A Density Functional Study of the Primary Photoprocesses of Manganese Pentacarbonyl Chloride (MnCl(CO)5)

Wilms, M.P.; Baerends, E.J.; Rosa, A.; Stufkens, D.J.

DOI
10.1021/ic960688+

Publication date
1997

Published in
Inorganic Chemistry

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.

UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl)
Density Functional Study of the Primary Photoprocesses of Manganese Pentacarbonyl Chloride (MnCl(CO)₅)

Maikel P. Wilms,⁵ Evert Jan Baerends,*⁷ Angela Rosa,† and Derk J. Stufkens§

Afdeling Theoretische Chemie, Vrije Universiteit, De Boelelaan 1083, 1081 HV, Amsterdam, The Netherlands, Dipartimento di Chimica, Università della Basilicata, Via N. Sauro, 85, 85100 Potenza, Italy, and Anorganisch Chemisch Laboratorium, J. H. van’t Hoff Research Institute, Universiteit van Amsterdam, Nieuwe Achtergracht 166, 1018 WV, Amsterdam, The Netherlands

Received June 10, 1996⑦

Density functional calculations have been performed on the ground and excited states of MnCl(CO)₅ in order to explain the photochemistry of MX(CO)₅ complexes (M = Mn, Re; X = Cl, Br, I). As found earlier for Mn₂(CO)₁₀ (Inorg. Chem. 1996, 35, 2886), the e₂-type unoccupied orbitals in the pseudocubical environment are located rather high in the virtual orbital spectrum, and the corresponding ligand-field (LF) excitations are more than 1 eV above the lowest excitations. Potential energy curves (PECs) nevertheless show that the lowest excited states, which involve transitions to the Mn−Cl σ* orbital at equilibrium geometry, are dissociative for axial and equatorial CO loss. The mechanism is again, as in Mn₂(CO)₁₀, a strongly avoided crossing of the lowest excited state (a¹E) with the higher dissociative LF states (different ones for COₐx and COₐeq dissociation) which rapidly descend upon Mn−CO bond lengthening. In spite of the lowest excitation being to the Mn−Cl σ*-orbital, Mn−Cl homolysis cannot occur out of the lowest excited state. The photochemical behavior of Mn₂(CO)₁₀, MnH(CO)₅, and MnCl(CO)₅ is compared. The mechanisms of CO loss are found to be very similar, but there is a large difference with respect to the breaking of the σ bond (Mn−Mn, Mn−H, or Mn−Cl). Only in the case of Mn₂(CO)₁₀, the lowest broad absorption band contains the σ → σ* excitation and leads to σ bond breaking.

1. Introduction

Detailed insight into photochemical pathways of organometalic compounds is rapidly accumulating due to the use of sophisticated equipment for the detection of excited states and reactive intermediates.¹ At the same time, the advances in quantum mechanical methods and computer technology have made feasible extensive calculations on both ground and excited states of simple organometalic complexes. Especially the calculation of potential energy curves (PECs) has proven to be very valuable in describing the photochemistry of transition metal complexes² (see also refs 3−5).

In this paper we will focus on the photochemistry of MnCl(CO)₅. Many studies on the photochemistry of metal pentacarbonyl halides show that CO loss is the primary photoprocess.⁶,7 From these studies it is known that in MnCl(CO)₅ only the Mn−CO bond is photolytically cleaved and that no Mn−Cl bond homolysis occurs. In the absence of coordinating species, the photochemistry yields the halide-linked dimer Mn₂(CO)₅Cl₂, while in the presence of coordinating species the cis-substituted product is formed. It is somewhat surprising that the photosubstitution reaction is highly stereospecific, yielding only the cis isomer. Within the usual ligand-field picture (cf. Wrighton et al.⁷), one would expect the LUMO to be the metal d₃z orbital, which is assumed to have more antibonding interaction with the axial CO than with the chlorine. Irradiation into the lowest ligand-field (LF) band increases the population of this d₃z orbital and would be expected to result in loss of CO trans to chlorine. The LF view thus predicts a different primary photoprocess than experiment suggests. This inconsistency can be resolved if one assumes that indeed an intermediate resulting from axial CO loss occurs (a square pyramid with Cl in the apical position), but that this intermediate is susceptible to an excited state rearrangement to a square pyramid with Cl in basal position. Subsequent addition of a coordinating ligand then results in a cis substituted product. The possible rearrangement pathways of the MnCl(CO)₅ intermediate have received considerable attention recently (cf. Pierloot et al.⁴ and Matsubara et al.⁶). One expects in the LF picture to have the other e₂-type orbital (dₓ²−y²) at higher energy than the d₃z orbital, because Cl is a weaker σ donor than CO. Occupation

¹ Vrije Universiteit.
² Università della Basilicata.
³ Universiteit van Amsterdam.

of this orbital would lead to equatorial CO loss. In view of the dramatic increase of the quantum yield when going to higher excitation energies and the temperature dependence of both the quantum yield and the lifetime, Wrighton et al. concluded that indeed such a higher lying photoactive excited state with $d_{a \sigma}^2$ character is present. These results were supported by the calculations by Pierloot et al.

This picture of the photochemistry of MnCl(CO)$_3$ is based on the accepted paradigm of photolabilization of metal–carbonyl bonds by ligand field excitation. We have, however, recently found in the case of Mn$_2$(CO)$_{10}$ that this picture may require considerable adjustment and refinement. The calculation of PECs for CO dissociation and Mn–Mn bond breaking, and an analysis of the electronic structure of the ground and excited states, revealed that among the lowest excited states the $1,3E_1 (d_{a \sigma} \rightarrow \sigma^*)$ state is Mn–CO$_{ax}$ dissociative, although it is not Mn–CO antibonding and cannot unequivocally be assigned as a LF excited state. There are, however, strongly Mn–CO antibonding 3d–e$_g$-type orbitals located at fairly high energy in the virtual orbital spectrum. Excitations to such orbitals lead to LF excited states with strongly dissociative PECs. These PECs rapidly become lower in energy with increasing Mn–CO distance and cross the low-lying excited $1,3E_1$ states. In this way these low-lying excited states become Mn–CO dissociative, although the avoided crossing may lead to a barrier. This picture is at variance with the LF picture indicated above for the photochemistry of MnCl(CO)$_3$, which assumes a population of dissociative LF states directly upon low-energy irradiation.

The MnCl(CO)$_3$ system is well-suited for further investigation of this issue, since it offers the additional possibility of photochemical cleavage of a metal–ligand σ bond and may thus be compared to other well-studied Mn(CO)$_3$L systems such as MnH(CO)$_2$ and Mn$_2$(CO)$_{10}$. In Mn$_2$(CO)$_{10}$ the Mn–Mn bond is broken with approximately equal probability as the Mn–CO bond upon irradiation into the lowest absorption band. This may be attributed to transition to the low-lying B_2, of Mn–Mn $\sigma \rightarrow \sigma^*$ character, which is nearly degenerate with the Mn–CO dissociative $1,3E_1$ states. However, the Mn–H bond of MnH(CO)$_2$ is broken only upon high-energy irradiation, with relatively low quantum yield, although Mn–CO dissociation occurs as in Mn$_2$(CO)$_{10}$ from the low-lying excited states. Veillard et al. explained the wavelength-dependent photochemistry of MnH(CO)$_2$ by calculating CASSCF/CCI correlation diagrams for both axial CO and H loss. It was found that the lowest excited state is dissociative with respect to axial CO, whereas higher excited states are dissociative with respect to both axial CO and hydrogen. This conclusion was confirmed by full calculation of the PECs by Daniel, although these PECs demonstrated that the picture is complicated by several avoided crossings, resulting in small barriers.

