Magnetotransport and magnetocaloric effects in intermetallic compounds
Duijn, H.G.M.

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
Contents

1 **Introduction**

1.1 General introduction 7
1.2 Outline 9

2 **Theoretical aspects** 11

2.1 Magnetism in metals
 2.1.1 Local-moment versus itinerant-electron magnetism 11
 2.1.2 Phase transitions in itinerant-electron systems 14
2.2 Electrical resistance in metals
 2.2.1 Basic concepts 17
 2.2.2 Band-structure effects and spin-dependent scattering 20
 2.2.3 Magnetic scattering 23
2.3 Theory of group representations 27

3 **Experimental** 35

3.1 Sample preparation 35
3.2 Characterisation techniques 36
3.3 Electrical-resistivity measurements 37
3.4 Magnetic measurements 38
3.5 Measurements under hydrostatic pressure 41
3.6 Neutron-diffraction experiments 41

4 **Magnetic and transport properties of (Hf,Ta)Fe$_2$ compounds** 47

4.1 Introduction 47
4.2 Sample preparation and characterisation 49
4.3 Structural properties 50
4.4 Magnetic properties 51
4.5 Powder neutron diffraction 61
4.6 Application of the theory of group representations 64
4.7 Single-crystal neutron diffraction 66
4.8 Electrical resistivity 69
4.9 Discussion 77
5 Magnetic and transport properties of Fe₃(Ga,Al)₄ compounds 85

5.1 Introduction 85
5.2 Sample preparation and characterisation 86
5.3 Structural properties 87
5.4 Magnetic properties 89
5.5 Pressure dependence of the ferromagnetic to antiferromagnetic transition 94
5.6 Powder neutron diffraction 96
5.7 Specific heat 97
5.8 Electrical resistivity 99
5.9 Discussion 105

6 Electrical-transport properties of GdT₂Si₂ compounds 109

6.1 Introduction 109
6.2 Experimental 111
6.3 Results and discussion 111
6.4 Conclusions 130

7 Electrical-transport properties of RMn₆Ge₆ compounds 133

7.1 Introduction 133
7.2 Magnetic properties 134
7.3 Results 136
7.4 Discussion 141

8 Magnetic properties of Gd₅(Ge,Si)₄ compounds 145

8.1 Introduction 145
8.2 Experimental 146
8.3 Structural properties 148
8.4 Application of the theory of group representations 151
8.5 Magnetic properties 152
8.6 Electrical resistance 160
8.7 Discussion 163

Appendix A 169

Appendix B 176

Summary 179

Samenvatting 182

List of publications 185

Dankwoord 186