Regulators of hepatic glucose and glycogen metabolism

Sprangers, F.

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
CHAPTER 3

Partial inhibition of nitric oxide synthesis in vivo does not inhibit glucose production in man.

Fleur Sprangers¹, Wilbert T. Jellema³, Christa E. Lopuhaa³, Erik Endert⁴¹, Mariëtte T. Ackermans⁴¹, Johannes J. van Lieshout³, Jaring S. van der Zee², Johannes A. Romijn⁵ and Hans P. Sauerwein¹.

Department of Endocrinology and Metabolism, Metabolism Unit¹, Department of Pulmonology², Department of Cardiovascular Research³, Division of Internal Medicine, Department of Clinical Chemistry, laboratory of Endocrinology and Radiochemistry⁴, Academic Medical Center, Amsterdam; Department of Internal Medicine, Leiden University Medical Center⁵, The Netherlands.

Metabolism, Clinical and Experimental, in press
Abstract

Role of NO on glucose production in man

In the liver, paracrine interaction between Kupffer cells and hepatocytes influences glucose metabolism. In vitro in rats, nitric oxide (NO), a paracrine mediator, inhibits several pathways of hepatic glucose production. The role of NO on glucose production has not been studied in vivo in humans. Glucose production was measured during NG-Monomethyl-L-arginine, monoacetate salt (L-NMMA) infusion, an inhibitor of NO synthesis in vivo, in 6 healthy men fasting 23 hours, in a saline-controlled crossover study. During L-NMMA infusion NO output decreased 40-50%, peripheral vascular resistance rose ~22% and cardiac output (CO) decreased ~14%. The decrease in glucose production was not different between L-NMMA and saline. Glucose concentration, substrate supply, and glucoregulatory hormone concentrations were not different; epinephrine was lower with L-NMMA. A 40-50% inhibition of NO synthesis in vivo in humans does not affect glucose production during short-term fasting. The hypothesis that NO is an important modulator of basal glucose production in healthy humans in vivo should therefore be rejected.
Role of NO on glucose production in man

Introduction

In healthy humans nonhormonal mechanisms play an important role in the regulation of basal hepatic glucose production. Basal glucose production is maintained at a constant level even in the absence of insulin and glucagon or hepatic vagal activity, and substrates for gluconeogenesis do not influence glucose production as long as their availability is not reduced. The mechanism behind this regulatory process is not known. Recent studies show that the primary route by which insulin maintains control over glucose production may be indirect and mediated by free fatty acids (FFA), as was described in the "single gateway hypothesis" by Bergman et al. In the postabsorptive state, under basal conditions, FFA have a clear but modest role in the regulation of postabsorptive glucose production, as has been described by Boden et al. and Fery et al.; inhibition of lipolysis (i.e. plasma FFA) with acipimox or nicotinic acid often leaves glucose production unaffected due to autoregulation. In the regulation of glucose production, intrahepatic factors may play an important role. Experimental data suggest that products of Kupffer cells influence glucose metabolism. Prostaglandins produced by stimulated Kupffer cells regulate glycogenolysis, and in humans the inhibitor of prostaglandin synthesis indomethacin stimulates glucose production in vivo. NO is another Kupffer cell product. In vitro studies in rats show that NO strongly inhibits gluconeogenesis, modulates glycogenolysis, and glycogen synthesis. In humans NO has been attributed to effects on insulin sensitivity in hypertension, obesity and type 2 diabetes mellitus. NO could be a suitable modulator of basal glucose production; NO's short half-life enables a rapid and rapidly reversible effect. Whether NO has a regulatory role in glucose production in healthy humans has not been studied yet. NO is synthesized from L-arginine by various isoforms of the enzyme NO synthase (NOS). Direct measurement of NO production on whole body level is fraught with major problems. In blood, NO has a half-life of seconds due to its binding to hemoglobin, and changes in plasma NO concentration are therefore often deduced from the concentration of nitrate as a stable end product of NO. The plasma nitrate concentration, however, depends not only on NO production but also on nitrate ingestion and nitrate clearance, and is therefore not a very sensitive parameter for whole body NO production. The only way to evaluate the potential regulatory role of NO on glucose production during short-term starvation in healthy humans is...
by inhibiting NO synthesis concomitantly with indirect measurements of NO activity. N- \textdaggerMonomethyl-L-arginine (L-NMMA), an L-arginine-analogue, is a competitive inhibitor of nitric oxide synthase (NOS) and strongly inhibits NO synthesis \textit{in vivo}11. NO is a major regulator of vascular tone by inducing vascular smooth muscle relaxation; intravenous administration of L-NMMA to healthy humans raises blood pressure through an increase in systemic vascular resistance 18. We hypothesize that if NO is an important modulator of glucose production \textit{in vivo}, as suggested by above-mentioned \textit{in vitro} data, inhibition of NO synthesis may influence basal glucose production. This study evaluated the effect of L-NMMA infusion on glucose production in a saline-controlled crossover study in 6 healthy postabsorptive men. We measured glucose production, concentrations of glucoregulatory hormones and substrates, and direct and indirect parameters of NO production (NO production by the lung, peripheral vascular resistance and plasma nitrate concentration), between 16 and 23 hours of fasting.

