HIV-1 subtype C in Ethiopia: genotypic and phenotypic variation
Abebe, A.

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.

Download date: 15 Feb 2018
CHAPTER VIII

HIV-1 subtype C syncytium and non-syncytium-inducing phenotypes and coreceptor usage among Ethiopian patients with AIDS

Almaz Abebe, Dereje Demissie, Jaap Goudsmit, Margreet Brouwer, Carla L. Kuiken, Georgios Pollakis, Hanneke Schuitemaker, Arnaud L. Fontanet, and Tobias F. Rinke de Wit

AIDS 1999; 13(11):1305-1311
HIV-1 subtype C syncytium- and non-syncytium-inducing phenotypes and coreceptor usage among Ethiopian patients with AIDS

Almaz Abebea, Dereje Demissieb, Jaap Goudsmidtc, Margreet Brouwerd, Carla L. Kuikene, Georgios Pollakisc, Hanneke Schuitemakerd, Arnaud L. Fontaneta and Tobias F. Rinke de Wita

Objective: To assess syncytium-inducing (SI) and non-syncytium-inducing (NSI) frequencies, coreceptor usage and gp120 V3 sequences of HIV-1 isolates from Ethiopian AIDS patients.

Patients: Cross-sectional study on 48 hospitalized AIDS patients (CD4 T cells < 200 x 106 cell/l) with stage III or IV of the WHO staging system for HIV-1 infection and disease.

Methods: Peripheral blood mononuclear cells (PBMC) from all 48 patients were tested by MT-2 assay to determine SI/NSI phenotypes. Lymphocyte subsets were enumerated using Coulter counting and FACScan analysis. Viral load determination used a nucleic acid sequence-based amplification assay (NASBA). Coreceptor usage of HIV-1 biological clones was measured using U87 CD4/chemokine receptor transfectants and phytohemagglutinin-stimulated PBMC of healthy donors with wild-type CCR5 and homozygous mutation CCR5Δ32 (a 32 base-pair deletion in CCR5). Reverse transcriptase polymerase chain reaction sequencing was performed on the third variable region (V3) of the HIV-1 gene gp120. Sequence alignments were done manually; phylogenetic analyses used PHYLIP software packages.

Results: SI viruses were detected for 3/48 (6%) AIDS patients only. Lower mean absolute CD4 counts were determined in patients with SI virus compared with NSI (P = 0.04), but no differences in viral load were observed. All patients were found to be infected with HIV-1 subtype C, based on V3 sequencing. NSI biological clones used CCR5 as coreceptor, SI biological clones used CXCR4 and/or CCR5 and/or CCR3.

Conclusions: Ethiopian patients with HIV-1 C-subtype AIDS harbour a remarkably low frequency of SI phenotype viruses. Coreceptor usage of these viruses correlates with their biological phenotypes.
Introduction

HIV-1-infected individuals harbour a swarm of closely related viruses. These HIV-1 variants have been shown to differ in biological properties such as replication rate, cell tropism and syncytium-inducing capacity (SI) [1-4]. Viruses isolated in the early asymptomatic phase of infection are predominantly slow-replicating, macrophage tropic and do not have a syncytium-inducing capacity (NSI) in vivo [3,5]. During progression to disease, rapidly replicating T cell tropic viruses appear in about 50-70% of individuals infected with various HIV-1 subtypes. These viruses are associated with the appearance of SI HIV-1 variants [6-8]. Emergence of these SI HIV-1 variants is a predictor for accelerated progression towards AIDS [3,6-10].

The genomic diversity underlying the above phenotypic diversity of HIV-1 has been mainly assigned to the variable regions of the gene gp120 for the envelope protein gp120 [11-13]. Sequence analysis of the V3 regions of HIV-1 SI isolates from subtype B viruses has indicated that positively charged amino acids at positions 11 and 25 are associated with the SI phenotype [12,14]. Several studies have confirmed this in subtype B and in subtypes A, D, E and O [8,14-16]. However, for HIV-1 subtypes C, F, G, H, I and J this association has not been confirmed to date.

