<tr>
<td>14e</td>
<td>CO π⁺</td>
<td>-3.197</td>
<td>5 (d₃z²) 6 (2π⁺) 89 (2π⁺)</td>
<td>0.01</td>
<td>-0.02</td>
</tr>
<tr>
<td>22a₁</td>
<td>(Mn—Cl) σ⁺</td>
<td>-3.786</td>
<td>26 (20 dₓ, 6 pₓ) 20 (pₓ) 55 (2π⁺)</td>
<td>-0.08</td>
<td>-0.02</td>
</tr>
<tr>
<td>13e</td>
<td>Cl pₓ — dₓ</td>
<td>-6.447</td>
<td>18 (d₃z²) 74 (pₓ) 3 (2π⁺) 3 (5σ)</td>
<td>-0.02</td>
<td>-0.01</td>
</tr>
<tr>
<td>2b₂</td>
<td>t₁g</td>
<td>-8.010</td>
<td>68 (dₓ) 32 (2π⁺)</td>
<td>0.05</td>
<td>-0.05</td>
</tr>
<tr>
<td>12e</td>
<td>t₂g : dₓ + Cl pₓ</td>
<td>-8.030</td>
<td>54 (d₃z²) 22 (pₓ) 8 (2π⁺) 15 (2π⁺)</td>
<td>0.03</td>
<td>0.01</td>
</tr>
<tr>
<td>21a₁</td>
<td>Cl pₓ</td>
<td>-8.386</td>
<td>18 (10 dₓ, 8 pₓ) 72 (pₓ) 3 (5σ) 7 (2π⁺)</td>
<td>0.06</td>
<td>-0.01</td>
</tr>
<tr>
<td>11e</td>
<td>CO 5σ</td>
<td>-11.409</td>
<td>6 (pₓ) 1 (pₓ) 13 (2π⁺) 78 (65 5σ, 13 2π⁺)</td>
<td>0.04</td>
<td>-0.01</td>
</tr>
<tr>
<td>20a₁</td>
<td>CO 5σ</td>
<td>-11.982</td>
<td>22 (dₓ) 1 (pₓ) 47 (5σ) 28 (2π⁺)</td>
<td>0.07</td>
<td>-0.01</td>
</tr>
</tbody>
</table>

The major contribution is reported between parentheses; if there are several contributions of more than 5%, these are made explicit. The Mulliken overlap populations are per orbital, based on a norm 1 of the orbital, i.e., an orbital occupation of 1 electron for occupied and virtual orbitals alike.
5σ character, and this orbital completely lacks the expected antibonding with the CO 5σ. On the other hand, the higher one ($11a_1$ in ref 3a), which is at considerably higher energy, lying within the CO π^* manifold, has considerable antibonding with the axial CO (it is denoted $\sigma^*(\text{Mn}^-\text{CO}_ax)$ in Figure 2). Excitation to this latter orbital leads to strongly Mn--CO σ^* dissociative states. Due to the large amplitude of the Mn(CO)$_5$ $\sigma_{\beta\gamma}$ toward the vacant coordination site, interaction with a coordinating ligand is mostly through this orbital. In Mn$_2$(CO)$_{10}$ this leads to symmetrical σ and σ^* orbitals (the Mn--Mn bonding and antibonding combinations of the higher lying σ^* (Mn--CO$_{ax}$) do not split much due to their much lower amplitude at the vacant site). In the case of MnCl(CO)$_5$ a bonding σ orbital is formed with Cl p_β (the 21a$_1$; see Table 1) with predominantly Cl character, and an Mn--Cl σ antibonding orbital with mostly Mn(CO)$_5$ character, the 22a$_1$ LUMO of MnCl(CO)$_5$. We will denote this orbital as $\sigma^*(\text{Mn}^-\text{Cl})$, or just σ^*. The high-lying σ^* (Mn--CO$_{ax}$) of Mn(CO)$_5$ is practically unperturbed by the bonding with Cl, and it is found as the 23a$_1$ orbital of MnCl(CO)$_5$. It is still about 1 eV above the $\sigma^*(\text{Mn}^-\text{Cl})$. Note that we differentiate between σ antibonding between Mn and L, denoted by σ^*, and σ antibonding between Mn and CO$_{ax}$, denoted by an additional prime, σ^*. The situation is somewhat analogous to having two axial hybrids on Mn, one leading to (anti)bonding with axial CO, the other one with the other axial ligand L. The orbital plots in Figure 3 demonstrate the Mn--Cl bonding and antibonding characters of 21a$_1$ and 22a$_1$, respectively, and the Mn--CO bonding and antibonding character of the 20a$_1$ and 23a$_1$ (not 22a$_1$!), respectively.

The description of the remaining occupied and unoccupied orbitals is straightforward. In the unoccupied spectrum we have fairly close to the strongly Mn--CO$_{ax}$ antibonding σ^* orbital (23a$_1$) the strongly Mn--CO$_{eq}$ σ antibonding 7b$_1$ orbital derived from the $d_{x^2-y^2}$ component of the e_2g-orbitals. We will also denote the Mn--CO$_{eq}$ σ antibonding character by σ^*. The 14e, 3b$_2$, 8b$_1$, 15e, and 16e orbitals are mainly composed of CO $2\pi^*$ orbitals. Some have a considerable admixture of metal 3d character, such as the 3b$_2$, and 15e which may be classified as the antibonding counterparts ("t_2g^*") of the occupied bonding t_2g-like orbitals.

In the occupied spectrum we have above the Cl--p$_\beta$ (21a$_1$) the metal--carbonyl π bonding t_2g-like 3d orbitals and the Cl p_γ orbitals. The 12e is the π bonding and the 13e the π antibonding combination of 3d$_x$ and Cl p_γ orbitals (see Figure 4), while the 2b$_2$ (d$_{xy}$) remains a purely 3d$_x$--2π^* bonding orbital. Note that the 2b$_2$ and 12e remain almost degenerate, the loss of one $2\pi^*$ bonding interaction in 12e apparently being compensated by the Cl 3p$_\gamma$ bonding, but the antibonding with Cl 3p$_\gamma$ pushes the 13e up so that it becomes more than 1.5 eV higher than its t_2g partners. This gap between the HOMO and lower orbitals will be important for the excitation spectrum.