\textbf{Subjects and Methods}

\textit{Subjects:} six healthy men (age: 23 ± 0.5 yr, weight: 79.1 ± 1.5 kg, height: 1.86 ± 0.01 m, body mass index: 22.9 ± 0.5) participated in the study after written informed consent. All were completely healthy, had not experienced any febrile disease in the month prior to the study, had normal blood pressure and did not use medication. The study was approved by the Research Committee and the Medical Ethical Committee of the Academic Medical Centre, Amsterdam.

\textit{Study design:} each subject was studied twice, receiving L-NMMA and saline on one occasion and saline alone on the other (control study), whereby each subject served as his own control (fig. 1). Both study protocols were separated by at least 4 weeks. For 3 days prior to the study, all volunteers consumed a weight-maintaining diet containing at least 250 grams of carbohydrates. The subjects were fasted from 6:00 PM on the day prior to the study until the end of the study. At 7:45 AM, a catheter was placed into an antecubital vein for infusion of stable isotope tracers. Another catheter was inserted retrogradely into a contralateral hand vein kept in a thermoregulated (65°C) plexiglas box for sampling of arterialized venous blood. In both studies saline was infused as NaCl 0.65% at a rate of 50 mL/h to keep the catheters patent. During both studies the subjects
were confined to bed. At 8:00 AM (t = -2 h) blood was sampled for determination of background enrichment of [6,6-\(^2\)H\(_2\)]-glucose and then a primed (17.6 \(\mu\)mol/kg), continuous (0.22 \(\mu\)mol/kg/min) infusion of [6,6-\(^2\)H\(_2\)]-glucose (Isotec Inc., Miamisburg, OH, USA) was started and continued until the end of the study at 5:00 PM (t = 7 h). At t = -20, -15, -10 min and t = 0 h, blood samples for determination of isotopic enrichment of glucose were drawn. At t = 0 h, blood samples for baseline values of hormones and substrates were also drawn. Immediately after t = 0 h, a primed (2 mg/kg), continuous (5 mg/kg/hr) infusion of L-NMMA (20 mg/ml)(Calbiochem, Novabiochem International, San Diego, California, USA) was started and continued until 3:00 PM (t = 5 h).

Fig. 1. Study design. The bars indicate i.v. isotope infusion and L-NMMA and/or saline infusion after an initial bolus. t = 0 h corresponds to baseline measurements and the beginning of the study (16 h fasting). Arrows indicate hourly measurements of hemodynamic parameters and NO output from t = -1 h to t = 7 h.

Every 30 min between t = 0 h and the end of the study at 5:00 PM (t = 7 h), blood samples were drawn for measurement of isotopic enrichment. From t = 0 h till the end of the study at t = 7 h blood samples were drawn every hour for measurement of hormone, substrate (FFA, lactate and alanine), L-NMMA, arginine, and nitrate concentrations. From 3:00 PM (t = 5 h) till the end of the study at 5:00 PM (t = 7 h), L-NMMA and
arginine concentrations were measured every 15 min. The withdrawn blood volume was substituted by at least an equal volume of saline.