In order to elucidate the photochemistry of MnCl(CO)$_3$ and study the similarities and differences with other Mn(CO)$_3$L derivatives, we have calculated PECs for both axial and equatorial CO loss and for Cl homolysis. The results are discussed in section 4 and indicate that both axial and equatorial CO loss can occur, but only due to a (strongly) avoided crossing with the lowest excited state by a dissociative LF excited state, which is high-lying at the equilibrium geometry but descends rapidly upon Mn–CO bond lengthening. Mn–Cl bond breaking does not occur. The CO loss mechanisms of MnH(CO)$_3$, MnCl(CO)$_3$, Mn$_2$(CO)$_{10}$, and Mn$_2$(CO)$_{10}$ are compared as well as the breaking of the σ bond (Mn–Mn, Mn–H, Mn–Cl). The first are very similar, the latter are very different in these compounds.

Before dealing with the photochemistry of the title compound, we first elucidate in section 3 the electronic structure of MnCl(CO)$_3$, which is a prerequisite for understanding the photochemistry. The electronic structure of manganese pentacarbonyl halides has been the subject of many theoretical, ultraviolet photoelectron spectroscopic (UPS), and UV–vis spectroscopic studies. For the present purpose in particular the molecular orbitals structure and the excitation spectrum are relevant and will be discussed in section 3. Section 4 discusses the photochemistry and section 5 contains the Conclusions, in particular with respect to the role of LF excited states in the photodissociation process.

2. Computational Details

All calculations have been performed using the Amsterdam density functional program package ADF. The computational scheme is characterized by the use of a density-fitting procedure to obtain accurate Coulomb and exchange potentials in each self-consistent field (SCF) cycle, by the accurate and efficient numerical integration of the Hamiltonian matrix elements and the possibility to freeze core orbitals. We used an uncontracted double-ζ STO basis set with one polarization function for all atoms, except for the manganese orbitals for which a triple-ζ 3d,4s basis with one 4p function was used. The 1s oxygen and carbon cores were kept frozen as well as the 1s–2p cores for manganese and chlorine.

The ground and excited state energies included Becke’s nonlocal corrections to the local expression of the exchange energy and Perdew’s nonlocal corrections to the local expression (Vosko–Wilk–Nusair parametrization of electron gas data) for the correlation energy.

References:

The original proof of the Hohenberg–Kohn theorem\(^\text{29}\) is only valid for the ground state of a system, and while it has been extended to the lowest state of any given symmetry,\(^\text{30}\) this still does not suffice for a full description of the photochemical properties of molecules. However, the approximate method introduced by Ziegler \textit{et al.}\(^\text{31}\) for the calculation of excited states has been used with good results for both atomic\(^\text{32}\) and molecular systems.\(^\text{33}\) It has recently been applied successfully for the calculation of a two-dimensional potential energy surface for the photodissociation of \(\text{H}_2\text{O}\) in its first excited state\(^\text{34}\) and compared to \textit{ab initio} calculations and experiment. The photochemistry of \(\text{Mn}_2(\text{CO})_{10}\) has also been investigated with this method.\(^\text{3b}\) In its simplest form, the method of ref \textit{31} incorporates the relaxation effects in the excited state by an SCF calculation on a single-determinantal state, representing one of the multiplet states. Although this method yields results which are in keeping with experiment, it is only formally justified for the lowest state of each symmetry. Therefore, we will avoid drawing conclusions from the quantitative results of calculations on higher states. We feel, however, justified to use these results qualitatively.

The geometry of \(\text{MnCl}(\text{CO})_5\) as specified in Figure 1a was taken from an earlier density functional theory (DFT) study on this molecule.\(^\text{35}\) In order to be able to compare the dissociation with experiment, geometry optimizations have been performed for the \(\text{Mn}(\text{CO})_5\) and \(\text{MnCl}(\text{CO})_4\) photoproducts using gradient techniques.\(^\text{36}\) The results are shown in Figure 1b–d. The photoproducts resulting from axial CO or Cl loss have geometries which have only relaxed a little. \(\text{MnCl}(\text{CO})_4\) with an equatorial vacancy, however, shows considerable relaxation. In order to keep calculations tractable, geometry optimizations were not carried out at all points on the PEC. However, in order to assess at which point during the dissociation relaxation can come into play, we have optimized the geometry of the \(\text{MnCl}(\text{CO})_5\) fragment at a fixed distance \(\text{Mn–CO}_{eq}\) of 2.3 Å, at which point the PECs approach their asymptotic shape (see below). The optimized geometry at this point differed only slightly from the

\begin{figure}
\centering
\includegraphics[width=\linewidth]{figure1.png}
\caption{Geometry of (a) \(\text{MnCl}(\text{CO})_5\), (b) apical \(\text{MnCl}(\text{CO})_4\), (c) basal \(\text{MnCl}(\text{CO})_4\), and (d) \(\text{Mn}(\text{CO})_5\) (bond distances in angstroms).}
\end{figure}

\begin{thebibliography}
\bibitem{35} van Eis, M. Internal report; Free University: Amsterdam, 1995.
\end{thebibliography}
occurs at a time scale of 20 fs. Since we find similar
ments showed that the Mn "frozen" geometry. Furthermore femtosecond resolved experi-
Orbital interaction diagrams for the formation of Mn(CO) 5 , where L
Figure 2.

Table 1. Orbital Energies and Percent Composition of the Lowest Unoccupied and
Highest Occupied MnCl(CO) 5 Orbitals in Terms of Mn, Cl, CO ax, and CO eq Fragments

<table>
<thead>
<tr>
<th>orbital</th>
<th>orbital character</th>
<th>ϵ (eV)</th>
<th>percent compn</th>
<th>Ofb</th>
</tr>
</thead>
<tbody>
<tr>
<td>16e</td>
<td>CO π^*</td>
<td>−1.944</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15e</td>
<td>"t 2g "</td>
<td>−2.785</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23a1</td>
<td>"c": d $z_2\sigma^*$</td>
<td>−2.796</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8b1</td>
<td>CO π^*</td>
<td>−2.796</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3b2</td>
<td>"t 2g "</td>
<td>−2.983</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7b1</td>
<td>"c": d $z_2\sigma^*$</td>
<td>−2.994</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14e</td>
<td>CO π^*</td>
<td>−3.197</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22a1</td>
<td>(Mn−Cl) σ^*</td>
<td>−3.786</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13c</td>
<td>Cl p z − d z</td>
<td>−6.447</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2b2</td>
<td>"t 2g "</td>
<td>−8.010</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12e</td>
<td>"t 2g " + Cl p π</td>
<td>−8.030</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21a1</td>
<td>Cl p σ</td>
<td>−8.386</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11e</td>
<td>CO 5σ</td>
<td>−11.409</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20a1</td>
<td>CO 5σ</td>
<td>−11.982</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a The major contribution is reported between parentheses; if there are several contributions of more than 5%, these are made explicit. b The Mulliken overlap populations are per orbital, based on a norm 1 of the orbital, i.e., an orbital occupation of 1 electron for occupied and virtual orbitals alike.