The 13e has more Cl character than the 12e orbital (74 and 22%, respectively), although the Cl 3p orbital energy of the atom is lower than the Mn(CO)$_5$ "t_2g"--d_γ orbital energy. This can be explained by taking the charges on the atoms into account. Since the chlorine atom bears a charge of approximately $-0.4e$, its orbital energies are all shifted upward, whereas the Mn(CO)$_5$ orbital energies are shifted downward because of the positive charge on this fragment. This has been taken into account in the qualitative orbital interaction diagram of Figure 2, by positioning the Mn(CO)$_5$ d_γ orbital below the Cl 3p orbital so that the MnCl(CO)$_5$ 12e orbital will have more metal character, whereas the 13e orbital has more chlorine character. We wish to caution, however, that the relative Mn 3d$_x$ and Cl 3p$_\gamma$ character of the 12e and 13e orbitals is susceptible to considerable change upon removing an electron out of these orbitals by ionization or excitation. We find orbital relaxation in such ionized or excited states to strongly increase the metal character of the 13e. These effects are not peculiar to DFT calculations. Recent CASSCF/CASPT2 calculations by Wilms and Daniel show more pronounced Mn 3d character of 13e already in the ground state and predominant 3d character of the 13e in the first excited state.

Excited States. The 13e HOMO lies 1.5 eV above the other occupied orbitals, and excitations from this orbital to the lowest virtual orbitals are, therefore, of particular interest. Also the lowest excitations from the 2b$_2$ and the 12e have been calculated. Higher excitations than the 2b$_2$--23a$_1$ and 12e--23a$_1$ have not been calculated, since those would be too high in energy to play an important role in the photochemistry of MnCl(CO)$_5$.

Transition intensities were estimated with the program Dipole. The total transition dipole moment was approximated by the transition dipole moment between the initial and final MO.

The results are shown in Table 2.

As expected the two lowest excited states are the triplet and singlet states corresponding to the $13e \rightarrow 22a_1$ (Mn–Cl π* → Mn–Cl σ*) transition. These states are calculated at 21 207 and 23 604 cm$^{-1}$, respectively. As mentioned earlier, the character of both the 12e and 13e orbitals changes upon excitation from the 13e orbital. In the excited state, the 12e acquires more Cl 3p character, while the 13e character of the 13e orbital increases. The calculated transition energies are in reasonable agreement with the first broad band in the experimental spectrum. The character of the first transition is beyond doubt, although the different ways it has been denoted may reflect genuine differences of opinion rather than being just a matter of semantics. In the past it has always been designated as a d → d (d$_{xy}$ → d$_{yz}$) or LF transition. This, however, should not carry the implication—as it sometimes did—of antibonding Mn–CO$_{eq}$ character and therefore expected photoactivity with respect to axial CO dissociation. Our present results and the orbital composition of Pierloot et al. indicate that the Mn–Cl π → Mn–Cl σ* transition, or the Mn/C1 LF transition, is a more appropriate description. This has also been suggested by McLean. It is not a Mn/CO LF transition. This difference in character, from what has been generally assumed, sheds some doubt on the assumption of Mn–CO$_{eq}$ dissociative character. This point will be addressed in the next section.

The 22a$_1$ lies about 1 eV below the other virtual orbitals, and excitations to those higher virtuals come at energies that are some 8000 cm$^{-1}$ higher than the 13e → 22a$_1$ transition. Because of the near degeneracy of the 14e, 7b$_1$, 3b$_2$, 8b$_1$, 23a$_1$, and 15e orbitals, many excitations out of the 13e to this set of virtuals are present between 29 000 and 35 000 cm$^{-1}$, of which all transitions to singlet states are allowed. The first transition with Mn/CO LF character, the 13e to 7b$_1$ (d$_{xy}$ → d$_{yz}$), occurs at 29 118 cm$^{-1}$ and 32 138 cm$^{-1}$ for triplet and singlet, respectively. This LF transition has the expected low intensity, but this excited state is interesting in view of its probably strongly Mn–CO$_{eq}$ dissociative character. At similar energy, at 30 020 and 30 539 cm$^{-1}$, the first charge transfer (CT) excitations occur, corresponding to the singlet and triplet 13e → 14e transitions. They have Mn/CO → CO 2σ* CT character and much higher intensity. Although an e → e transition gives rise to A$_1$, A$_2$, B$_1$, and B$_2$ states, only the mean energy of these states has been calculated, since no major differences between these four states are expected. As seen from the intensities in Table 2, the 13e → 14e transition may contribute to the high-energy side of the first band, which may partly account for its broadness. The lowest Mn/CO$_{ax}$ LF transitions, the 13e → 23a$_1$, Mn–Cl π → Mn–CO$_{ax}$ σ* triplet and singlet states, have been calculated at 35 034 and 35 011 cm$^{-1}$, respectively. They have low intensity, as was the case for the Mn/CO$_{eq}$ LF transitions, but are photochemically very interesting since, according to the results for Mn$_2$(CO)$_{10}$, these states are expected to be strongly Mn–CO$_{ax}$ dissociative.

Until ca. 35 000 cm$^{-1}$ we encounter most of the excitations out of 13e into the 22a$_1$–15e set of virtuals (which have all been calculated except the ones into 15e), but above this energy transitions out of the 2b$_2$, 12e, and 21a$_1$ start to play a role. At 33 077 cm$^{-1}$ the first transition arising out of the HOMO-1 orbital, to the $2b_2$($2b_2$(d_{xy} → 22a$_1$(σ*)) triplet excited state, is found, its singlet component being located at 34 834 cm$^{-1}$ (the A$_1$ → B$_2$ transition is forbidden). The 12e → 22a$_1$ (σ*) excitations are very close. The intensity is surprisingly large, and these transitions will contribute to the band around 37 000 cm$^{-1}$, although the 2b$_2$ → 14e transition at 39 148 cm$^{-1}$ has high intensity and will contribute most. This is a genuine CT transition, which can account for the strong solvatochromic behavior of the corresponding band.