NO concentration in exhaled air was measured every hour from \(t = 0 \) h till \(t = 7 \) h after baseline sampling before starting L-NMMA infusion, and at \(t = 24 \) h. From one hour before the infusion of L-NMMA and/or saline \((t = -1)\) until two hours after ending L-NMMA and/or saline infusion \((t = 7)\), continuous non-invasive finger blood pressure was measured every hour for 15 minutes. Changes in cardiac output (CO) and total peripheral resistance were derived from the arterial pressure wave \(^{20,21}\).

Assays: all measurements in each individual subject were performed in the same run, and all samples were tested in duplicate. Glucose concentration and enrichment were determined according to Reinauer et al. using phenyl-\(\beta\)-D-glucoside as internal standard \(^22\). The gas chromatography column used was a DB17 capillary column (J & W Scientific, Folsom, CA) on an HP 5890 Series II gas chromatograph coupled to an HP 5989 A model mass spectrometer (Hewlett Packard, Palto Alto, CA). Mass spectra were recorded at m/z 187 for glucose and m/z 189 for 6,6\(^2\)H\(_2\)-glucose. The internal standard was monitored at m/z 127 and m/z 169. Plasma free fatty acids (FFA) were determined using the NEFA C kit (code No 994-75409 E) from Wako Chemicals GmgH (Neuss, Germany). Plasma insulin concentration was measured by RIA (Insulin RIA 100, Pharmacia Diagnostic AB, Uppsala, Sweden; intra-assay coefficient of variation (CV) 3-5%, inter-assay CV 6-9%), glucagon was determined by RIA (Linco Research, St Charles, MO: detection limit 15 ng/L, intra-assay CV 3-5%, inter-assay CV 9-13%), cortisol was measured using a fluorescence polarization immunoassay (Abbott Laboratories, North Chicago, IL, intra-assay CV 6.4%, inter-assay CV 9.0%), and catecholamines were measured by in-house HPLC method. Essentially norepinephrine (inter- and intra-assay CV 13 and 6 %, resp.) and epinephrine (inter- and intra-assay CV 14 and 7 % resp.) were selectively isolated by liquid-liquid extraction and derivatized to fluorescent components with 1,2-diphenylethlenediamine. The fluorescent derivatives were separated by reversed phase liquid chromatography and detected by fluorescence detection \(^{23}\).

Blood lactate was determined by enzymatic method (Boehringer Mannheim, Mannheim, Germany) on a Cobas Bio Centrifugal Analyzer. \(^{15}\)N-Monomethyl-L-arginine (L-NMMA), and plasma arginine and alanine concentrations were determined
in plasma by aminoacid analyzer (Beckman Instruments GmbH, München, Germany; detection limit for L-NMMA is 5 μmol/L), using the modified technique of Moore et al. 24.

The NO concentration was measured in exhaled air during tidal breathing at rest in a sitting position. The nose was clipped and the subjects inhaled NO-free air through a mouthpiece. Expired air was collected via a T-valve in a Douglas bag during a 2 minutes procedure. Moreover, respiratory flow and volume data were measured using a ventilated hood (model 2900, computerized energy measurement system, Sensor Medics, Anaheim, CA). NO samples were withdrawn with a vacuum pump through a teflon tube (internal diameter of 4 mm, length 1700 mm). Measurements were done from the Douglas bag before starting the L-NMMA infusion for baseline values and then every hour between t = 0 h and t = 7 h, and at t = 24 h. NO was measured with a chemiluminescence NO/NOx analyzer CLD 700 AL med (ECO Physics, Durnten, Switzerland), range 1-100 parts per billion (ppb). Ambient levels of NO were below 5 ppb. The NO output was calculated as: NO output = NO concentration in exhaled air × minute ventilation / body surface area 19,25.

Plasma NO\textsubscript{2}⁻ and NO\textsubscript{3}⁻ were determined in deproteinized heparinized plasma. Plasma NO\textsubscript{3}⁻ was converted to NO\textsubscript{2} using nitrate reductase (Boehringer Mannheim, Mannheim, Germany). Then total NO\textsubscript{2}- (i.e. plasma NO\textsubscript{2}⁻ + NO\textsubscript{2} from reduced NO\textsubscript{3}⁻) and plasma NO\textsubscript{2} were determined spectrophotometrically using the Griess reaction 26. Plasma NO\textsubscript{3} was calculated as the difference between total NO\textsubscript{2} and plasma NO\textsubscript{2} concentration.