"frozen" geometry. Furthermore femtosecond resolved experiments showed that the Mn−CO dissociation in Mn 2(CO) 10 occurs at a time scale of 20 fs. Since we find similar dissociative PECs as in Mn 2(CO) 10 , the photodissociation process may be similar and thus much faster than the vibrations, which occur on the picosecond time scale. Therefore, it is not obvious that full geometry optimization along a Mn−CO dissociation coordinate would be justified, and we choose to calculate the PECs using a frozen geometry of the photodissociation fragments.

3. Electronic Structure

Ground State Electronic Structure. In order to better understand the photochemical behavior of MnCl(CO) 5 , it is first of all necessary to know the characters of the highest occupied and lowest unoccupied molecular orbitals. These characters as well as the orbital energies are presented in Table 1. An orbital interaction diagram for the formation of MnCl(CO) 5 out of Mn(CO) 5 and Cl is shown in Figure 2.

The relevant occupied orbitals of Mn(CO) 5 are the fully occupied d_{xy} and the E pair of $d_{yz/z}$ or d_{x^2} orbitals, which together correspond to the t_{2g} orbitals in O_h symmetry, and the singly occupied σ_{by} orbital, which is a 3d z^2−4p $−2\pi^*$ hybrid, with its lobe directed toward the vacancy (the $2\pi^*$ denotes an a 1 combination of $2\pi^*$ orbitals of the equatorial CO’s that are perpendicular to the equatorial plane). We refer to ref 3a for a detailed explanation of the orbital structure of Mn(CO) 5 . In particular, it has been stressed that in Mn(CO) 5 one does not have a simple e_g-type (mostly 3d z^2) LUMO, but due to mixing with the 4p σ of Mn and the $2\pi^*$ of the equatorial CO’s, there are two a 1 orbitals with considerable d_{xy} character. The lowest one, the present σ_{by} orbital (10a 1 in ref 3a) has little axial CO
5σ character, and this orbital completely lacks the expected antibonding with the CO 5σ. On the other hand, the higher one (11a1 in ref 3a), which is at considerably higher energy, lying within the CO π* manifold, has considerable antibonding with the axial CO (it is denoted σ*(Mn−CO)ax in Figure 2). Excitation to this latter orbital leads to strongly Mn−COax dissociative states. Due to the large amplitude of the Mn(CO)5 σp y toward the vacant coordination site, interaction with an axial CO, the other one with the σ bonding, but the antibonding with the CO ax) of Mn(CO)5 is practically unperturbed by the bonding with Cl, and it is found as the 24a1 orbital of MnCl(CO)5. It is about 1 eV above the σ(Mn−Cl). Note that we differentiate between σ antibonding between Mn and L, denoted by σ*, and σ bonding between Mn and Cl p α, denoted by an additional prime, σ⁎. The situation is somewhat analogous to having two axial hybrids on Mn, one leading to (anti)bonding with axial CO, the other one with the other axial ligand L. The orbital plots in Figure 3 demonstrate the Mn−Cl bonding and antibonding characters of 21a1 and 22a1, respectively, and the Mn−CO bonding and antibonding character of the 20a1 and 23a1 (not 22a1!), respectively.

The description of the remaining occupied and unoccupied orbitals is straightforward. In the unoccupied spectrum we have fairly close to the strongly Mn−COeq antibonding σ⁎ orbital (23a1) the strongly Mn−COeq σ antibonding 7b1 orbital derived from the dxy−π2 component of the e2-orbitals. We will also denote the Mn−COeq σ antibonding character by σ⁎'. The 14e, 3b2, 8b1, 15e, and 16e orbitals are mainly composed of CO 2π* orbitals. Some have a considerable admixture of metal 3d character, such as the 3b2, and 15e which may be classified as the antibonding counterparts (“t2g⁎”) of the occupied bonding t2g-like orbitals.

In the occupied spectrum we have above the Cl p α (21a1) the metal−carbonyl π bonding t2g-like 3d orbitals and the Cl pₓ orbitals. The 12e is the π bonding and the 13e the π antibonding combination of 3dₓ and Cl pₓ orbitals (see Figure 4), while the 2b2 (dₓz) remains a purely 3dₓ−2π* bonding orbital. Note that the 2b2 and 12e remain almost degenerate, the loss of one 2π* bonding interaction in 12e apparently being compensated by the Cl 3pₓ bonding, but the antibonding with Cl 3pₓ pushes the 13e up so that it becomes more than 1.5 eV higher than its t2g partners. This gap between the HOMO and lower orbitals will be important for the excitation spectrum.

The 13e has more Cl character than the 12e orbital (74 and 22%, respectively), although the Cl 3p orbital energy of the atom is lower than the Mn(CO)5 “t2g⁎−dₓz orbital energy. This can be explained by taking the charges on the atoms into account. Since the chlorine atom bears a charge of approximately −0.4e, its orbital energies are all shifted upward, whereas the Mn(CO)5 orbital energies are shifted downward because of the positive charge on this fragment. This has been taken into account in the qualitative orbital interaction diagram of Figure 2, by positioning the Mn(CO)5 dₓz orbital below the Cl 3p orbital so that the MnCl(CO)5 12e orbital will have more metal character, whereas the 13e orbital has more chlorine character. We wish to caution, however, that the relative Mn 3dₓ and Cl 3pₓ character of the 12e and 13e orbitals is susceptible to considerable change upon removing an electron out of these orbitals by ionization or excitation. We find orbital relaxation in such ionized or excited states to strongly increase the metal character of the 13e. These effects are not peculiar to DFT calculations. Recent CASSCF/CASPT2 calculations by Wilms and Daniel15 show more pronounced Mn 3d character of 13e already in the ground state and predominant 3d character of the 13e in the first excited state.

Excited States. The 13e HOMO lies 1.5 eV above the other occupied orbitals, and excitations from this orbital to the lowest virtual orbitals are, therefore, of particular interest. Also the lowest excitations from the 2b2 and the 12e have been calculated. Higher excitations than the 2b2 → 23a1 and 12e → 23a1 have not been calculated, since those would be too high in energy to play an important role in the photochemistry of MnCl(CO)5.

Transition intensities were estimated with the program Dipole. The total transition dipole moment was approximated by the transition dipole moment between the initial and final MO.

The results are shown in Table 2.