The interest in SI/NSI phenotypes revived when it was shown that macrophage-tropic NS1 HIV-1 strains use primarily the ß-chemokine coreceptor CCR5 and T cell-tropic SI strains the ß-chemokine coreceptor CXCR4 as coreceptors for infection of CD4 cells [17-19]. Additional ß-chemokine receptors, such as CCR3, CCR2b and STRL33, have also been shown to function as coreceptors for some, but not all, primary strains of HIV-1 [17-20].

The first Ethiopian HIV-1 positive sera were detected in 1984, the first Ethiopian AIDS case was reported in 1986 and the epidemic is a rapidly growing problem in Addis Ababa, the capital city with more than 2 million inhabitants [21,22]. Earlier studies have indicated the predominant presence of HIV-1 C subtype [23-25] in Addis Ababa, but the distribution of NS1 versus SI viruses in the Ethiopian HIV-1 epidemic is not documented. More information on biological characteristics of subtype C strains is of importance since, according to UNAIDS, 48% of HIV-1-positive individuals worldwide (equivalent to an estimated 14.680.000 subjects) were infected with HIV-1 subtype C by the end of 1997 [26]. This study assesses SI/NSI frequencies, coreceptor usage and underlying genetic features of gp120 V3 of HIV-1 isolates from Ethiopian AIDS patients.

Materials and methods

Study subjects and sample collection
Forty-eight hospitalized Ethiopian patients with AIDS (CD4 T cells < 200 x 10^3 cells/l) and clinical stage III or IV of the WHO staging system for HIV-1 infection and disease [27] were studied. Venous blood was drawn in EDTA vacutainer tubes (Becton & Dickinson), plasma was separated by centrifugation and peripheral blood mononuclear cells (PBMC) were isolated by Ficoll Hypaque density centrifugation for 20 min at room temperature and 2200 r.p.m.

Enumeration of lymphocyte subsets
Lymphocyte subsets were enumerated in whole blood using Simulset monoclonal antibodies (mAbs) combinations CD4/CD45, CD3/CD19, CD3/CD4, CD3/CD8 and CD3/CD16+56 and isotype controls with Simulset software on a FACSCAN flow cytometer (Becton Dickinson, USA), according to the manufacturer’s recommendations. In brief, 100 µl EDTA-treated blood was incubated with each combination of mAb for 15 to 20 min at room temperature in the dark. Red blood cells were lysed by adding 2 ml lysing solution per tube (FACSlyse, Becton Dickinson) and incubating for 10 min at room temperature in the dark. The cells were centrifuged at 300 x g for 5 min and then washed twice with Isoton (Becton Dickinson). Stained cells were analysed by FACScan using Simulset software on a minimum of 25000 acquired events, according to CDC criteria of quality control for enumeration of lymphocyte subsets [28].

Viral load determination
Plasma viral load was measured using a nucleic acid-based amplification assay (NASBA, Organon Teknika, the Netherlands) on 100 µl samples, as described [29]. In brief, DNA was extracted from plasma using an established guanidinium isothiocyanate-based method [30] and isothermally amplified in the presence of three RNA standards using NASBA kits (Organon Teknika). Detection of amplified RNA was performed on a NucliSens reader (Organon Teknika), using the RNA standards for calibration and calculation of viral loads. Results were presented as log_{10} RNA copies/ml plasma.

Assay for MT-2 and p24 ELISA
For the MT-2 assay, 1 x 10^6 fresh PBMC were cocultivated with 1 x 10^5 MT-2 cells, as described [6]. When absolute whole blood CD4 T cell counts of a given subject were less than 50 x 10^3 cells/l, 5 x 10^6 fresh PBMC were incubated with 1 x 10^6 MT-2 cells. The cultures were maintained at 37°C for 3 weeks and checked twice a week under an inverted microscope (x 4 magnification) for the presence of syncytia. Virus replication was measured by enzyme-linked immunosorbent assay for HIV-1 p24 antigen (ELISA, Vironostika, Organon Teknika) on culture supernatants.
at the time point of syncytium formation or after a maximum of 3 weeks of coculturing.

