Dynamics of Gauge Fields at High Temperature
Nauta, B.J.

Citation for published version (APA):
Nauta, B. J. (2000). Dynamics of Gauge Fields at High Temperature

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
Contents

1 Introduction 1
 1.1 Early universe 1
 1.2 Some dynamical processes in the early universe 2
 1.3 Classical approximation 3
 1.4 Preview ... 6

2 Classical field theory 9
 2.1 Introduction 9
 2.2 Thermal field theory 9
 2.3 Soft and hard modes 11
 2.4 High-temperature behavior 13
 2.5 Dimensional reduction 16
 2.6 Classical theory 18
 2.7 Hot, classical Feynman rules 21

3 Hard thermal loops 27
 3.1 Introduction 27
 3.2 HTL self-energy 28
 3.3 Vlasov equation 31
 3.4 Statistical HTL theory 33
 3.5 Stochastic HTL equation 35
 3.6 Consistency of stochastic HTL theory 38
 3.7 Non-Abelian HTL's 40
 3.8 Plasmons ... 41
 3.9 Non-perturbative excitations 43
 3.10 Summary ... 46

4 Divergence structure of hot, real-time classical field theory 49
 4.1 Introduction 49
4.2 One-loop
- 4.2.1 Linear divergences: classical HTL’s
- 4.2.2 No logarithmic divergences
- 4.2.3 Classical self-energy: explicit result

4.3 Two-loop and beyond
- 4.3.1 Degree of divergence
- 4.3.2 Two-loop self-energy diagrams
- 4.3.3 Higher-order vertex functions
- 4.3.4 Other gauges

4.4 Discussion

4.5 Transversality of the log divergent part of the self-energy

4.6 Conclusion

4.7 Gauged invariant cut-off in the classical theory

4.8 Classical one-loop SU(N) self-energy: explicit calculation

4.9 Two loop naively linear divergent contributions

5 Counterterms for linear divergences
- 5.1 Introduction
- 5.2 Cut-off dependence
- 5.3 Effective theory with counterterms
- 5.4 Continuum
- 5.5 Perturbative renormalization on a lattice
 - 5.5.1 Static
 - 5.5.2 Real-time
- 5.6 Two stable lattice models
 - 5.6.1 Model with lattice dispersion relation
 - 5.6.2 Model with a continuum dispersion relation
- 5.7 Conclusion

6 Baryon-number generation in the broken phase
- 6.1 Introduction
- 6.2 Sakharov requirements
- 6.3 Sphaleron transitions
 - 6.3.1 Including a baryon density
- 6.4 Effect of CP-violation on the rate
 - 6.4.1 Asymmetry
 - 6.4.2 Alternative derivation
 - 6.4.3 Numerical check
 - 6.4.4 Some remarks on an asymmetric distribution function