Continuous non-invasive blood pressure was measured with a Finapres model 5 (Netherlands Organisation for Applied Scientific Research, Biomedical Instrumentation (BMI-TNO)). Finapres is based on the volume clamp method of Peñáz et al. 27 and the Physiocal* criteria of Wesseling et al. 28. The Finapres cuff was wrapped around the mid-phalanx of the index finger of the arm used for the infusion of L-NMMA. The hand with the cuffed finger was carefully positioned at heart level to avoid hydrostatic level disturbances. Finger pressure signal, heart rate and an event marker were recorded on a thermo-writer (Graphtec™, Western Graphtec Inc., Irvine, CA) for direct inspection and stored on a personal computer at a sampling rate of 100 Hz for off-line evaluation. Systolic and diastolic blood pressure were collected from the Finapres signal. Mean arterial blood pressure (MAP) was obtained as the integral of pressure over one beat divided by the
corresponding beat interval. Heart rate in beats/min was computed from the interbeat interval. CO was computed from the non-invasive arterial pressure wave with the Modelflow method. It uses a non-linear three-element model of the aortic input impedance to compute an aortic flow waveform from a peripheral arterial pressure signal. Integrating the computed aortic flow waveform per beat provides left ventricular stroke volume (SV). CO (CO) is computed by multiplying SV and instantaneous heart rate. Total peripheral resistance (TPR) is calculated as MAP divided by CO. Changes in CO and TPR were expressed as percentage deviations from baseline (CO (%) and TPR (%)) \(^\text{31} \). Stroke volume from the non-invasive finger pressure wave in healthy subjects during orthostatic stress tracked a thermodilution-based estimate of SV with a small \((3 \pm 8 \text{ ml}) \) offset \(^\text{20} \). In addition, in critically ill patients, SV from the non-invasive finger pressure wave accurately tracked changes in thermodilution cardiac index for several hours, the overall discrepancy between both measurements was \(0.14 \text{ l.min}^{-1}.\text{m}^{-2} \). \(^\text{12} \).

Calculations and statistics: because plasma glucose concentrations and tracer/tracer ratios for [6,6-\(^{2} \text{H}_{2} \)-glucose remained constant during each sampling phase of the study, calculations for steady state kinetics were applied, adapted for the use of stable isotopes \(^\text{20,33} \). Glucose clearance was calculated as glucose Ra divided by plasma glucose concentration. For the hemodynamic measurements (MAP, CO, TPR), 4 volunteers served as their own control; for the two subjects missing in the saline study, age and gender related subjects studied under identical conditions were used. For all the other measurements, all six participants served as their own control. Data are reported as mean ± SEM, unless otherwise stated. Data were analyzed using SAS analysis of repeated measurements (proc mixed; SAS version 6.12, SAS institute, Cary, North Carolina, USA). Since participants served as their own control, the effect of L-NMMA could be calculated by subtracting the differences from baseline values with L-NMMA infusion from the differences from baseline values with placebo. Subsequently, mean difference and standard errors were calculated. Statistical significance was set at \(P<0.05 \).
Role of NO on glucose production in man

Results

Clinical effects of L-NMMA infusion
Intravenous L-NMMA-infusion was well tolerated and caused no clinical side-effects nor laboratory abnormalities in our volunteers (data not shown).

Plasma concentration of L-NMMA and arginine
During saline infusion alone, L-NMMA was not detectable in plasma (Fig. 2). In the L-NMMA study, plasma L-NMMA levels increased to reach a plateau of around 40 μmol/L after 2 hours (t = 2 h). After ending the L-NMMA infusion, plasma L-NMMA levels decreased to below the detection limit within 2.5 hrs. Baseline arginine concentrations were not different between the L-NMMA-infusion and the control experiment and did not change during or after ending the L-NMMA infusion (t = 0 h till t = 7 h: 85 ± 7.2 to 92 ± 6.4 μmol/L (L-NMMA), 84 ± 6.6 to 84 ± 7.1 μmol/L (control)).