The 2b$_2$ (d_{xy} → 7b$_1$ (d_{xy} → d$_{yz}$) Mn/CO LF transition, which may be expected to be Mn–CO$_{eq}$ dissociative, is calculated in this region, at 38 376 cm$^{-1}$ (singlet; the triplet is at 34 749 cm$^{-1}$). This transition is forbidden.

The only interesting transition from the point of view of Mn–Cl bond breaking is the Mn–Cl σ → σ*, 21a$_1$ → 22a$_1$ excitation. The triplet and singlet states corresponding to this transition are located at 39 549 and 43 745 cm$^{-1}$, respectively. They will contribute to the high-energy band at 43 000 cm$^{-1}$, but other transitions which were not calculated here, will also contribute to this band.

Table 2. Energies (cm$^{-1}$) and Intensities for Electronic Transitions in MnCl(CO)$_3$

<table>
<thead>
<tr>
<th>state</th>
<th>transition</th>
<th>character</th>
<th>type</th>
<th>energy (cm$^{-1}$)</th>
<th>intensity</th>
<th>exptl bands</th>
</tr>
</thead>
<tbody>
<tr>
<td>aE</td>
<td>13e → 22a$_1$</td>
<td>MnCl π* → MnCl σ*</td>
<td>Mn/Cl LF</td>
<td>21 207</td>
<td></td>
<td></td>
</tr>
<tr>
<td>aE</td>
<td>13e → 22a$_1$</td>
<td>MnCl π* → MnCl σ*</td>
<td>Mn/Cl LF</td>
<td>23 604</td>
<td>0.083 1</td>
<td>26 520</td>
</tr>
<tr>
<td>bE</td>
<td>13e → 7b$_1$</td>
<td>MnCl π* → d$_{xy}$</td>
<td>Mn/CO LF</td>
<td>29 118</td>
<td></td>
<td></td>
</tr>
<tr>
<td>aA_1</td>
<td>13e → 14e</td>
<td>MnCl σ* → 2σ*</td>
<td>Mn,Cl → CO CT</td>
<td>30 020</td>
<td></td>
<td></td>
</tr>
<tr>
<td>aA_1</td>
<td>13e → 14e</td>
<td>MnCl π → 2σ*</td>
<td>Mn,Cl → CO CT</td>
<td>30 539</td>
<td>0.139</td>
<td></td>
</tr>
<tr>
<td>cE</td>
<td>13e → 3b$_2$</td>
<td>MnCl π* → 2σ*</td>
<td>Mn,Cl → CO CT</td>
<td>30 861</td>
<td></td>
<td></td>
</tr>
<tr>
<td>dE</td>
<td>13e → 8b$_1$</td>
<td>MnCl π → 2σ*</td>
<td>Mn,Cl → CO CT</td>
<td>30 936</td>
<td></td>
<td></td>
</tr>
<tr>
<td>bE</td>
<td>13e → 7b$_1$</td>
<td>MnCl π* → d$_{xy}$</td>
<td>Mn/CO LF</td>
<td>32 138</td>
<td>0.000 201</td>
<td></td>
</tr>
<tr>
<td>cE</td>
<td>13e → 3b$_2$</td>
<td>MnCl π* → 2σ*</td>
<td>Mn,Cl → CO CT</td>
<td>33 022</td>
<td>0.000 371</td>
<td></td>
</tr>
<tr>
<td>aB_2</td>
<td>2b$_2$ → 22a$_1$</td>
<td>d$_{xy}$ → MnCl σ*</td>
<td>Mn/Cl LF</td>
<td>33 077</td>
<td></td>
<td></td>
</tr>
<tr>
<td>dE</td>
<td>13e → 8b$_1$</td>
<td>MnCl π* → 2σ*</td>
<td>Mn,Cl → CO CT</td>
<td>34 226</td>
<td>0.107</td>
<td></td>
</tr>
<tr>
<td>cE</td>
<td>12e → 22a$_1$</td>
<td>MnCl π → MnCl σ*</td>
<td>Mn/CO LF</td>
<td>34 584</td>
<td></td>
<td></td>
</tr>
<tr>
<td>aA_2</td>
<td>2b$_2$ → 7b$_1$</td>
<td>d${xy}$ → d${yz}$</td>
<td>Mn/CO LF</td>
<td>34 749</td>
<td></td>
<td></td>
</tr>
<tr>
<td>aB_2</td>
<td>2b$_2$ → 22a$_1$</td>
<td>d$_{xy}$ → MnCl σ*</td>
<td>Mn/CO LF</td>
<td>34 834</td>
<td></td>
<td></td>
</tr>
<tr>
<td>cE</td>
<td>13e → 23a$_1$</td>
<td>MnCl π* → MnCO$_{ax}$ σ*</td>
<td>Mn/CO LF</td>
<td>35 011</td>
<td>0.005 25</td>
<td></td>
</tr>
<tr>
<td>fE</td>
<td>13e → 23a$_1$</td>
<td>MnCl π* → MnCO$_{ax}$ σ*</td>
<td>Mn/CO LF</td>
<td>35 034</td>
<td></td>
<td></td>
</tr>
<tr>
<td>fE</td>
<td>12e → 22a$_1$</td>
<td>MnCl π* → MnCl σ*</td>
<td>Mn/Cl LF</td>
<td>35 995</td>
<td>0.892</td>
<td>37 000</td>
</tr>
<tr>
<td>gE</td>
<td>2b$_2$ → 14e</td>
<td>d$_{xy}$ → 2σ*</td>
<td>Mn → CO CT</td>
<td>37 820</td>
<td></td>
<td></td>
</tr>
<tr>
<td>aA_2</td>
<td>2b$_2$ → 7b$_1$</td>
<td>d${xy}$ → d${yz}$</td>
<td>Mn/CO LF</td>
<td>38 376</td>
<td></td>
<td></td>
</tr>
<tr>
<td>gE</td>
<td>2b$_2$ → 14e</td>
<td>d$_{xy}$ → 2σ*</td>
<td>Mn → CO CT</td>
<td>39 148</td>
<td>2.49</td>
<td></td>
</tr>
<tr>
<td>bA_1</td>
<td>21a$_1$ → 22a$_1$</td>
<td>MnCl σ → MnCl σ*</td>
<td>Mn/Cl LF</td>
<td>39 549</td>
<td></td>
<td></td>
</tr>
<tr>
<td>bA_1</td>
<td>21a$_1$ → 22a$_1$</td>
<td>MnCl σ → MnCl σ*</td>
<td>Mn/Cl LF</td>
<td>43 745</td>
<td>2.74</td>
<td>43 000</td>
</tr>
</tbody>
</table>

* Reference 18. ^a Symmetry allowed.
Figure 5. Potential Energy Curves for the dissociation of axial CO in MnCl(CO)₅.

