Physiological functions of hexose transport and hexose phosphorylation in Saccharomyces cerevisiae.
Diderich, J.A.

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
References


References


References

121. MathWorks (1997) Matlab 5.2 Natrick MA


146. Özcan, S., and Johnston, M. (1995) Three different regulatory mechanisms enable yeast hexose transporter (HXT) genes to be induced by different levels of glucose. Mol Cell Biol 15, 1564-1572

147. Özcan, S., and Johnston, M. (1996) Two different repressors collaborate to restrict expression of the yeast glucose transporter genes HXT2 and HXT4 to low levels of glucose. Mol Cell Biol 16, 5536-5545


References


238. Walsh, M.C., Scholte, M., Valkier, J., Smits, H.P., and Van Dam, K. (1996) Glucose sensing and signalling properties in Saccharomyces cerevisiae require the presence of at least two members of the glucose transporter family. J Bacteriol 178, 2593-2597

240. Walsh, M.C., Smits, H.P., and Van Dam, K. (1994) Respiratory inhibitors affect incorporation of glucose into *Saccharomyces cerevisiae*, but not the activity of glucose transport. *Yeast* 10, 1553-1558