![Graph showing plasma L-NMMA concentration](image)

Fig 2. L-NMMA concentration (in μmol/L) in 6 healthy volunteers during and after L-NMMA infusion (●), compared to control (○). “Start” and “stop” arrows demarcate the L-NMMA infusion. Values are means ± SE.
Inhibition of nitric oxide synthesis by L-NMMA.

Baseline (t = 0 h) NO output in exhaled air was not different between the L-NMMA and the control experiment (Fig. 3). NO output in exhaled air was lower during L-NMMA infusion than during the control experiment (p=0.03), (t = 0 h to t = 5 h: 72 ± 8.1 to 36.8 ± 3.9 nl/min/m² (L-NMMA), 73.3 ± 6.9 to 72.7 ± 3.6 nl/min/m² (control)). Two hours after ending the L-NMMA infusion (t = 5 h till t = 7 h), the NO output in exhaled air had not yet returned to baseline (t = 7 h: 42.5 ± 8 nl/min/m² (L-NMMA) (p=0.02)). The NO output in exhaled air measured 24 hrs after the L-NMMA infusion had started (t = 24 h) was not different between the L-NMMA and the control group (not shown in fig.) (t = 24 h: 65.9 ± 7.4 nl/min/m² (L-NMMA), 90.7 ± 11.3 nl/min/m² (control) (ns)).

Fig 3. Effect of L-NMMA infusion on NO output (in nl/min/m²) in 6 healthy volunteers during and after L-NMMA infusion (●), compared to control (○).“Start” and “stop” arrows demarcate the L-NMMA infusion. Values are means ± SE.

Hemodynamic effects of L-NMMA.

Prior to infusion of L-NMMA, absolute values for MAP, CO, and TPR were not different in the L-NMMA and control group (MAP: 72.6 ± 5 mm Hg (L-NMMA) and 71.8 ± 3.3 mm Hg (control); CO: 3.9 ± 0.15 l/min (L-NMMA) and 4.4 ± 0.35 l/min (control); TPR: 1478 ± 127 dyne.s/cm² (L-NMMA) and 1311 ± 66 dyne.s/cm² (control) (Fig. 4). TPR % (percentage of baseline) was elevated during L-NMMA infusion compared to control (p<0.001), with a maximum difference after 4 hours (Δ 22.5 ± 4.7 %). CO% was lower during L-NMMA infusion (p<0.05) with a
maximum difference after 3 hours ($\Delta 14 \pm 4.8\%$). MAP% was not different between the groups. Both TPR% and CO% had returned to baseline 1 hour after the end of L-NMMA infusion ($t = 7 \text{ h}$, TPR: $99 \pm 3.8\%$, CO: $104 \pm 2\%$).

![Graphs showing effect of L-NMMA infusion on hemodynamic parameters](image)

Fig 4. Effect of L-NMMA infusion on hemodynamic parameters: 4a) mean arterial blood pressure (%MAP), 4b) cardiac output (%CO), 4c) total peripheral resistance (%TPR), during and after L-NMMA infusion (●), compared to control (○). Values are expressed as means ± SE of percentual change from baseline. “Start” and “stop” arrows demarcate the L-NMMA infusion.
Chapter 3

The effect of L-NMMA on nitrate concentrations.
Baseline nitrate concentrations were not different between the L-NMMA-infusion and the control experiment (4.7 ± 8.2 μmol/L (L-NMMA), 41.6 ± 5.1 μmol/L (control)). During both the L-NMMA and the control experiment, the nitrate concentration in plasma decreased linearly between t = 0 h and t = 7 h and there was no difference between the two studies (t = 7 h: 21.7 ± 2. μmol/L (L-NMMA), 20.1 ± 2.8 μmol/L (control)).

Effects of L-NMMA on glucose metabolism.
Baseline values of plasma glucose concentration and Ra glucose were not different between the L-NMMA-infusion and the control experiment (Fig. 5). Between t = 0 h and t = 5 h, glucose concentration decreased equally in both groups (5.1 ± 0.07 to 4.9 ± 0.07 mmol/L (L-NMMA) (p<0.0001), 5.2 ± 0.08 to 4.9 ± 0.14 mmol/L (control) (p<0.0001)); Ra glucose decreased to the same extent (13.5 ± 0.9 to 11 ± 0.9 μmol/kg/min (L-NMMA) (-19 %, p<0.0001), 12.8 ± 0.8 to 10.6 ± 0.9 μmol/kg/min (control), (-17 %, p<0.0001)) and glucose clearance decreased to the same extent (2.65 ± 0.19 to 2.26 ± 0.19 ml/kg/min (L-NMMA) (p<0.0001), 2.44 ± 0.16 to 2.18 ± 0.17 ml/kg/min (control) (p<0.0001)).

