
UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl)

UvA-DARE (Digital Academic Repository)

Games, walks and grammars: Problems I've worked on

Vervoort, M.R.

Publication date
2000

Link to publication

Citation for published version (APA):
Vervoort, M. R. (2000). Games, walks and grammars: Problems I've worked on. ILLC.

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s)
and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open
content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please
let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material
inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter
to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You
will be contacted as soon as possible.

Download date:05 Oct 2022

https://dare.uva.nl/personal/pure/en/publications/games-walks-and-grammars-problems-ive-worked-on(a1ea7ffa-dfe6-440b-9290-8887ad20dbb9).html

Chapterr 12

Thee algorithms of EMIL E

Thiss chapter attempts to give some insight into the reasoning underlying the algo-
rithmss of EMILE. We will start with a very simple version of the basic algorithm,
andd in several steps change it to the full algorithm, at each step elaborating on
thee motivations for the change.

12.11 1-dimensional clustering

Givenn a sample of sentences, we want to obtain sets of expressions and contexts
thatt correspond to grammatical types. A simple clustering technique is to extract
alll possible context/expression combinations from a given sample of sentences,
andd group together expressions that appear with the same context.

12.1.1.. E X A M P L E. If we take the sample sentences "John makes tea" and "John
likess tea', we get the following context/expression matrix:

John n
makes s
tea a
Johnn makes
makess tea
Johnn makes tea
likes s
Johnn likes
likess tea
Johnn likes tea

makes s
tea a
x x

John n

(0 0
tea a

X X

X X

John n
makes s

))

X X

tea a

X X

X X

John n

))

X X

X X

(-))

X X

X X

(.))
likes s
tea a

X X

John n
likes s

))

X X

125 5

12G G ChapterChapter 12. The. algorithm* of EMILE

fromm which \vc can obtain the clusters

'.Johnn (.) tea', {'makes', iikes"}]
[[) tea", {'John makes'. "John likes"}]
[[n (.)'. {'makes tea', 'likes tea'}]

__ '(.) '. {'John makes tea'. 'John likes tea'}]

Next,, we can group contexts together if they appear with exactly the same ex-
pressions. .

12.1.2.. E X A M P L E. If we add the sentences 'John makes coffee'. 'John likes coffee'
too the previous sample, the relevant part of the context/expression matrix looks
like e

makes s
likes s
tea a
coffee e

John n

(0 0
tea a

X X

X X

John n

))

coffee e
X X

X X

John n
makes s

))

X X

X X

John n
likes s

X X

X X

whichh yields the clusters

[[{'John (.) tea". 'John (.) coffee'}, {'makes', dikes'}]
[[{'John makes (.)'. 'John likes (.) '} . {'tea', 'coffee'}]

Ass stated before, a grammatical type can be characterized by the expressions
thatt are of that type, and the contexts in which expressions of that type appear.
Hencee the clusters we find here can be interpreted as grammatical types. For
instance,, the clusters in the above example could be said to correspond to the
grammaticall types of 'verbs' and 'nouns', respectively.

12.22 2-dimensional clustering

Onee of the flaws in this technique is that it doesn't properly handle contexts
whosee type is ambiguous.

12.2.1.. E X A M P L E. If we add the sentences 'John likes eating' and 'John is eating'
too the previous example, the relevant part of the context/expression matrix will

12.2.12.2. 2-dimensional clustering 127 7

lookk like this:

makes s
likes s
is s
tea a
coffee e
eating g

John n

to o
tea a

X X

X X

John n

))

coffee e
X X

X X

-- —

John n

))
eating g

X X

X X

John n
makes s

X X

X X

John n
likes s

))

X X

X X

X X

John n
is s

X X

Heree we can intuitively identify four grammatical types: noun-phrases, verb-
phrases,, :ing'-phrases. and 'verbs-appearing-with-ing-phrases'-phrases. The con-
textt 'John likes (.)' is ambiguous, in the sense that it appears with both noun-
phrasess and ing'-phrases. If we proceed as before, we get the following clusters

[[{'John (.) tea'. 'John (.) coffee'}, {'makes', likes'}]
[[n (.) eating'}, {'likes', us'}]

[[{'John makes (.)'} . {"tea', 'coffee'}]
[[{'John likes (.)'} . ('tea', 'coffee', 'eating'}]

[[{'John is (.)'} , {'eating'}]

i.e.. the context 'John likes (.)" is assigned a separate type.

