Chimeric proteins of stinging nettle lectin, chitinase and beta-1,3-glucanase

Does, M.P.

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
Literature cited
Bednarek SY, Wilkins TA, Dombrowski JE, Raikhel NV (1990) A carboxyl-terminal propeptide is necessary for proper sorting of barley lectin to vacuoles of tobacco. Plant Cell 2:1145-1155

Boller T (1985) Induction of hydrolyses as a defense reaction against pathogens In J Key, T Kosuge, eds. Cellular and Molecular Biology of Plant Stress. Alan R. Liss, New York, pp 247-262

Brummell DA, Bird CR, Schuch W, Bennett AB (1997) An endo-1,4-β-glucanase expressed at high levels in rapidly expanding tissue. Plant Mol Biol 33: 87-95

Bucciaglia PA, Smith AG (1994) Cloning and characterization of Tag 1, a tobacco anther β-1,3-glucanase expressed during tetrad dissolution. Plant Mol Biol 24: 903-914

Clarke AE, Stone BA (1962) β-1,3-Glucan hydrolases from the grape vine (Vitis vinifera) and other plants. Phytochemistry 1: 175-188
Literature cited

Guevara MG, Oliva CR, Machinandiarena M, Daleo GR (1999) Purification and properties of an aspartic protease from potato tuber that is inhibited by a basic chitinase. Physiol Plant 106: 164-169

151

Joosten MH, De Wit PJGM (1989) Identification of several pathogenesis-related proteins in tomato leaves inoculated with Cladosporium fulvum (syn. Fulvia fulva) as 1,3-β-glucanases and chitinases. Plant Physiol 89: 945-951

Kaufmann S, Le grand M, Geoffroy P, Fritig B (1987) Biological function of 'pathogenesis-related' proteins: four PR proteins of tobacco have 1,3-β-glucanase activity. EMBO J 6: 3209-3212

Keen NT, Yoshikawa M (1983) 1,3-Endoglucanase from soybean releases elicitor-active carbohydrates from fungal cell walls. Plant Physiol 71: 460-465

Kieliszewski MJ, Showalter AM, Leykam FF (1994) Potato lectin: a modular protein sharing sequence similarities with the extensin family, the hevein lectin family, and snake venom disintegrins (platelet aggregation inhibitors). Plant J 5: 849-861

Lashbrook CC, Gonzalez-Bosch C, Bennett AB (1994) Two divergent endo-1,4-β-D-glucanase genes exhibit overlapping expression in ripening fruit and abscising flowers. Plant Cell 6: 1485-1493

Leung DWM (1992) Involvement of plant chitinase in sexual reproduction of higher plants. Phytochem 31: 1899-1900

Linthorst HJM, Melchers LS, Mayer A, Van Roekel JSC, Cornelissen BJC, Bol JF (1990a) Analysis of gene families encoding acidic and basic 1,3-glucanases of tobacco. Proc Natl Acad Sci USA 87: 8756-8760

Linthorst HJM, Van Loon LC, Van Rossum CMA, Mayer A, Bol JF, Van Roekel JSC, Meulenhoff EJS, Cornelissen BJC (1990b) Analysis of acidic and basic chitinases from tobacco and petunia and their constitutive expression in transgenic tobacco. Mol Plant-Microbe Interact 3: 252-258

Meins F, Ahl P (1989) Induction of chitinase and β-1,3-glucanase in tobacco plants infected with *Pseudomonas tabaci* and *Phytophthora parasitica var. nicotianae*. Plant Sci 61: 155-161

Moore AE, Stone BA (1972) Effect of infection with TMV and other viruses on the level of a β-1,3-glucan hydrolase in leaves of *Nicotiana glutinosa*. Virology 50: 791-798

Literature cited

Ori N, Sessa G, Lotan T, Himmelhoch S, Fluhr R (1990) A major stylar matrix polypeptide (sp41) is a member of the pathogenesis-related proteins superclass. EMBO J 9: 3429-3436

Schägger H, Von Jagow G (1987) Tricine-Sodium Dodecyl Sulfate-Polyacrylamide Gel Electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal Biochem 166: 368-379

Sharon N, Lis H (1990) Legume lectins: a large family of homologous proteins. FASEB J 4: 3198-3208
Literature cited

159
Literature cited

Stuiver MH, Tigelaar H, Molendijk I., Troost-van Deventer E, Stacey G, Mullin P, Gresshoff PM, eds. 8th International Congress of Molecular Plant-Microbe Interactions, Knoxville, TN. pp B93

Literature cited

Wilkins TA, Bednarek SY, Raikhel NV (1990) Role of propeptide glycan in post-translational processing and transport of barley lectin to vacuoles in transgenic tobacco. Plant Cell 2: 301-313

Wong Y, Maclachlan GA (1980) 1,3-β-glucanases from Pisum sativum seedlings. Plant Physiol 65: 222-228