Fig 5. Effect of L-NMMA infusion on glucose concentration in mmol/l (left) and glucose production (Ra) in μmol/kg/min (right) during and after L-NMMA infusion (●), compared to control (○). "Start" and "stop" arrows demarcate the L-NMMA infusion.
Role of NO on glucose production in man

Effects of L-NMMA on substrate metabolism.
Plasma lactate, alanine and FFA concentrations were not different between the L-NMMA and the control experiment at baseline, nor during or after the infusion of L-NMMA (table 1).

Endocrine effects of L-NMMA.
Baseline insulin, glucagon, and cortisol levels were not different between the L-NMMA and control study, and did not differ between the L-NMMA and control experiment at any time point (table 1). Insulin, C-peptide and cortisol levels decreased significantly in both the L-NMMA and control experiments. Baseline epinephrine and norepinephrine levels were not different between the L-NMMA and control study. During the L-NMMA infusion epinephrine concentrations were lower than in the control group.

Table 1. Plasma concentrations of hormones and precursors. L-NMMA infusion started at \(t = 0 \) h and ended at \(t = 5 \) h.

<table>
<thead>
<tr>
<th></th>
<th>t = 0 h</th>
<th>t = 2 h</th>
<th>t = 5 h</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>L-NMMA</td>
<td>control</td>
<td>L-NMMA</td>
</tr>
<tr>
<td>Insulin (pmol/l)</td>
<td>36 ± 3.3</td>
<td>41 ± 3.6</td>
<td>24 ± 3.8</td>
</tr>
<tr>
<td>C-peptide (nmol/l)</td>
<td>0.28 ± 0.05</td>
<td>0.41 ± 0.10</td>
<td>0.25 ± 0.04</td>
</tr>
<tr>
<td>Glucagon (ng/l)</td>
<td>70 ± 12</td>
<td>81 ± 14</td>
<td>61 ± 14</td>
</tr>
<tr>
<td>Cortisol (µmol)</td>
<td>0.35 ± 0.07</td>
<td>0.29 ± 0.05</td>
<td>0.30 ± 0.04</td>
</tr>
<tr>
<td>Epinephrine (nmol/l)</td>
<td>0.13 ± 0.03</td>
<td>0.16 ± 0.02</td>
<td>0.15 ± 0.04</td>
</tr>
<tr>
<td>Norepinephrine (nmol/L)</td>
<td>1.18 ± 0.27</td>
<td>0.98 ± 0.16</td>
<td>0.75 ± 0.12</td>
</tr>
<tr>
<td>FFA (mmol/l)</td>
<td>0.66 ± 0.12</td>
<td>0.43 ± 0.08</td>
<td>0.52 ± 0.11</td>
</tr>
<tr>
<td>Lactate (mmol/l)</td>
<td>0.87 ± 0.11</td>
<td>0.80 ± 0.08</td>
<td>0.82 ± 0.15</td>
</tr>
<tr>
<td>Alanine (µmol)</td>
<td>244 ± 36</td>
<td>302 ± 36</td>
<td>281 ± 39</td>
</tr>
</tbody>
</table>

SAS statistical analysis: *p<0.05 vs. t=0h (basal); § P<0.01 L-NMMA vs. control
Discussion

In this study, the physiological effects of NO on postabsorptive glucose production (16- to 23-hrs fast) were evaluated by infusion of L-NMMA, a strong inhibitor of NO synthesis in vivo, in healthy humans. We documented that L-NMMA inhibited endogenous NO production as illustrated by a 40-50% reduction of NO output in expired air, and that L-NMMA inhibited endogenous NO production in the cardiovascular system reflected by a 22% increase of TPR and a 14% decrease of CO. Despite this inhibition of NO production in lungs and cardiovascular system, postabsorptive glucose production decreased as much with L-NMMA as in controls. Therefore NO is not a major direct or indirect modulator of postabsorptive glucose production in healthy subjects.