HIV-1 biological cloning

Biological HIV-1 clones were isolated under limiting dilution conditions, as described [31,32], from all three patients harbouring SI as well as from a random selection of seven patients harbouring NSI. Graded numbers of patient PBMC (range 1–2 × 10^6 cells/well) were cocultivated in 96-well plates, with 10^5 phytohaemagglutinin (PHA)-stimulated PBMC from healthy blood donor volunteers. For each patient PBMC, 48 parallel micro-cocultures were performed. Fresh medium with interleukin 2 and PHA-stimulated donor PBMC were added every week. Virus replication, as reflected by the presence of HIV-1 p24 antigen in the culture supernatant, was determined by an in-house p24 capture ELISA. The SI capacity of the virus clones was determined by cocultivation of PBMC with MT-2 cells, as above. The proportion (P) of infected cells was determined according to the formula for Poisson distribution:

\[P = \frac{\lambda^n e^{-\lambda}}{n!} \]

where \(\lambda \) is the fraction of negative cultures. Only virus clones that were obtained from a dilution of patient PBMC that gave rise to progeny virus in not more than 33% of parallel cultures were considered clonal and used for further analysis. These clones were transferred to 25-ml tissue culture flasks containing 5 × 10^6 PHA-stimulated PBMC in 5 ml culture medium to grow virus stocks. For each patient, 0.9–6.6 × 10^6 PBMC (dependent on availability) was used as starting material for isolation of biological clones.

Cell lines and analysis of HIV-1 coreceptor usage

Human astrocytoma U87 cell lines stably expressing CD4 and coexpressing CCR1, CCR2b, CCR3, CCR5 or CXCR4 chemokine receptors [33] were grown in Iscove's medium supplemented with 10% fetal calf serum, 5 μg/ml Polybrene, 100 U/ml penicillin, 100 μg/ml streptomycin and 1 μg/ml puromycin. The U87.CD4 single transfectant control cell line was grown in the same medium but without puromycin. As determined by FACS analyses, the CCR5 and CXCR4 U87.CD4 cotransfectants expressed the correct coreceptors. To determine coreceptor usage of biological HIV-1 clones, first the half-maximal tissue-culture infectious dose (TCID_{50}) was determined by titration on PHA-stimulated PBMC of a healthy blood donor expressing homozygous wild-type CCR5. Then, the determined TCID_{50} × 10^2 was added in 0.2 ml volume to a 24-h culture of 10^4 cells of the various U87.CD4 cotransfectants in 96-well plates. The infected cells were incubated for another 24 h, washed with phosphate-buffered saline and 0.2ml fresh medium was added. At day 7, the cells were detached by trypsinization and transferred to 24-well plates and cultured further. Supernatants harvested at day 7, 14 and 21 were analysed for the presence of HIV-1 by p24 ELISA. The p24-positive culture supernatants were considered indicative of the virus using the pertinent transduced coreceptor(s) for infection.

Finally, PHA-stimulated PBMC from a healthy blood donor with a homozygous 32 base-pair (bp) deletion in CCR5 (CCR5Δ32) was cocultivated with a TCID_{50} × 10^2 dose of virus and the same procedure as above was used to analyse coreceptor usage other than CCR5 in a more physiological background.

RNA and DNA isolation and sequencing

The extractions of RNA from 100 μl plasma samples and 10 μl MT-2 coculture supernatants, as well as DNA from clonal isolates, were performed by the guanidinium thiocyanate silica method, as described [30]. A region of 287 bp of the HIV-1 envelope, including the gp120/15 region, was amplified by nested polymerase chain reaction (PCR), as described [16,23]. The products were directly sequenced using the dideoxy chain termination method with sequencer (Amersham, Life Sciences, Little Chalfont, Bucks, UK), according to instructions from the manufacturer and analysed with an automatic sequencer ABI 370 A system (Foster City, CA).

Phylogenetic analysis

Alignments of sequences were performed manually. Phylogenetic analyses were carried out by using PHYLIP software packages, including the programs DNADIST, NEIGHBOR, a neighbouring-joining method under the Kimura two-parameter model [34,35], DRAWTREE, SEQBOOT (for Hi sets) and CONSENSE [36]. For comparison, representative consensus sequences of HIV-1 subtypes (A–H) from the Los Alamos data base (version 1998) were also included in the analyses.