4. Photochemistry

Potential Energy Curves for Axial CO Loss. For the ground and lowest excited states we have calculated PECs for loss of the axial CO ligand. The a−c¹3E curves are shown in Figure 5. Of all the curves above the c¹3E we have, apart from the “companion” c¹E, only drawn a¹3B₂, since these are the only dissociative ones. The a¹3B₂ curves around Rₑ in fact cross many PECs of other symmetries (not shown in the figure, but see the excitation energies at Rₑ in Table 2), which, however, all have bonding shapes similar to c¹3E. That these higher excited states (except for the a¹3B₂) do not readily lead to CO dissociation may be judged already from the behavior of the relevant orbital energies as a function of Mn−CO distance (see discussion below). Their energies are too high anyway to be populated by the UV−vis excitation used in the photochemical experiments.

The calculated PEC for the ground state has a shallow minimum, which agrees well with the rather low IR frequency for Mn−C vibrations. The asymptotic dissociation limit lies at 2.31 eV above the equilibrium energy, corresponding to a dissociation energy of 222 kJ/mol. This is near the DFT value of 200 kJ/mol for Mn₂(CO)₁₀. Restricted Hartree−Fock calculations by Davy and Hall lead, as usual in the case of a metal−carbonyl bond, to a much lower dissociation energy of 86.9 kJ/mol. When relaxation effects are included, our calculated dissociation energy drops to 176 kJ/mol and the CO’s bend toward the CI, because of the bonding overlap between these fragments. Any experimental dissociation energies are known since thermal loss of an equatorial CO is more favorable (vide infra).

Before discussing the excited state PECs, it is instructive to consider the orbital characters and energies in the ground state at various Mn−COₐₓ distances (Figure 6). The most remarkable feature in Figure 6 is the steep descent of the Mn−COₐₓ σ antibonding 23a¹ orbital (it is accompanied by a rise of the σ bonding 20a₁ orbital, not shown in the figure), whereas the other orbitals are relatively little affected. As a result the 23a¹ (σ*) orbital very soon crosses the Mn−Cl σ antibonding orbital 22a₁ (σ*), already near a Mn−COₐₓ distance of 2 Å.

The lowest excited states of E symmetry, a¹E and a¹E, will have 13e π* → 22a₁ σ* character before the crossing point, but change to 13e π* → 23a¹ σ* in the crossing region. Since the 13e π* → 22a₁ σ* excitation does not affect the Mn−COₐₓ bond, we would expect the a¹E and a¹E PECs to be bonding, i.e., exhibit a minimum close to the equilibrium distance and curve upward at longer distances. A barrier would then indicate the avoided crossing to the descending PEC of the excited state with 13e π* → 23a¹ σ* character, which is asymptotically calculated to lie at much lower energy than the 13e π* → 22a₁ σ* (Mn−Cl) state (cf. Figures 5 and 6). We note, however, that the singlet a¹E PEC in Figure 5 has only a very weak minimum, and the triplet a¹E none at all. The lack of a barrier can be understood from the very rapid lowering of the 23a¹ (σ*) orbital with Mn−COₐₓ distance, which leads to very rapid descent of the initially high-lying 13e → 23a¹ (σ*) state. This leaves the a¹3E PECs hardly any room to curve upward, and apparently a sufficiently large interaction between the states exists to make the crossing strongly avoided and virtually suppresses any barrier. Exactly the same situation has been observed for axial CO dissociation in Mn₂(CO)₁₀. Of course, the 13e → 23a¹ (σ*) states, which are the e¹E, f¹E states at equilibrium geometry, cross with the lower 1³E states before becoming the lowest one. This means that 13e → σ* character shows up in successively lower E states before ending up in the lowest one, the a¹¹E.

The next higher E PECs are bonding, since no Mn−COₐₓ antibonding orbital is occupied in these states. The first correspond at Rₑ to excitations to 1d₂−y (b¹¹E) or 2σ* (c and d¹¹E). It is clear from Figure 6 that asymptotically, at large Mn−COₐₓ distance, the first excited states above the low-lying 13e → σ* will be 13e → σ* and 12e → σ*. So b¹¹E and c¹¹E will asymptotically hold this character. This implies that the electronic character of these states changes during COₐₓ dissociation, first to 13e → σ* character when this excitation “on its way down” crosses these excited states, and next to their asymptotic nature. As a consequence these PECs do not exhibit such a deep well as the ground state PEC but are more shallow. The b¹¹E states, which have 13e → 7b₁ (d₂−y) character at Rₑ (see Table 2), asymptotically hold the 13e → σ* character that the a¹¹E had at Rₑ. The c¹¹E states become asymptotically 12e → σ* excited states. The excitation out of the 12e orbital leads to considerable orbital relaxation, asymptotically even more so than at Rₑ. As a result 12e virtually loses all 3d character, which explains the small singlet−triplet splitting of the asymptotic c¹¹E and e¹¹E curves. The avoided crossing to the 12e → σ* excited state does not make the c¹¹E PECs dissociative, the asymptotic
energy is still 0.9–1.25 eV above the energy at equilibrium distance. The avoided crossing, however, clearly shows up in the flat behavior of the \(a^{1}E\) PECs at larger distances.