The first question that arises is whether the absence of an effect of L-NMMA on glucose production is due to the fact that L-NMMA did not inhibit NO synthesis in the glucose producing organs. Direct measurement of NO production in the liver and kidney is technically impossible, and the direct measurement of plasma (or whole blood) NO concentration is very difficult in vivo because NO is inactivated within seconds by hemoglobin. In vivo, indirect markers of NO production are therefore used for an estimation of local NO production. The most frequently used markers are: a) plasma nitrate: nitrate is a stable endproduct of NO in vivo, because in the presence of oxyhemoproteins NO and NO₂⁻ are rapidly oxidized to NO₃⁻; b) hemodynamic parameters: i.e. arterial blood pressure, vascular resistance and cardiac output; c) direct measurement of NO production in exhaled air, as was first described by Gustafson et al. NO concentration in exhaled air reflects endogenous NO production in health and disease, including local production of NO in the respiratory tract and lungs. In this study, the NO concentration in exhaled air, systemic vascular resistance, and nitrate concentration in plasma were measured.

Infusion of L-NMMA rapidly caused a 40-50% decrease in NO output in exhaled air which persisted throughout the L-NMMA infusion, a decrease comparable to that described by Kharitonov et al. in 67 healthy volunteers undergoing L-NMMA inhalation. The rise in systemic vascular resistance and the decrease in CO measured during L-NMMA infusion in our study, are in line with results obtained by others with different doses of L-NMMA. This study showed no effect of
L-NMMA on plasma nitrate concentration, despite (in)direct arguments for inhibition of NO production in lungs and vascular system. The plasma nitrate concentration, however, depends more on endogenous nitrate production, ingestion, and clearance of nitrates than on NO production16-19. Although we did not measure dietary intake of our volunteers in this study, we did not find a difference in basal nitrate concentrations between the L-NMMA and control group after 14 hrs of fasting. Nitrate clearance is inter-individually variable but the bulk of nitrate is excreted in 24 hours of fasting; studies with L-NMMA are mainly done in rats and dogs after more than 24 hrs of fasting when most of ingested nitrate has already been excreted16-18. Studies in humans mainly concern short-lasting experiments in which plasma nitrate concentration is not measured, to the exception of one study in 62 healthy subjects, without data on the duration of fasting37. Only one study in healthy men measured nitrate kinetics after L-NMMA infusion. In that study by Haynes et al.18, a decrease in nitrate concentration was found after intravenous L-NMMA administration. In our study, baseline nitrate concentrations were twice those in Haynes’ study after the same duration of fasting; this suggests a higher contribution of nitrate ingestion to plasma nitrate concentration in our study. It seems likely that the load of ingested nitrate needs to be small to be able to detect changes in plasma nitrate concentration derived from NO.

In our study plasma arginine was not affected by L-NMMA. Arginine is the principle substrate for NO-synthesis, and Castillo et al.38 have shown that the plasma arginine compartment contributes 54\% to whole body NO formation. In the same study Castillo et al.38 however also showed that only 1.2\% of plasma arginine turnover is associated with NO formation, which explains why plasma arginine levels did not change with L-NMMA.

To explain the absence of an \textit{in vivo} effect on glucose production, the theoretical possibility exists that either the L-NMMA concentration was lower in the glucose producing organs (liver and kidney) than in arterialized plasma, or that the influence of L-NMMA on NO production differs site-specifically. The first possibility is unlikely: L-NMMA is water-soluble and hepatocytes will, through fenestration in intrahepatic vessels, be exposed to the same L-NMMA concentrations as those measured peripherally39. In vitro, a 40 μM concentration of L-NMMA -comparable to the plasma L-NMMA concentration in our study- caused a 55\% inhibition of NO synthesis in macrophages, comparable to the inhibition of NO output measured in
exhaled air in our study. From this and from the indisputable effects of L-NMMA seen on NO output and hemodynamic parameters, we deduce that L-NMMA reduced NO production systemically and thus equally so in the glucose producing organs.