Statistical analysis

The distribution of continuous variables (viral load, CD4 cell count) was compared between patients with different viral phenotypes (SI/NSI) using non-parametric methods (Mann–Whitney U test). Proportions were compared using two-sided Fisher's exact test.

Results

Immunological and virological characteristics

Of the 48 patients with AIDS studied, the mean age was 35 years, both for females (20) and for males (28). The absolute CD4 T cell counts in whole blood varied between 2 × 10^3 and 194 × 10^3 cells/l with a median value of 54 × 10^3 cells/l. The absolute CD8 T cell counts in whole blood varied between 60 × 10^3 and 1989 × 10^3 cells/l. CD4/CD8 ratios ranged between 0.0 and 0.8. Viral loads varied between 4.26 and 7.08
Table 1. Characteristics of Ethiopian patients with AIDS infected with HIV-1 subtype C.

<table>
<thead>
<tr>
<th>Biological phenotype PBMC</th>
<th>Biological phenotype PBMC</th>
</tr>
</thead>
<tbody>
<tr>
<td>SI (n = 3)</td>
<td>NSI (n = 45)</td>
</tr>
<tr>
<td>Males (%)</td>
<td>67/2(3)</td>
</tr>
<tr>
<td>Mean age (years)</td>
<td>35</td>
</tr>
<tr>
<td>Stage IV (%)</td>
<td>67/2(3)</td>
</tr>
<tr>
<td>CD4 cells, mean (×10⁶ cells/l)</td>
<td>21*</td>
</tr>
<tr>
<td>CD8 cells, mean (×10⁶ cells/l)</td>
<td>589</td>
</tr>
<tr>
<td>CD4/CD8 ratio, mean</td>
<td>0.03*</td>
</tr>
<tr>
<td>HIV load, mean (log₂ copies/ml)</td>
<td>5.30</td>
</tr>
<tr>
<td>Coreceptor usage (%)</td>
<td>CCR1</td>
</tr>
<tr>
<td></td>
<td>CCR2b</td>
</tr>
<tr>
<td></td>
<td>CCR1</td>
</tr>
<tr>
<td></td>
<td>CXCR4</td>
</tr>
<tr>
<td></td>
<td>CCR5</td>
</tr>
<tr>
<td></td>
<td>CXCR4 + CCR3</td>
</tr>
<tr>
<td></td>
<td>CXCR4 + CCR5</td>
</tr>
<tr>
<td></td>
<td>Unknown</td>
</tr>
</tbody>
</table>

*Percentage of patients at stage IV of WHO clinical definition of HIV-1 infection [23]. Results of studies on 19 SI and 59 NSI clones isolated in parentheses. Unknown coreceptor used for successful in vitro infection of PHA-stimulated PBMC. *P = 0.04, Mann-Whitney U test. PBMC, peripheral blood mononuclear cells; SI, syncytium-inducing phenotype; NSI, non-syncytium-inducing phenotype.

Cocultures of patient PBMC with MT-2 cells resulted in syncytium formation for only 3/48 (6%) subjects: patients 030, 074 and 079. The remaining 45/48 (94%) of PBMC from patients did not harbour any SI-inducing viruses, as determined by the MT-2 assay. As shown in Table 1, the mean whole blood CD4 count of the SI-positive patients was lower (23 × 10⁶ cells/l) than that of the patients with NSI (78 × 10⁶ cells/l) in MT-2 PBMC (P = 0.04). The viral loads for patients with NSI and SI HIV phenotypes did not significantly differ: 5.72 (SD 0.08) log₁₀ RNA copies/ml for NSI versus 5.30 (SD 0.54) log₁₀ RNA copies/ml for SI (P > 0.05). No significant correlation was detected between viral load and gender, age, clinical stage or any lymphocyte subset, including CD4 T cells.