As expected the two lowest excited states are the triplet and singlet states corresponding to the 13e → 22a1 (Mn–Cl π* → Mn–Cl σ*) transition. These states are calculated at 21 207 and 23 604 cm−1, respectively. As mentioned earlier, the character of both the 12e and 13e orbitals changes upon excitation from the 13e orbital. In the excited state, the 12e acquires more Cl 3p character, while the Mn dxy character of the 13e orbital increases. The calculated transition energies are in reasonable agreement with the first broad band in the experimental spectrum. The character of the first transition is beyond doubt, although the different ways it has been denoted may reflect genuine differences of opinion rather than being just a matter of semantics. In the past it has always been designated as a d → d (dxy → dxy) or LF transition. This, however, should not carry the implication—as it sometimes did—of antibonding Mn–COax character and therefore expected photoactivity with respect to axial CO dissociation. Our present results and the orbital composition of Pierloot et al. indicate that the Mn–Cl π* → Mn–Cl σ* transition, or the Mn/Cl LF transition, is a more appropriate description. This has also been suggested by McLean. It is not a Mn/CO LF transition. This difference in character, from what has been generally assumed, sheds some doubt on the assumption of Mn–COax dissociative character. This point will be addressed in the next section.

The 22a1 lies about 1 eV below the other virtual orbitals, and excitations to those higher virtuals come at energies that are some 8000 cm−1 higher than the 13e → 22a1 transition. Because of the near degeneracy of the 14e, 7b1, 3b2, 8b1, 23a1, and 15e orbitals, many excitations out of the 13e to this set of virtuals are present between 29 000 and 35 000 cm−1, of which all transitions to singlet states are allowed. The first transition with Mn/CO LF character, the 13e to 7b1 (dxy → dxy), occurs at 29 118 cm−1 and 32 138 cm−1 for triplet and singlet, respectively. This LF transition has the expected low intensity, but this excited state is interesting in view of its probably strongly Mn–COeq dissociative character. At similar energy, at 30 020 and 30 539 cm−1, the first charge transfer (CT) excitations occur, corresponding to the singlet and triplet 13e → 14e transitions. They have Mn/Cl → CO 2π* CT character and much higher intensity. Although an e → e transition gives rise to A1, A2, B1, and B2 states, only the mean energy of these states has been calculated, since no major differences between these four states are expected. As seen from the intensities in Table 2, the 13e → 14e transition may contribute to the high-energy side of the first band, which may partly account for its broadness. The lowest Mn/COax LF transitions, the 13e → 23a1, Mn–Cl π* → Mn–COax σ* triplet and singlet states, have been calculated at 35 034 and 35 011 cm−1, respectively. They have low intensity, as was the case for the Mn/COeq LF transitions, but are photochemically very interesting since, according to the results for Mn(CO)5, these states are expected to be strongly Mn–COax dissociative.

Until ca. 35 000 cm−1 we encounter most of the excitations out of 13e into the 22a1−15e set of virtuals (which have all been calculated except the ones into 15e), but above this energy transitions out of the 2b2, 12e, and 21a1 start to play a role. At 33 077 cm−1 the first transition arising out of the HOMO-1 orbital, to the B22(2b2(6s) → 22a1(σ*)) triplet excited state, is found, its singlet component being located at 34 834 cm−1 (the A1 → B2 transition is forbidden). The 12e → 22a1 (σ*) excitations are very close. The intensity is surprisingly large, and these transitions will contribute to the band around 37 000 cm−1, although the 2b2 → 14e transition at 39 148 cm−1 has high intensity and will contribute most. This is a genuine CT transition, which can account for the strong solvatochromic behavior of the corresponding band.

The 2b2 (dxy) → 7b1 (dxy) Mn/CO LF transition, which may be expected to be Mn–COax dissociative, is calculated in this region, at 38 376 cm−1 (singlet; the triplet is at 34 749 cm−1). This transition is forbidden.

The only interesting transition from the point of view of Mn–Cl bond breaking is the Mn–Cl σ → σ*, 21a1 → 22a1 excitation. The triplet and singlet states corresponding to this transition are located at 39 549 and 43 745 cm−1, respectively. They will contribute to the high-energy band at 43 000 cm−1, but other transitions which were not calculated here, will also contribute to this band.

Table 2. Energies (cm−1) and Intensities for Electronic Transitions in MnCl(CO)5

<table>
<thead>
<tr>
<th>state</th>
<th>transition</th>
<th>character</th>
<th>type</th>
<th>energy (cm−1)</th>
<th>intensity</th>
<th>exptl bands</th>
</tr>
</thead>
<tbody>
<tr>
<td>a′E</td>
<td>13e → 22a1</td>
<td>MnCl π* → MnCl σ*</td>
<td>Mn/CO LF</td>
<td>21 207</td>
<td></td>
<td></td>
</tr>
<tr>
<td>a′E</td>
<td>13e → 22a1</td>
<td>MnCl π* → MnCl σ*</td>
<td>Mn/CO LF</td>
<td>23 604b</td>
<td>0.083 1</td>
<td>26 520</td>
</tr>
<tr>
<td>b′E</td>
<td>13e → 7b1</td>
<td>MnCl π* → dxy</td>
<td>Mn/CO LF</td>
<td>29 118</td>
<td></td>
<td></td>
</tr>
<tr>
<td>a′A</td>
<td>13e → 14e</td>
<td>MnCl π* → 2π*</td>
<td>Mn/Cl → CO CT</td>
<td>30 020</td>
<td></td>
<td></td>
</tr>
<tr>
<td>a′A</td>
<td>13e → 14e</td>
<td>MnCl π* → 2π*</td>
<td>Mn/Cl → CO CT</td>
<td>30 539b</td>
<td>0.139</td>
<td></td>
</tr>
<tr>
<td>c′E</td>
<td>13e → 3b2</td>
<td>MnCl π* → 2π*</td>
<td>Mn/Cl → CO CT</td>
<td>30 861</td>
<td></td>
<td></td>
</tr>
<tr>
<td>d′E</td>
<td>13e → 8b1</td>
<td>MnCl π* → 2π*</td>
<td>Mn/Cl → CO CT</td>
<td>30 936</td>
<td></td>
<td></td>
</tr>
<tr>
<td>b′E</td>
<td>13e → 7b1</td>
<td>MnCl π* → dxy</td>
<td>Mn/CO LF</td>
<td>32 138</td>
<td>0.000 201</td>
<td></td>
</tr>
<tr>
<td>c′E</td>
<td>13e → 3b2</td>
<td>MnCl π* → 2π*</td>
<td>Mn/Cl → CO CT</td>
<td>33 022b</td>
<td>0.000 371</td>
<td></td>
</tr>
<tr>
<td>a′B2</td>
<td>2b2 → 22a1</td>
<td>dxy → MnCl σ*</td>
<td>Mn/CO LF</td>
<td>33 077</td>
<td></td>
<td></td>
</tr>
<tr>
<td>d′E</td>
<td>13e → 8b1</td>
<td>MnCl π* → 2π*</td>
<td>Mn/Cl → CO CT</td>
<td>34 226</td>
<td>0.107</td>
<td></td>
</tr>
<tr>
<td>c′E</td>
<td>12e → 22a1</td>
<td>MnCl π* → MnCl σ*</td>
<td>Mn/CO LF</td>
<td>34 584</td>
<td></td>
<td></td>
</tr>
<tr>
<td>a′A2</td>
<td>2b2 → 7b1</td>
<td>dxy → dxy</td>
<td>Mn/CO LF</td>
<td>34 749</td>
<td></td>
<td></td>
</tr>
<tr>
<td>a′B2</td>
<td>2b2 → 22a1</td>
<td>dxy → MnCl σ*</td>
<td>Mn/CO LF</td>
<td>34 834</td>
<td></td>
<td></td>
</tr>
<tr>
<td>c′E</td>
<td>13e → 23a1</td>
<td>MnCl π* → MnCOax σ*</td>
<td>Mn/CO LF</td>
<td>35 011b</td>
<td>0.005 25</td>
<td></td>
</tr>
<tr>
<td>A′E</td>
<td>13e → 23a1</td>
<td>MnCl π* → MnCOax σ*</td>
<td>Mn/CO LF</td>
<td>35 034</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A′E</td>
<td>13e → 23a1</td>
<td>MnCl π* → MnCOax σ*</td>
<td>Mn/CO LF</td>
<td>35 095b</td>
<td>0.892 37 000</td>
<td></td>
</tr>
<tr>
<td>g′E</td>
<td>2b2 → 14e</td>
<td>dxy → 2π*</td>
<td>Mn → CO CT</td>
<td>37 820</td>
<td></td>
<td></td>
</tr>
<tr>
<td>a′A2</td>
<td>2b2 → 7b1</td>
<td>dxy → dxy</td>
<td>Mn/CO LF</td>
<td>38 376</td>
<td></td>
<td></td>
</tr>
<tr>
<td>g′E</td>
<td>2b2 → 14e</td>
<td>dxy → 2π*</td>
<td>Mn → CO CT</td>
<td>39 148b</td>
<td>2.49</td>
<td></td>
</tr>
<tr>
<td>b′A1</td>
<td>21a1 → 22a1</td>
<td>MnCl σ → MnCl σ*</td>
<td>Mn/Cl LF</td>
<td>39 549</td>
<td></td>
<td></td>
</tr>
<tr>
<td>b′A1</td>
<td>21a1 → 22a1</td>
<td>MnCl σ → MnCl σ*</td>
<td>Mn/Cl LF</td>
<td>43 745b</td>
<td>2.74</td>
<td>43 000</td>
</tr>
</tbody>
</table>