In vitro, pathways of glucose production are strongly inhibited by NO at various levels of glycogenolysis and gluconeogenesis through inhibition of intermediate enzymes such as phosphoenolpyruvate carboxykinase (PEPck), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), glycogen phosphorylase, and glycogen synthase phosphatase. Most of these *in vitro* experiments were performed in rat hepatocytes in the absence of neurohormonal influences. One *in vivo* study in humans reports on the direct effect of NO synthesis inhibition by L-NMMA on splanchnic glucose production during short-term fasting. In that study, in which a more than 7-fold higher L-NMMA infusion rate was infused than in our study over a short time period (3 mg/kg in 5 min), splanchnic glucose output fell by 26% within 10 minutes and splanchnic blood flow decreased by 33%. These data are in contradiction with *in vitro* data and, although not discussed by the authors, might be explained by the effect of NO on splanchnic blood flow. In our study we were interested in the role of NO on glucose production during short-term fasting and a L-NMMA infusion rate was chosen that would inhibit NO synthesis without inducing major hemodynamic changes. Hepatic blood flow was not measured in our study and we therefore cannot rule out the influence of L-NMMA on splanchnic hemodynamic changes.

Explanations for the difference between *in vivo* and *in vitro* results are: a) Species differences. Species differences have been described for another Kupffer cell product, i.e. prostaglandins. In humans, prostaglandins inhibit glucose production, whereas in rat hepatocytes prostaglandins stimulate glycogenolysis. b) NO, *in vivo,** may be at best a weak regulator of glucose production with an effect that needs the absence of glucoregulatory hormones to become overt. c) Finally, if the production of only a small amount of NO is enough to exert its maximal effect on glucose production, inhibition of NO production needs to be almost complete to induce changes in glucose metabolism. In that case the remaining 50% NO production found in our study may have sufficed to sustain an effect on glucose production. This seems to be illustrated by the study of Alhborg et al. who showed that excessive inhibition of NO synthesis had an effect (directly or indirectly) on glucose output by the liver. From the above-mentioned we deduce that NO can only
Role of NO on glucose production in man

be a weak regulator of glucose production in the physiological state and that its effect may only become overt under extreme conditions of overproduction or inhibition, or when hormonal counterregulation is not effective on glucose production. This conclusion only relates to the regulation of glucose production in healthy subjects. It is possible that NO has a more important role in diseases in which glucose production is disturbed, as it is in type 2 diabetes. This is a real possibility as we have shown for other mediators that their effect is different in healthy subjects and in diabetic patients.42

Plasma epinephrine concentrations decreased during L-NMMA infusion and returned to control values shortly after the end of the L-NMMA infusion. This is the first study to describe a decrease in plasma epinephrine concentration during L-NMMA infusion in vivo in humans. The in vitro studies done up to date on the regulating role of NO in adrenal catecholamine secretion are controversial.43 The question is whether, with epinephrine concentrations in the L-NMMA experiment similar to those in controls, glucose production would have been higher. The plasma epinephrine concentration however required to increase glucose production is much higher than the epinephrine concentrations found in either of our groups during the study. This is inconsistent with a role for epinephrine in our study.44

In conclusion, the results of this study show that a 40-50% inhibition NO synthesis during short-term fasting does not influence overall glucose production in vivo in humans. In vitro, NO was shown to inhibit several pathways of glucose metabolism. In vivo, glucose production is a tightly controlled system of fluxes through different pathways, and stimulation of one pathway leads to inhibition of another in order to keep net glucose production constant.5 The results of this study therefore do not exclude an influence of NO on specific pathways of glucose production in vivo.

Acknowledgements

We thank the Laboratory of Endocrinology and Radiochemistry and especially An Ruiter for the excellent analytical support. We are very grateful to Gerrit Jan Weverling from the Department of Clinical Epidemiology and Biostatistics of the Academic Medical Center for his extensive contribution to the statistical analysis of this study.
F. Sprangers and J.A. Romijn are supported by a grant from the Netherlands Organization for Scientific Research (NWO) and J.A. Romijn is supported by the Dutch Diabetes Foundation. W.T. Jellena is supported by a grant from the Dutch Heart Foundation.

References

33. Steele R: Influenes of glucose loading and of injected insulin on hepatic glucose output. Ann NY Acad Sci 82:120-130, 1959