Biological clones and coreceptor usage

In order to confirm the MT-2 results, HIV-1 biological clones were generated from PBMC of all three SI-harbouring patients and from PBMC of a random selection of seven patients carrying solely NSI HIV-1. Coreceptor usage of these clones was determined by in vitro infection of U87 cotransfectants as well as PHA-stimulated PBMC. A p24 ELISA was performed on culture supernatants to establish productive infection.

Table 1 shows the results from 78 biological HIV-1 clones derived from the above patients. The CCR5 coreceptor was used solely in 58/59 (98%) NSI clones, this usage was confirmed in PHA-stimulated PBMC from wild-type (wt/wt) and homozygous CCR5 Δ32/CCR5 Δ32 donor PBMC (data not shown). One NSI clone did not produce viruses (p24 negative) when tested on any of the chemokine receptor cotransfectants. However, this clone readily infected PHA-stimulated PBMC (p24 positive).

The coreceptor usage by SI clones was more heterogeneous: 12 clones used solely CXCR4, five were dual tropic for CCR5 and CXCR4, one was dual tropic for CCR5 and CXCR4 and one used CCR5 only. Except for the last, the CCR5 independence of these SI clones was confirmed by the fact that they could successfully infect homozygous CCR5 Δ32/CCR5 Δ32 PHA-stimulated PBMC (data not shown).

Sequencing of gp120 V3

Sequencing of gp120 V3 was performed on PCR-amplified clonal DNA (cDNA) derived from all patient plasma samples. In addition, PCR-amplified cDNA from PBMC/MT-2 coculture supernatants and DNA from 23 biological HIV-1 clones derived from three patients harbouring SI HIV (patient 030, n = 6; patient 074, n = 10; patient 079, n = 7) was sequenced. The clones were also tested for coreceptor usage. The gp120 V3 sequences are available from the authors on request and have been submitted to Genbank under accession numbers AF158843-AF158915.

In total, 73 gp120 V3 sequences were determined, 20 from SI viruses and 53 from NSI viruses, and used to predict the structure of the viral protein gp120. The mean net charge of the predicted gp120 V3 loop was significantly higher in SI sequences (6+) than in NSI sequences (3+) (P < 0.001). In NSI sequences, the predominant predicted motif of the apex of the V3 loop was GPGQ (51/53, 94%), while in SI sequences there was a positively charged residue replacing Q (H or R) for two of the three patients. Furthermore, the potential N-linked glycosylation site at position 6-8 of the V3 loop (relative to the first cysteine at position 1) was affected in most SI sequences and intact in NSI sequences. Either this glycosylation site was lost in 13/20 (65%) of SI sequences and only in 1/53 (2%) of NSI sequences or the site was shifted to position 5-7 in 6/20 (30%) of SI sequences versus 0/53 (0%) of NSI sequences. Finally, the positively charged amino acids at positions 11 and 25, documented to determine SI biological phenotype in HIV-1 subtypes A, B, D and E, were absent from the SI sequences obtained from the Ethiopian HIV-1 C subtype viruses. Instead, the combination of positively charged amino acids at positions 8 or 29 of the V3 loop appeared to correlate with 18/20 (90%) of the SI sequences and only 1/53 (2%) of the NSI sequences.

Phylogenetic analysis

Phylogenetic analysis was performed on all 73 HIV-1 gp120 V3 sequences. Figure 1 is an unrooted phyloge-
Phenotype and coreceptor usage in Ethiopians with AIDS

HIV-1 phenotype variability plays an important role in the pathogenesis of AIDS. The presence of SI variants in > 50% of HIV-infected individuals has been associated for various HIV-1 subtypes with accelerated decline of CD4 T cells and progression to AIDS [3,7-9,30]. In this study, a remarkably low frequency of SI phenotypes was observed (only 3/48: 6%) in HIV-1 subtype C viruses in Ethiopian hospitalized patients with AIDS.

Biological phenotype was determined using a MT-2 assay [6] where the absence of syncytium formation is interpreted as indicating a NSI phenotype. Consequently any other factors that could also give this result were excluded as far as possible by increasing the input PBMC to 5 x 10⁶ for subjects with CD4 cell counts of < 50 x 10⁶ cells/l whole blood, by confirmative p24 ELISA on coculture supernatants, by biological cloning of HIV-1 from 10 different patients and repeating the MT-2 assays on these clones and, finally, by checking coreceptor usage of these HIV-1 clones. All these experiments confirmed the finding that only three Ethiopian patients harboured SI viruses.