We have drawn in Figure 5 one set of PECs for another symmetry, namely, the pair of dissociative states \(a^{1}B_{2}\) and \(a^{1}B_{1}\) states that correspond at equilibrium geometry to excitation from the second highest occupied molecular orbital to the Mn–Cl \(\sigma^{*}\) orbital, i.e., the \(2b_{2} \rightarrow 22a_{1}, d_{y \pi} \rightarrow \text{Mn–Cl} \sigma^{*}\) transition. As in the case of the \(a^{1}E\) \(13e \rightarrow 22a_{1}\) excited state, the dissociative behavior is brought about by a change of character, again due to the rapid descent of the \(\sigma^{*}\) orbital. The \(a^{1}B_{2}\) states correspond asymptotically to the \(d_{yz} \rightarrow \text{Mn–CO} \sigma^{*}\) transition. The \(a^{1}B_{2}\) and \(a^{1}B_{1}\) states mirror, at a higher energy, the behavior of the \(a^{1}E\) and \(a^{1}E\) states since they correspond to excitations out of \(2b_{2}\) rather than \(13e\) but are otherwise analogous. They are very slightly bonding for the singlet state and dissociative for the triplet state. We have chosen to present this behavior in the figure, although strictly speaking the avoided crossing of these \(B_{2}\) curves with the \(B_{2}\) states arising from the lower lying (at \(R_{e}\)) \(13e \rightarrow 14e\) should be taken into account. The “diabatic” \(a^{1}B_{2}\) PECs in the figure are, however, interesting for the photochemistry upon higher energy excitation; see below.

Potential Energy Curves for Equatorial CO Loss. For equatorial CO loss excitations from the \(13e\) HOMO to the three lowest virtual orbitals at equilibrium geometry and the \(2b_{2} \rightarrow 22a_{1}\) transition are investigated. The PECs for the states that correspond at equilibrium geometry to \(a^{1}E\) \((13e \rightarrow \text{Mn–Cl} \sigma^{*})\) and \(b^{1}E\) \((13e \rightarrow d_{xz,zy}^{*})\) are displayed in Figure 7. The set of \(13e \rightarrow \text{CO} 2\pi^{*}\) Mn,Cl \(\rightarrow \text{CO CT transitions} (a^{1}A_{1}, c^{1}E, d^{1}E, \text{see Table 2}) have been omitted from the figure.

Again the minimum in the ground state PEC is rather shallow in accord with the low frequencies of the Mn–C vibrations. The asymptotic dissociation limit lies at 1.43 eV, which corresponds to a dissociation energy of 138 kJ/mol. When relaxation effects are included, the dissociation energy drops to 99 kJ/mol, in reasonable agreement with the experimental value of 115 kJ/mol.\(^{39}\)

\(^{39}\) Davy and Hall report a restricted Hartree–Fock (RHF) dissociation energy of 77 kJ/mol.\(^{40}\)

Before discussing the nature of the excited state PECs, we focus on the behavior of the orbitals during the release of CO. The orbital energies at several Mn–CO\(_{eq}\) distances are shown in Figure 8 together with their predominant character. As in the case of axial CO loss, the energy of the Mn–CO \(\sigma\) antibonding orbital, in this case the 7\(b_{1}\) \(d_{xz,zy}^{*}\) orbital, decreases very rapidly upon elongating the Mn–CO distance. It crosses the 2\(a_{1}\) Mn–Cl \(\sigma^{*}\) orbital at approximately 2.2 Å, which crossing will be avoided since both the \(B_{1}\) and \(A_{1}\) symmetries in \(C_{2v}\) change to \(A'\) in the \(C_{2}\) point group symmetry that holds upon Mn–CO\(_{eq}\) bond elongation. As a result the \(a'\) LUMO changes character from Mn–Cl \(\sigma^{*}\) to “\(d_{xz,zy}^{*}\)” (Mn–CO\(_{eq}\) \(\sigma\) antibonding) after the crossing. The lowest excited states in the CO-loss product will clearly be the excitations from the three highest occupied orbitals to the \(d_{xz,zy}^{*}\) LUMO, as indeed indicated in Figure 7. Note that the \(13e\) orbitals, which are degenerate in \(C_{2v}\) symmetry, split into an \(a'\) (“\(d_{xz,zy}^{*}\)”) and an \(a''\) (“\(d_{xz,zy}^{*}\)”) orbital, assuming the leaving CO to be the one along the \(x\)-axis (and Cl along the \(z\)-axis). For notational convenience we denote these orbitals as \(d_{xz}\) and \(d_{zy}\), also in Figures 7 and 8, but of course we should keep in mind that these Mn–Cl \(d_{xz}\) and \(d_{zy}\) antibonding orbitals have in the ground state actually more \(C_{2v}\) character, while the 12\(e\) derived pair has more \(d_{x2}\) character (however, considerable changes in the relative Cl and Mn contributions occur upon excitation; see above).

The PECs of the lowest \(A'\) and \(A''\) states, arising from the \(a^{1}E\) states, show a similar dissociative behavior (at least the \(A'\) components) as the lowest \(E\) states for the dissociation of an axial CO. The situation is indeed very similar: the dissociative states arising from \(13e \rightarrow 7b_{1}\) \(d_{xz,zy}^{*}\) excitations, which are at \(R_{e}\) some 8000–9000 cm\(^{-1}\) higher than the lowest excited states of \(E\) symmetry, rapidly cross upon Mn–CO\(_{eq}\) bond lengthening with the states located below them, and the \(A'\) and \(A''\) states resulting from the lowest \(E\) states (\(a^{1}E\)) rapidly change character from \(13e \rightarrow 22a_{1}\) Mn–Cl \(\sigma^{*}\) at equilibrium geometry to \(13e \rightarrow d_{xz,zy}^{*}\) Mn–CO\(_{eq}\) \(\sigma^{*}\) character at larger Mn–CO\(_{eq}\) distances.\(^{41}\) The crossing is so soon that these \(A'\) and \(A''\) states are either weakly bonding or dissociative. The difference in behavior of the \(A'\) and \(A''\) states is striking. The \(A'\) states are purely \((a^{1}A')\) or nearly \((b^{1}A')\) dissociative, whereas the \(a^{1}A'\) and \(a^{1}A''\) states still exhibit a clear bonding minimum. This difference can be explained if one takes into account the