a Reference 18. b Symmetry allowed.

4. Photochemistry

Potential Energy Curves for Axial CO Loss. For the ground and lowest excited states we have calculated PECs for loss of the axial CO ligand. The a→c1,3E curves are shown in Figure 5. Of all the curves above the c1,3E we have, apart from the “companion” c1E, only drawn a1,3B2, since these are the only dissociative ones. The a1,3B2 curves around Rf; in fact cross many PECs of other symmetries (not shown in the figure, but see the excitation energies at Rf; in Table 2). However, all have bonding shapes similar to c1,3E. That these higher excited states (except for the a1,3B2) do not readily lead to CO dissociation may be judged already from the behavior of the relevant orbital energies as a function of Mn–CO distance (see discussion below). Their energies are too high anyway to be populated by the UV−vis excitation used in the photochemical experiments.

The calculated PEC for the ground state has a shallow minimum, which agrees well with the rather low IR frequency for Mn−C vibrations. The asymptotic dissociation limit lies at 2.31 eV above the equilibrium energy, corresponding to a dissociation energy of 222 kJ/mol. This is near the DFT value of 200 kJ/mol for Mn2(CO)10. Restricted Hartree−Fock calculations by Davy and Hall lead, as usual in the case of a metal−carbonyl bond, to a much lower dissociation energy of 86.9 kJ/mol. When relaxation effects are included, our calculated dissociation energy drops to 176 kJ/mol and the CO’s bend toward the CI, because of the bonding overlap between these fragments. No experimental dissociation energies are known since thermal loss of an equatorial CO is more favorable (vide infra).

Before discussing the excited state PECs, it is instructive to consider the orbital characters and energies in the ground state at various Mn−COax distances (Figure 6). The most remarkable feature in Figure 6 is the steep descent of the Mn−COax σ antibonding 23a1 orbital (it is accompanied by a rise of the σ bonding 20a1 orbital, not shown in the figure), whereas the other orbitals are relatively little affected. As a result the 23a1 (σ*) orbital very soon crosses the Mn−Cl σ antibonding orbital 22a1 (σ*), already near a Mn−COax distance of 2 Å.

Figure 6. Orbital energies and dominant characters of the highest occupied and lowest unoccupied MO’s at several Mn−COax bond lengths.

The lowest excited states of E symmetry, a1E and a2E, will have 13e π* → 22a1 σ* character before the crossing point, but change to 13e π* → 23a1 σ* in the crossing region. Since the 13e π* → 22a1 σ* excitation does not affect the Mn−COax bond, we would expect the a1E and a2E PECs to be bonding, i.e., exhibit a minimum close to the equilibrium distance and curve upward at longer distances. A barrier would then indicate the avoided crossing to the descending PEC of the excited state with 13e π* → 23a1 σ* character, which is asymptotically calculated to lie at much lower energy than the 13e π* → 22a1 σ*(Mn−Cl) state (cf. Figures 5 and 6). We note, however, that the singlet a1E PEC in Figure 5 has only a very weak minimum, and the triplet a2E none at all. The lack of a barrier can be understood from the very rapid lowering of the 23a1 (σ*) orbital with Mn−COax distance, which leads to very rapid descent of the initially high-lying 13e → 23a1 (σ*) state. This leaves the a1,3E PECs hardly any room to curve upward, and apparently a sufficiently large interaction between the states exists to make the crossing strongly avoided and virtually suppress any barrier. Exactly the same situation has been observed for axial CO dissociation in Mn2(CO)10. Of course, the 13e → 23a1 (σ*) states, which are the e1E, f1E states at equilibrium geometry, cross with the lower 1,3E states before becoming the lowest one. This means that 13e → σ* character shows up in successively lower E states before ending up in the lowest one, the a1,3E.

The next higher E PECs are bonding, since no Mn−COax antibonding orbital is occupied in these states. The first correspond at Re to excitations to d1,3 (b1,3E) or 2σ* (c and d1,3E). It is clear from Figure 6 that asymptotically, at large Mn−COax distance, the first excited states above the low-lying 13e → σ* will be 13e → σ* and 12e → σ*. So b1,3E and c1,3E will asymptotically hold this character. This implies that the electronic character of these states changes during COax dissociation, first to 13e → σ* character when this excitation “on its way down” crosses these excited states, and next to their asymptotic nature. As a consequence these PECs do not exhibit such a deep well as the ground state PEC but are more shallow. The b1,3E states, which have 13e → 7b1 (d1,3−→) character at Re (see Table 2), asymptotically hold the 13e → σ* character that the a1,3E had at Re. The c1,3E states become asymptotically 12e → σ* excited states. The excitation out of the 12e orbital leads to considerable orbital relaxation, asymptotically even more so than at Re. As a result 12e virtually loses all 3d character, which explains the small singlet−triplet splitting of the asymptotic c1E and c2E curves. The avoided crossing to the 12e → σ* excited state does not make the c1,3E PECs dissociative, the asymptotic
energy is still 0.9–1.25 eV above the energy at equilibrium distance. The avoided crossing, however, clearly shows up in the flat behavior of the $a_{1}^{−1}E$ PECs at larger distances.