In general, it should be emphasized that the in vitro result of a MT-2 assay does not necessarily reflect the in vivo situation. Subjects harbouring NSI viruses by MT-2 assay can harbour CD4 syncytia, as determined by high-resolution microscopy and immunofluorescent staining [37]. However, given the above evidence, the under-representation of SI variants in Ethiopian patients infected with HIV-1 C-subtype compared with patients infected with other HIV-1 subtypes appears substantial. A low prevalence of SI viruses in subjects infected with HIV-1 subtype C has also been reported in other parts of the world [38]. HIV-1 subtype C viruses seem to be, in general, rarely of the SI phenotype; the reasons for this are not clear.

It could be speculated that expression of CCR5 is higher on cells of subjects living in countries where the HIV-1 C epidemic is present, thus providing less selective advantage to the virus for mutation to CXCR4 tropic variants. CCR5 reportedly is preferentially expressed on activated and memory T cells and CXCR4 on naive T cells [39]. In the African context, because of highly prevalent infectious diseases, there is substantial immune activation [40-43]. This may result in persistent increased CCR5 expression and, thus, less selective force for HIV-1 to mutate away from its NSI phenotype. Along these lines, it has been reported that individuals infected with the HIV-1 B subtype have lower CCR5 expression levels parallelling delayed conversion from NSI to SI [44]. However, the HIV-1 subtype C epidemic is widespread in many countries, Ethiopia, Djibouti, India, China, Brazil, South Africa.
and most HIV-1 subtype C isolates from these countries are of NSI phenotype [23-25, 45-49]. A recent study has confirmed the rarity of the SI phenotype in HIV-infected Caucasians in Djibouti [50]. It is highly unlikely that subjects from such diverse genetic and environmental backgrounds have identical immunological features favouring the persistence of HIV-1 NSI variants only.

Consequently, it might not be the host but merely the virus that determines the low emergence of SI variants in HIV-1 subtype C infections. It could be speculated that the structural constraints for HIV-1 C subtype viruses to change from NSI to SI phenotype are more demanding. In this light, it is remarkable that the amino acid positions 11 and 25, which determine NSI versus SI phenotype in many other subtypes [8, 12, 14-16], do not seem to have this role in C subtype viruses. Data from the present study suggest that two new amino acid positions (8 and/or 29) might correlate with HIV-1 subtype C SI phenotype. However, these data were collected on only three individuals and should be considered carefully and need further confirmation.

The HIV-1 NSI clonal isolates studied (except one, from patient 072) used solely CCR5 as a coreceptor and the SI clonal isolates (except one, from patient 030) used CXCR4, as reported elsewhere [36, 51-53]. The exceptional clone from patient 072 might use a coreceptor other than CCR1, CCR2b, CCR3, CCR5 or CXCR4, since it successfully infected wild-type PHA-stimulated PBMC. The CCR5 usage of the exceptional SI clone from patient 030 might be reflected by its gp120 V3 sequence, suggesting this clone represents a transitional stage of mutation from NSI to SI.

In conclusion, this study shows a remarkably low frequency of HIV-1 subtype C SI variants amongst Ethiopian patients with AIDS. In addition, CCR5 was identified as a major HIV-1 coreceptor in Ethiopians. To what extent the SI phenotypes of Ethiopian HIV-1 subtype C viruses correlate with distinct in vivo biological properties, needs further study.

Acknowledgements

This work was financially supported by the Governments of Ethiopia and the Netherlands as part of a bilateral Development Cooperation project, named the Ethiopian-Netherlands AIDS Research Project (ENARP), it is a collaborative effort of the Ethiopian Health and Nutrition Research Institute (EHNRI), the Municipal Health Service of Amsterdam, the Department of Human Retrovirology of the Academic Medical Centre (AMC), and the Central Laboratory of the Blood Transfusion Service (CLB), Amsterdam, the Netherlands.

References