\(^{40}\) (a) Atwood, J. D.; Brown, T. L. J. Am. Chem. Soc. 1975, 97, 3380.
(c) Atwood, J. D.; Brown, T. L. J. Am. Chem. Soc. 1976, 98, 3160.
(41) For reasons of clarity orbitals in \(C_{2v}\) symmetry are designated by their symmetry label in the \(C_{2}\) ground state equilibrium geometry.
The PECs that arise from the b^1E states show just the opposite behavior in that now the A'' states (b^1A' and b^1A'') are dissociative, while the A' states (c^1A' and b^1A') are unambiguously bonding. The reason is that the A'' states can asymptotically become d_\text{ax} \to d_{\sigma^*} excites states, whereas the A' states cannot asymptotically become excited states to the descending d_{\pi \to} orbital (cf. the orbital energy pattern in Figure 8). Note that the change of electronic character along the b_1 A' orbitals. In both cases the lowest 2b_2 (d^2 \sigma^*) PECs is now due to a change in the orbital out of which the excitation takes place, namely, from the 13e component d_{\text{eq}} to the lower lying 2b_{\text{dip}}. The excitation is to the descending d_{\pi \to} all along these PECs, which are dissociative but would even be more strongly dissociative had not the 13e(d_{\text{eq}}) \to d_{\pi \to} character changed to the higher excitation 2b_{\text{dip}}(d_{\text{eq}}) \to d_{\pi \to}. The d_{\text{eq}} \to d_{\pi \to} character descends down into the a^1A'' (vide supra). Concerning the A' components of the b^1E, we note that the d_{\text{ax}} \to d_{\pi \to} character that they have at R_e has already been observed to revert to the lowest lying A' states (a^3A', b^1A'). The b^1E(A') become asymptotically 13e(d^2 \sigma^*) \to \sigma^*(\text{Mn-Cl}) which excitation is asymptotically somewhat lower than the 12e-a'(d_{\text{eq}}) \to d_{\pi \to} \sigma^*. The corresponding PECs have a similar bonding behaviour for equatorial CO loss as the ground state PEC since the d_{\text{eq}} \to d_{\pi \to} excited state from which this PEC starts out at R_e is not so much higher in energy than the d_{\text{eq}} \to \sigma^*(\text{Mn-Cl}) excitation that it becomes asymptotically.

Comparing the equatorial CO dissociation to the axial CO dissociation, we note that we have, for both axial and equatorial CO loss, dissociative states that correspond asymptotically to excitations out of the 13e (d_{\text{eq}} d_{\text{eq}}) and the 2b_{\text{dip}}(d_{\text{eq}}) to the descending orbitals, d_{\text{ax}} \sigma^* in the case of axial CO and d_{\pi \to} \sigma^* in the case of equatorial CO. In both cases the lowest excited a^1E states are dissociative, becoming asymptotically 13e(d_{\text{eq}} d_{\text{eq}}) \to d_{\text{ax}} \sigma^* and 13e-a'(d_{\text{eq}}) \to d_{\pi} \sigma^* excited states, respectively. The important difference is that in the case of equatorial CO also the relatively low-lying b^1E excited states, which are just accessible in the photochemical experiments, are dissociative, leading asymptotically to d_{\text{eq}} \to d_{\pi} \sigma^* excited states, whereas in the case of axial CO the b^1E excited states are bonding. In the case of axial CO only the higher lying a^1B_1 states, leading to d_{\text{eq}} \to d_{\pi} \sigma^* states asymptotically, are dissociative. These states are at too high energy to play a role in the photochemical experiments, and axial CO dissociation is therefore expected to be less efficient. As a matter of fact the excitation to b^1E, although it may be just accessible, has quite low intensity (see Table 2). It may therefore be the much higher intensity excitation to a^1A_1, followed by intersystem crossing to b^1E and ensuing dissociation of equatorial CO, that provides the mechanism for the increase of the quantum yield at higher excitation energy.

Potential Energy Curves for Mn–Cl Homolysis. Since no Mn–Cl heterolysis or homolysis is experimentally observed, only a few PECs along the Mn–Cl axis have been calculated. According to the calculations the first excited 2E state of Mn(CO)_5^* lies 1.86 eV above its ground state. The states of MnCl(CO)_5 correlating with this 2E state will thus not play a role in the photochemistry of Mn(CO)_5Cl, since they can only be reached with far-UV light. Heterolysis, although feasible in solution, is not taken into account since the energies of the ions in the gas phase are rather high. The radicals are calculated to be about 4 eV (i.e., about 400 kJ/mol) more stable than Mn-(CO)_3^* and Cl^- in the gas phase. Therefore only the PECs of the 1^E and 1^A_1 states, which asymptically correspond to the 2A_1 + 1^P ground states of Mn(CO)_3^* and Cl-', have been calculated.

The lowest state that correlates with the asymptotic 2A_1 + 1^P fragment ground states is the 1A_1 ground state. The PEC of this state shows that Mn–Cl homolysis requires much more energy than CO dissociation, i.e., 297 kJ/mol. When relaxation effects are included, the homolysis energy becomes 268 kJ/mol, in excellent agreement with the experimental value of 268 kJ/mol.\(^{42}\)

The lowest 3E and 1^E states, corresponding to the Mn–Cl π* \to Mn–Cl σ*, 13e \to 22a_1 excitation, directly correlate with the ground state of the radicals Mn(CO)_3^* and Cl'. As can be seen from Figure 9 excitation into these states does not supply enough energy to homolytically break the Mn–Cl bond. Therefore Mn–Cl bond homolysis cannot occur even though the lowest excited states do correlate with the lowest states of

\(^{42}\) Connor, J. A. Organometallics 1982, 1, 1166.
the radicals. The absence of Mn–CI homolysis is therefore attributed to the high thermodynamic stability of the Mn–CI bond.