We have drawn in Figure 5 one set of PECs for another symmetry, namely, the pair of dissociative states $a_{1}B_{2}$ and $a_{1}B_{1}$ states that correspond at equilibrium geometry to excitation from the second highest occupied molecular orbital to the Mn–Cl σ^{*} orbital, i.e., the $2b_{2} \rightarrow 2a_{1}, d_{yz} \rightarrow Mn−Cl \sigma^{*}$ transition. As in the case of the $a_{1}^{1}E \ 13e \rightarrow 2a_{1}$ excited state, the dissociative behavior is brought about by a change of character, again due to the rapid descent of the σ^{*} orbital. The $a_{1}^{1}B_{2}$ states correspond asymptotically to the $d_{xy} \rightarrow Mn−CO_{eq} \sigma^{*}$ transition. The $a_{1}B_{2}$ and $a_{1}B_{1}$ states mirror, at a higher energy, the behavior of the $a_{1}E$ and $a_{1}E$ states since they correspond to excitations out of $2b_{2}$ rather than $13e$ but are otherwise analogous. They are very slightly bonding for the singlet state and dissociative for the triplet state. We have chosen to present this behavior in the figure, although strictly speaking the avoided crossing of these B_{2} curves with the B_{2} states arising from the lower lying (at R_{e}) $13e \rightarrow 14e$ should be taken into account. The “diabatic” $a_{1}^{1}B_{2}$ PECs in the figure are, however, interesting for the photochemistry upon higher energy excitation; see below.

Potential Energy Curves for Equatorial CO Loss. For equatorial CO loss excitations from the $13e$ HOMO to the three lowest virtual orbitals at equilibrium geometry and the $2b_{2} \rightarrow 22a_{1}$ transition are investigated. The PECs for the states that correspond at equilibrium geometry to $a_{1}^{1}E$ ($13e \rightarrow Mn−Cl \ \sigma^{*}$) and $b_{1}^{1}E$ ($13e \rightarrow d_{xz,yz}^{2}$) are displayed in Figure 7. The set of $13e \rightarrow CO$ 2π^{*} Mn–Cl CO CT transitions ($a_{1}^{1}A_{1}, a_{1}^{1}E, d_{1}^{1}E$, see Table 2) have been omitted from the figure.

Again the minimum in the ground state PEC is rather shallow in accord with the low frequencies of the Mn–C vibrations. The asymptotic dissociation limit lies at 1.43 eV, which corresponds to a dissociation energy of 138 kJ/mol. When relaxation effects are included, the dissociation energy drops to 99 kJ/mol, in reasonable agreement with the experimental value of 115 kJ/mol.\(^{(39)}\) Davy and Hall report a restricted Hartree–Fock (RHF) dissociation energy of 77 kJ/mol.\(^{(40)}\)

For reasons of clarity orbitals in C_{s} symmetry are designated by their symmetry label in the C_{w} ground state equilibrium geometry.
dissociative behavior of the a1A′′ and a1A′′′ PECs. Note that this electronic structure argument would at the one-electron level lead one to expect the a′′′ ("dπ") to lie above the a′′ ("dπ''), but this is not the case (see Figure 8). The breakdown of this simple one-electron picture is related to the predominantly Cl pCl character of the 13e in the ground state and the orbital relaxations accompanying ionization and excitation out of this orbital mentioned earlier. Note that the 12e derived a′ and a″ orbitals, which are the bonding combinations of Mn 3dπ with Cl 3pπ, do exhibit the expected ordering (see Figure 8).

The PECs that arise from the b13E states show just the opposite behavior in that now the A′′′ states (b1A′′′ and b1A′′′) are dissociative, while the A′′ states (c1A′ and b1A′) are unambiguously bonding. The reason is that the A′′′ states can asymptotically become dxy−d2z−2 excited states, whereas the A′′ states cannot asymptotically become excited states to the descending d2z−2 orbital (cf. the orbital energy pattern in Figure 8). Note that the change of electronic character along the b1A′′ and b1A′′′ PECs is now due to a change in the orbital out of which the excitation takes place, namely, from the 13e component dxy to the lower lying 2b2(dxy). The excitation is to the descending d2z−2 all along these PECs, which are dissociative but would even be more strongly dissociative had not the 13e(dxy)−d2z−2 character changed to the higher excitation 2b2(dxy)−σ⁎(Mn−Cl−) which is excitation is asymptotically somewhat lower than the 12e-a′(dxy)−d2z−2 σ⁎. The corresponding PECs have a similar bonding behaviour for equatorial CO loss as the 2A1 state. This preference is reflected in the more strongly dissociative behavior of the a1A′′ and a1A′′′ PECs. Note that this electronic structure argument would at the one-electron level lead one to expect the a′′′ ("dπ") to lie above the a′′ ("dπ''), but this is not the case (see Figure 8). The breakdown of this simple one-electron picture is related to the predominantly Cl pCl character of the 13e in the ground state and the orbital relaxations accompanying ionization and excitation out of this orbital mentioned earlier. Note that the 12e derived a′ and a″ orbitals, which are the bonding combinations of Mn 3dπ with Cl 3pπ, do exhibit the expected ordering (see Figure 8).

The lowest 3E and 1E states, corresponding to the Mn−Cl σ⁎−Mn−Cl σ⁎, 13e−22a1 excitation, directly correlate with the MnCl(CO)5•− and MnCl(CO)5•+ ground states of Mn(CO)5. The PEC that arises from the a3A1 state shows that Mn-Cl bond homolysis is experimentally observed, only a few PECs along the Mn−Cl axis have been calculated. According to the calculations the first excited 2E state of Mn(CO)5+ lies 1.86 eV above its ground state. The states of MnCl(CO)5 correlation with this 2E state will thus not play a role in the photochemistry of MnCl(CO)5, since they can only be reached with far-UV light. Heterolysis, although feasible in solution, is not taken into account since the energies of the ions in the gas phase are rather high. The radicals are calculated to be about 4 eV (i.e., about 400 kJ/mol) more stable than Mn+(CO)5 and Cl− in the gas phase. Therefore only the PECs of the 1E and 1A1 states, which asymptically correspond to the 2A1 + 2P ground states of Mn(CO)5+ and Cl−, have been calculated.

The lowest state that correlates with the asymptotic 2A1 + 2P fragment ground states is the 1A1 ground state. The PEC of this state shows that Mn−Cl homolysis requires much more energy than CO dissociation, i.e., 297 kJ/mol. When relaxation effects are included, the homolysis energy becomes 268 kJ/mol, in excellent agreement with the experimental value of 268 kJ/mol.42

The lowest 3E and 1E states, corresponding to the Mn−Cl π⁎−Mn−Cl σ⁎, 13e−22a1 excitation, directly correlate with the ground state of the radicals Mn(CO)5+ and Cl−. As can be seen from Figure 9 excitation into these states does not supply enough energy to homolytically break the Mn−Cl bond. Therefore Mn−Cl bond homolysis cannot occur even though the lowest excited states do correlate with the lowest states of

Figure 9. Potential energy curves for Mn−Cl bond homolysis. The avoided crossing between to two 1A1 states is not calculated accurately and is only indicated.

the radicals. The absence of Mn–Cl homolysis is therefore attributed to the high thermodynamic stability of the Mn–Cl bond.

The 3A_1 state correlating with the $^2A_1 + ^2P$ ground state of the radicals corresponds from ca. 2.7 Å onward to the Mn–Cl $\sigma \rightarrow$ Mn–Cl $\sigma^* \rightarrow 21a_1 \rightarrow 22a_1$ transition. The orbital energies (not shown here) show the expected behavior of, on the one hand, rapid lowering of the Mn–Cl σ^* LUMO, which without crossings becomes asymptotically the singly occupied σ_{2p} hybrid of the Mn(CO)$_5$ radical, and, on the other hand, an increase in energy of the Mn–Cl $\sigma 21a_1$, which asymptotically becomes the σ^* orbital of the atomic Mn. The diminishing gap between these orbitals corresponds to the dissociative character of the a^3A_1PEC in the asymptotic tail.

At the equilibrium geometry the lowest 3A_1 state, arising from the 13e → 14e transition, has a lower energy than the $\sigma \rightarrow \sigma^*$ state and an avoided crossing between these two states will thus occur. Therefore, the PEC of the 13e → 14e triplet state has also been calculated near equilibrium geometry. The barrier resulting from the avoided crossing is clearly visible on the a^3A_1 PEC in Figure 9. The $\sigma \rightarrow \sigma^*$ excitation energy has been calculated at shorter distances than 2.7 Å, and a sketch of the steeply descending $\sigma \rightarrow \sigma^*$ state is given in Figure 9, without however trying to map out in detail the avoided crossings through which the $\sigma \rightarrow \sigma^*$ character descends (except for the last one). Excitation to the b^3A_1,a^3A_1 (13e → 14e) at R_0 or to nearby higher excited states can only yield the radical products after crossing the barrier in the a^3A_1 PEC. In this region, many states are present (not drawn in Figure 9) and internal conversion toward lower states will probably be rather fast. As a consequence Mn–Cl bond homolysis is unlikely. It is in fact not even observed with high-energy radiation.7

Photochemistry of MnCl(CO)$_5$. Irradiation of MnCl(CO)$_5$ with low-energy light results in occupation of the a^1E state. The excited molecules can then either lose axial (trans-) or equatorial (cis-) CO after overcoming only a small barrier in both directions or undergo intersystem crossing to the a^3E state. From this latter state axial and equatorial CO loss can occur without any barrier. Indeed, photochemical cis- and trans-CO exchange has been observed in 13CO exchange experiments.43 It should, however, be cautioned that this does not strictly prove the occurrence of both primary photoproducts, since fast rearrangements may also occur during these exchange processes. Our results do point to the occurrence of both reactions. In this respect they do not substantiate the assumption that photochemical trans-CO dissociation is most likely for this type of complex. This assumption has been generally made, and the absence of trans-substituted photoproducts upon irradiation of metal pentacarbonyl halides in the presence of a Lewis base has been attributed2 to rapid rearrangement of the apical MnCl(CO)$_4$ primary photoproduct resulting from trans-CO loss to MnCl(CO)$_4$ with Cl in the basal plane. This point has recently been studied in detail by Pierloot et al.5 and Matsubara et al.6c. The results of these studies are relevant for the present work in that we certainly cannot exclude trans-CO loss.

The A'' components of the b^1E and b^3E states, which are located at higher energy, are also dissociative for equatorial CO loss, due to crossing by the $2b_2(d_{yz}) \rightarrow 7b_1(d_{z^2})$ state (see Figure 7), but not for axial CO (see Figure 5). The presence of these states can account for the increase in quantum yield when going to shorter wavelength excitation. Irradiation at 366 nm (27 322 cm$^{-1}$, 3.39 eV) results in CO loss with a quantum yield of 0.06, whereas irradiation at 313 nm (31 948 cm$^{-1}$, 3.96 eV) gives a quantum yield of 0.44. Irradiation at 313 nm results in population of the b^1E and b^3E states, most likely by population of the a^1A_1 which has high intensity, followed by intersystem crossing. The A'' components of b^1E are dissociative for the equatorial CO. The 313 nm radiation may just not be able to populate the higher lying aB$_2$ states, which are dissociative for the axial CO. Even if the aB$_2$ states could be reached, release of CO from these states may have lower probability since nonradiative decay to close-lying excited states is expected to be rather fast because of the large density of states in this region. It is therefore expected that the ratio of equatorial to axial CO loss changes in favor of equatorial CO loss when the wavelength of excitation is shortened.

Comparison of the Photochemistry of Mn$_2$(CO)$_{10}$, MnH(CO)$_5$, and MnCl(CO)$_5$. In this section we will compare the results from calculations of the PECs of Mn$_2$(CO)$_{10}$ by Rosa et al.,5 those of MnH(CO)$_5$ by Daniel et al.,8 and the present results on MnCl(CO)$_5$. These can be taken as prototype for respectively Mn(CO)$_5$(M) ($M = Mn(CO)_5$, Re(CO)$_5$, etc.), MnR(CO)$_5$ ($R = H, CH_3$), and MnX(CO)$_5$ ($X = Cl, Br, I$). All of these molecules can be built up by combining Mn(CO)$_5$ and another fragment with a singly occupied orbital. The differences between the molecules must thus stem from differences in these fragments and their interaction with Mn(CO)$_5$.

As shown above, the photochemistry of organometallic compounds is primarily determined by the relative energies of the occupied and virtual orbitals in the ground state and their dependence on the geometry. The orbital interaction diagrams for the three compounds are given in Figure 2. [The orbital energies for MnH(CO)$_5$ and Mn$_2$(CO)$_{10}$ were calculated using the same basis set and functional as those for MnCl(CO)$_5$, in previously optimized geometries,3,5] The compounds MnH(CO)$_5$, and MnCl(CO)$_5$ both have the Mn--H/Cl σ bonding orbital, with much H 1s and Cl 3p$_x$ character, respectively, located below the occupied Mn 3d orbitals. In the case of MnH(CO)$_5$, the $e (d_y)$ orbitals are the d_{z^2} antibonding orbitals in MnCl(CO)$_5$, the e orbitals split into two sets of Mn–Cl π and π^* orbitals. In the case of Mn$_2$(CO)$_{10}$ the ordering is reversed; here the Mn–Mn σ orbital is the HOMO and the $e (d_{yz})$ orbitals (the $e_1 \pi$ bonding and $e_2 \pi$ antibonding sets) are at lower energy.34 The relatively high energy of the σ orbital in the case of Mn$_2$(CO)$_{10}$, when compared to MnCl(CO)$_5$ and MnH(CO)$_5$, is caused by the rather high energy of the Mn(CO)$_5$ σ_{hy} hybrid, when compared with the H 1s and Cl 3p orbitals, and by the relatively weak interaction between the σ_{hy} orbitals.