The \(^3A_1\) state correlating with the \(^2A_1 + \ ^2P\) ground state of the radicals corresponds from ca. 2.7 Å onward to the Mn–Cl \(\sigma \rightarrow\) Mn–Cl \(\sigma^*\) \(21a_1 \rightarrow 22a_1\) transition. The orbital energies (not shown here) show the expected behavior of, on the one hand, rapid lowering of the Mn–Cl \(\sigma^*\) LUMO, which without crossings becomes asymptotically the singly occupied \(\sigma_{hy}\) hybrid of the Mn(CO)\(_5\) radical, and, on the other hand, an increase in energy of the Mn–Cl \(\sigma\) \(21a_1\), which asymptotically becomes the \(\sigma^*\) LUMO with low-energy light results in occupation of the \(\sigma^*\) orbital. In all cases the \(\sigma^*\) orbital is the LUMO, whereas the Mn–Cl \(\sigma^*\) antibonding orbital is located below the occupied Mn 3d orbitals. In the case of MnH(CO)\(_5\) the \(\sigma\) (\(d_\sigma\)) orbitals are the \(d_{x^2-y^2}\) orbitals, in MnCl(CO)\(_5\) the \(\sigma\) orbitals split into two sets of Mn–Cl \(\pi\) and \(\pi^*\) orbitals. In the case of MnHCl(CO)\(_5\) the ordering is reversed; here the Mn–Cl \(\sigma\) orbital is the HOMO and the \(\pi\) (\(d_{x^2-y^2}\)) orbitals are the \(d_{x^2-y^2}\) antibonding sets are at lower energy. The relatively high energy of the \(\sigma\) orbital in the case of MnCl(CO)\(_5\), when compared to MnCl(CO)\(_5\) and MnH(CO)\(_5\), is caused by the rather high energy of the Mn(CO)\(_5\) \(\sigma_{hy}\) hybrid, when compared with the H 1s and Cl 3p orbitals, and by the relatively weak interaction between the \(\sigma_{hy}\) orbitals.

In the case of MnCl(CO)\(_5\) and MnHCl(CO)\(_5\) the Mn–L (L = Cl or Mn(CO)\(_5\)) \(\sigma^*\) orbital is the LUMO, whereas the Mn–Cl \(\sigma^*\) and Mn–CO\(_{eq}\) \(\sigma^*\) antibonding orbitals are located at higher energy (we denote the Mn–CO\(_{ax}\) and Mn–CO\(_{eq}\) \(\sigma^*\) antibonding orbitals, “\(d_\sigma^*\)” and “\(d_\sigma^*\)” respectively, both as \(\sigma^*\)”)

\(\text{MnH(CO)}_{\text{5}}\) \(\sigma^*\) orbital is located at very high energy, considerably above the \(\sigma^*\) orbitals. The LUMO is in this case a CO \(2\pi^*\) orbital. The diagram highlights the remarkably stronger interaction of the Mn(CO)\(_5\) \(\sigma_{hy}\) hybrid with H 1s than with another Mn(CO)\(_5\) \(\sigma_{hy}\).

The three complexes show a strikingly similar behavior with respect to CO loss, which in all three cases occurs upon irradiation into the lowest energy band. In all cases the \(d_{x^2-y^2}\) \(\rightarrow\) LUMO excited state is dissociative for axial and equatorial CO\(_{44}\) CO loss, but only after an (avoided) crossing of the LUMO with the Mn–CO\(_{ax}\) or Mn–CO\(_{eq}\) \(\sigma^*\) orbital, respectively. Whether there is a small barrier or not is not important here. Such a barrier may have a large influence on the quantum yield.

\(\text{MnCl(CO)}_{\text{5}}\).

\(\text{MnCl(CO)}_{\text{5}}\) and MnH(CO)\(_5\) both have the Mn–H/Cl \(\sigma\) bonding orbital, with much H 1s and Cl 3p character, respectively, located below the occupied Mn 3d orbitals. In the case of MnCl(CO)\(_5\) the \(\sigma\) (\(d_\sigma\)) orbitals are the \(d_{x^2-y^2}\) orbitals, in MnCl(CO)\(_5\) the \(\sigma\) orbitals split into two sets of Mn–Cl \(\pi\) and \(\pi^*\) orbitals. In the case of MnHCl(CO)\(_5\) the ordering is reversed; here the Mn–Cl \(\sigma\) orbital is the HOMO and the \(\pi\) (\(d_{x^2-y^2}\)) orbitals are the \(d_{x^2-y^2}\) antibonding sets, located below the occupied Mn 3d orbitals.

In the case of MnHCl(CO)\(_5\) the ordering is reversed; here the Mn–Cl \(\sigma\) orbital is the HOMO and the \(\pi\) (\(d_{x^2-y^2}\)) orbitals are the \(d_{x^2-y^2}\) antibonding sets, located below the occupied Mn 3d orbitals. In the case of MnHCl(CO)\(_5\) the ordering is reversed; here the Mn–Cl \(\sigma\) orbital is the HOMO and the \(\pi\) (\(d_{x^2-y^2}\)) orbitals are the \(d_{x^2-y^2}\) antibonding sets, located below the occupied Mn 3d orbitals. In the case of MnHCl(CO)\(_5\) the ordering is reversed; here the Mn–Cl \(\sigma\) orbital is the HOMO and the \(\pi\) (\(d_{x^2-y^2}\)) orbitals are the \(d_{x^2-y^2}\) antibonding sets, located below the occupied Mn 3d orbitals. In the case of MnHCl(CO)\(_5\) the ordering is reversed; here the Mn–Cl \(\sigma\) orbital is the HOMO and the \(\pi\) (\(d_{x^2-y^2}\)) orbitals are the \(d_{x^2-y^2}\) antibonding sets, located below the occupied Mn 3d orbitals.
but it can be overcome by several mechanisms.45 In the case of Mn$_2$(CO)$_{10}$ there is also the transition $\sigma \rightarrow \sigma^*$ at approximately the same energy (calculated at slightly lower energy but experimentally assigned to slightly higher energy than the $d_{xz/yz} \rightarrow \sigma^*$). The $\sigma \rightarrow \sigma^*$ excited state of Mn$_2$(CO)$_{10}$ is, however, not Mn–CO dissociative. Thus, we may conclude that Mn–CO dissociation is very similar in these cases. It has little to do with the nature of the LUMO but is caused by the strongly Mn–CO antibonding nature of the σ^* orbitals. The rapid descent upon Mn–CO bond lengthening of these orbitals leads to the CO dissociation in the lowest excited state. This feature of the electronic structure is peculiar to the Mn(CO)$_5$ fragment, although the substituent influences the precise position of the dissociative state with respect to the other states.