In the case of MnCl(CO)$_5$ and Mn$_2$(CO)$_{10}$ the Mn–L ($L = Cl$ or Mn(CO)$_5$) σ^* orbital is the LUMO, whereas the Mn–CO$_{ax}$ and Mn–CO$_{eq}$ σ^* antibonding orbitals are located at higher energy (we denote the Mn–CO$_{ax}$ and Mn–CO$_{eq}$ σ^* antibonding orbitals, “d_{z^2} and “d_{x^2}–y^2”, respectively, both as σ^*). MnH(CO)$_5$ is special in that the Mn–H σ^* orbital is located at very high energy, considerably above the σ^* orbitals. The LUMO is in this case a CO $2\pi^*$ orbital. The diagram highlights the remarkably stronger interaction of the Mn(CO)$_5$ σ_{hy} hybrid with H 1s than with another Mn(CO)$_5$ σ_{hy}.

The three complexes show a strikingly similar behavior with respect to CO loss, which in all three cases occurs upon irradiation into the lowest energy band. In all cases the d_{yz} → LUMO excited state is dissociative for axial and equatorial44 CO loss, but only after an (avoided) crossing of the LUMO with the Mn–CO$_{ax}$ or Mn–CO$_{eq}$ σ^* orbital, respectively. Whether there is a small barrier or not is not important here. Such a barrier may have a large influence on the quantum yield,

but it can be overcome by several mechanisms. In the case of Mn$_2$(CO)$_{10}$ there is also the transition $\sigma \rightarrow \sigma^*$ at approximately the same energy (calculated at slightly lower energy but experimentally assigned to slightly higher energy than the d$_{xy}$/d$_{yz}$ → σ^*). The $\delta \rightarrow \sigma^*$ excited state of Mn$_2$(CO)$_{10}$ is, however, not Mn–CO dissociative. Thus, we may conclude that Mn–CO dissociation is very similar in these cases. It has little to do with the nature of the LUMO but is caused by the strongly Mn–CO antibonding nature of the σ^* orbitals. The rapid descent upon Mn–CO bond lengthening of these orbitals leads to the CO dissociation in the lowest excited state. This feature of the electronic structure is peculiar to the Mn(CO)$_5$ fragment, although the substituent influences the precise position of the dissociative state with respect to the other states.

The Mn–H/Cl/Mn homolysis shows large differences between these molecules, which is caused by the large influence of the substituent on the energy of the important orbitals. In the case of Mn$_2$(CO)$_{10}$, the $\sigma \rightarrow \sigma^*$ triplet state is part of the lowest energy band and bond homolysis thus occurs very easily, being the primary photoprocess, together with Mn–CO dissociation, upon irradiation into the lowest band. In the case of MnH(CO)$_5$ and MnCl(CO)$_5$ the $\sigma \rightarrow \sigma^*$ transitions are at too high energy to be excited directly in the usual photochemical experiment. At long distances the $3(\sigma \rightarrow \sigma^*)$ excited state will become much lower in energy, and asymptotically it will go to the ground states of the radical fragments. An avoided crossing will thus eventually occur with the lowest $3\Sigma^+$ state, making the lowest $3\Sigma^+$ PEC dissociative at long distances. However, the lowest $3\Sigma^+$ state at equilibrium geometry, corresponding to the 13e \rightarrow 14e excitation, is already considerably higher than the d$_{xy}$/d$_{yz}$ → LUMO type excited state, which is responsible for the lowest band in the experimental spectrum. Even if irradiation takes place at sufficiently high energy to populate the lowest $3\Sigma^+$, the barrier in the lowest 3Π PEC, related to the avoided crossing (see Figure 9), will drastically reduce the quantum yield for Mn–H/Cl dissociation.

These results fit in nicely with the experimental observations that a primary photoprocess of all of these complexes is Mn–CO dissociation, with higher quantum yield for higher energy radiation due to increased Mn–CO$_{eq}$ dissociation. In Mn$_2$(CO)$_{10}$ the Mn–Mn bond homolysis is fully competitive with Mn–CO bond dissociation upon irradiation in the lowest band (1:1), the propensity to Mn–CO bond breaking increasing at higher energy. In MnH(CO)$_5$ and MnCl(CO)$_5$ Mn–H/Cl bond homolysis occurs much less readily. Mn–H bond dissociation only occurs upon irradiation with high energy but in much lower yield than Mn–CO bond dissociation, whereas for MnCl(CO)$_5$ no Mn–Cl bond homolysis has (yet) been found. The difference between these systems with respect to the Mn–Mn/ Mn/H/Cl homolysis can be understood immediately from the positions of the σ and σ^* molecular orbitals (Figure 2).

5. Conclusions

We have considered both the photochemical Mn–CO dissociation and Mn–L σ bond homolysis in the complexes Mn–L$_2$(CO)$_5$ with L = Cl, H, and Mn(CO)$_5$.

As for the Mn–L photolysis, which readily occurs for the Mn–Mn bond in Mn$_2$(CO)$_{10}$, but not for the Mn–Cl and Mn–H bonds in MnCl(CO)$_5$ and MnH(CO)$_5$ respectively, we have been able to explain this behavior on the basis of the relative positions of the σ and σ^* orbitals in the occupied and virtual orbital level spectra.

As for the metal–carbonyl dissociation our calculations point to a mechanism of photochemical CO loss that differs substantially from the generally accepted one, which invokes dissociation occurring upon ligand-field excitation. In the case of MnCl(CO)$_5$ Wrighton et al. suggested on the basis of ligand field theory that transitions to the lowest excited state would imply occupation of a d$_{z^2}$, which would, due to antibonding with axial CO, lead directly to axial CO loss. Higher energy excitation would lead to occupation of the higher d$_{z^2}$ or orbital and result in loss of an equatorial CO. This explanation directly accounts for the increase in quantum yield upon higher energy excitation. A similar explanation of the photochemistry was presented by Pierloot et al.

Our calculations, however, demonstrate that the LUMO is not antibonding for either axial or equatorial CO. The lowest excited state only becomes dissociative for both axial and equatorial CO after avoided crossing with a state which is Mn–CO dissociative but which is at too high energy at R_e to be populated directly. The high-lying states are the 13e \rightarrow 23a$_1$ (d$_{z^2}$ σ^*) and 13e \rightarrow 7b$_1$ (d$_{x^2}$–π σ^*) LF excited states for axial and equatorial CO loss, respectively. The calculations show that the nature of the LUMO at the equilibrium geometry does not primarily determine the photochemistry of this complex. The geometry dependence of all antibonding orbitals has to be taken into account. This result—which substantiates previous findings for Mn$_2$(CO)$_{10}$—implies an important caveat for the general practice of trying to interpret photochemical events in transition metal complexes on the basis of molecular orbital diagrams at the equilibrium geometry. A very clear example is Cr(CO)$_6$, where we have recently found precisely the same situation to apply: the ligand-field excited states are at R_e at high energy, but they descend so rapidly upon Cr–CO bond lengthening that they very soon cross the lowest excited state, which has CT character at R_e, so that the lowest excited state PEC becomes dissociative. Recent sophisticated CASCF/CASPT2 calculations of the optical spectrum of Cr(CO)$_6$ by Pierloot et al. provide support for this reassessment of the role of LF states in the photochemical metal–carbonyl dissociation process in that they show that the LF excited states of Cr(CO)$_6$ are—contrary to the original assignment by Beach and Gray—located rather high in the spectrum, the photodissociative lowest excited states having clear CT character at R_e.