The Mn–H/Cl/Mn homolysis shows large differences between these molecules, which is caused by the large influence of the substituent on the energy of the important orbitals. In the case of Mn$_2$(CO)$_{10}$, the $\sigma \rightarrow \sigma^*$ excitation is the lowest energy band and bond homolysis thus occurs very easily, being the primary photoprocess, together with Mn–CO dissociation, upon irradiation into the lowest band. In the case of MnH(CO)$_5$ and MnCl(CO)$_5$ the $\sigma \rightarrow \sigma^*$ transitions are at too high energy to be excited directly in the usual photochemical experiment. At long distances the $3\sigma (\sigma \rightarrow \sigma^*)$ excited state will become much lower in energy, and asymptotically it will go to the ground states of the radical fragments. An avoided crossing will thus eventually occur with the lowest 3Σ^+ state, making the lowest 3Σ^+ PEC dissociative at long distances. However, the lowest 3Σ^+ state at equilibrium geometry, corresponding to the 13e \rightarrow 14e excitation, is already considerably higher than the $d_{xy} \rightarrow$ LUMO type excited state, which is responsible for the lowest band in the experimental spectrum. Even if irradiation takes place at sufficiently high energy to populate the lowest 3Σ^+, the barrier in the lowest 3Σ^+ PEC, related to the avoided crossing (see Figure 9), will drastically reduce the quantum yield for Mn–H/Cl dissociation.

These results fit in nicely with the experimental observations that a primary photoprocess of all of these complexes is Mn–CO dissociation, with higher quantum yield for higher energy radiation due to increased Mn–CO$_{eq}$ dissociation. In Mn$_2$(CO)$_{10}$ the Mn–Mn bond homolysis46 is fully competitive with Mn–CO bond dissociation upon irradiation in the lowest band (1:1), the propensity to Mn–CO bond breaking increasing at higher energy. In MnH(CO)$_5$ and MnCl(CO)$_5$ Mn–H/Cl bond homolysis occurs much less readily. Mn–H bond dissociation only occurs upon irradiation with high energy47 but in much lower yield than Mn–CO bond dissociation, whereas for MnCl(CO)$_5$ no Mn–Cl bond homolysis has (yet) been found.7 The difference between these systems with respect to the Mn–Mn/ H/Cl homolysis can be understood immediately from the positions of the σ and σ^* molecular orbitals (Figure 2).

5. Conclusions

We have considered both the photochemical Mn–CO dissociation and Mn–L σ bond homolysis in the complexes Mn(L)CO$_2$L with L = Cl, H, and Mn(CO)$_5$.

As for the Mn–L photolysis, which readily occurs for the Mn–Mn bond in Mn$_2$(CO)$_{10}$ but not for the Mn–Cl and Mn–H bonds in MnCl(CO)$_5$ and MnH(CO)$_5$ respectively, we have been able to explain this behavior on the basis of the relative positions of the σ and σ^* orbitals in the occupied and virtual orbital level spectra.

As for the metal–carbonyl dissociation our calculations point to a mechanism of photochemical CO loss that differs substantially from the generally accepted one, which invokes dissociation occurring upon ligand-field excitation. In the case of MnCl(CO)$_5$, Wrighton et al.7 suggested on the basis of ligand field theory that transitions to the lowest excited state would imply occupation of a d_{z^2}, which would, due to antibonding with axial CO, lead directly to axial CO loss. Higher energy excitation would lead to occupation of the higher d_{z^2} orbital and result in loss of an equatorial CO. This explanation directly accounts for the increase in quantum yield upon higher energy excitation. A similar explanation of the photochemistry was presented by Pierloot et al.49

Our calculations, however, demonstrate that the LUMO is not antibonding for either axial or equatorial CO. The lowest excited state only becomes dissociative for both axial and equatorial CO after avoided crossing with a state which is Mn–CO dissociative but which is at too high energy at R_e to be populated directly. The high-lying states are the 13e \rightarrow 23a$_1$ ($d_{z^2} \sigma^*$) and 13e \rightarrow 7b$_1$ ($d_{z^2-\gamma} \sigma^*$) LF excited states for axial and equatorial CO loss, respectively. The calculations show that the nature of the LUMO at the equilibrium geometry does not primarily determine the photochemistry of this complex. The geometry dependence of all antibonding orbitals has to be taken into account. This result—which substantiates previous findings for Mn$_2$(CO)$_{10}$—implies an important caveat for the general practice of trying to interpret photochemical events in transition metal complexes on the basis of molecular orbital diagrams at the equilibrium geometry. A very clear example is Cr(CO)$_6$, where we have recently found48 precisely the same situation to apply: the ligand-field excited states are at R_e at high energy, but they descend so rapidly upon Cr–CO bond lengthening that they very soon cross the lowest excited state, which has CT character at R_e, so that the lowest excited state PEC becomes dissociative. Recent sophisticated CASCCF/CASPT2 calculations of the optical spectrum of Cr(CO)$_6$ by Pierloot et al.49 provide support for this reassessment of the role of LF states in the photochemical metal–carbonyl dissociation process in that they show that the LF excited states of Cr(CO)$_6$ are—contrary to the original assignment by Beach and Gray50—located rather high in the spectrum, the photodissociative lowest excited states having clear CT character at R_e.IC960688+

47 Beach, N. A.; Gray, H. B. \textit{J. Am. Chem. Soc.} 1968, 90, 5713.