Assigningg ambiguous contexts a separate type not only results in a less natural
representation,, in a later step it will prevent us from correctly identifying the
characteristicc expressions of a type (as will be demonstrated in Example 12.4.2).
AA more natural representation would be to allow ambiguous contexts and expres-
sionss to belong to multiple types. For this, we need to use a different clustering
method.. The clustering method EMILE uses is to search for maximum-sized
blockss in the matrix. This could be termed 2-dimensional clustering.

12.2.2.. EXAMPLE. The following picture shows the matrix of the previous ex-
ample,, with the maximum-sized blocks indicated by rectangles.32

makes s
likes s
is s

eating g

tea a
coffee e

John n
))

tea a

X X

11 X

John n
(-))

coffee e

X X

X X

John n
))

eating g

xx 1
X X

John n
makes s

))

X X

x x

John n
likes s

))

X X

X X

X X

John n
is s

X X

32Pleasee note that the expressions and contexts have been arranged to allow the blocks to be
easilyy indicated: in general, blocks will not consist of adjacent context /express ion pairs.

128 8 ChapterChapter 12. The. algorithm* of EMILE

Thesee blocks correspond to the clusters

[[{-John (.) tea'. 'John {.) coffee'}, {-makes", 'likes'}]
[[{-John {.) eating'}, {'likes', 'is'}]

[[{'John makes ('.)'. '.John likes (.)'} . {'tea', "coffee"}]
[[{'John is (.)'. 'John likes (.)"} . {'eating'}]

rr {'John (.) tea'. 'John (.) coffee'. 'John (.) eating'}, {'likes'}]
[[{'John likes (,)'} . {'eating', 'tea', 'coffee"}]

Thee last two clusters: correspond to sets of context/expression pairs which are
alreadyy 'covered' by the other blocks. In a sense these blocks are superfluous.

Thee algorithm to find these blocks is very simple: starting from a single con-
text/expressionn pair. EMIL E randomly adds contexts and expressions while en-
suringg that The resulting block is still contained in the matrix, and keeps adding
contextss and expressions until the block can no longer be enlarged. This is done
forr each context/expression pair that is not already contained in some block.
Oncee all context /expression pairs have been "covered', the superfluous blocks
(thosee completely covered by other blocks) are discarded.

12.33 Allowin g for imperfect data

Inn the previous section, the requirement for a block was that it was entirely con-
tainedd within the matrix, i.e. the clustering algorithm did not find a type unless
everyy possible combination of contexts and expressions of that type had actually
beenn encountered and stored in the matrix. This only works if a perfect sam-
plee has been provided. In practical use, we need to allow for imperfect samples.
Theree are many context/expression combinations, such as for instance 'John likes
evaporating',, which are grammatical but nevertheless wil l appear infrequently, if
ever. .
Too allow EMILE to be used with imperfect samples, two enhancements have been
madee to the algorithm. First, the requirement that the block is completely con-
tainedd in the matrix, is weakened to a requirement, that the block is mostly con-
tainedd in the matrix. Specifically, a certain percentage of the context/expression
pairss of the block as a whole should be contained in the matrix, as well as a cer-
tainn percentage of the context/expression pairs in each individual row or column.
Wee can express this as

#(.UU n (T rxTA - i) > # (T r x TE) to ta l -support ' /,
Vrr e Tr : #(.!ƒ n ({ c] x7 £)) > #7V.- context-Support4/,
Vee e Tjr : #(-\7 n {Trx. {e})) > #TC expression-support ' /,

wheree .U is the set of all encountered context/expression pairs, and the values
XXX_support'/00 are constants that can be set by the user.

IJ.4-IJ.4- Characteristic and secondary expressions arid contexts 129

12.3.1.. E X A M P L E. Suppose that the matrix of context/expression pairs EMILE
liass encountered lias the following sub-matrix:

tea a
coffee e
lemonade e
soup p
apples s

John n
makes s

X X

X X

X X

X X

John n
likes s

))

X X

X X

X X

X X

John n
chinks s

X X

X X

X X

X X

John n
buys s

(.))
X X

X X

X X

X X

Iff the settings context_supportY« and expression_support ' /. have been set to
75 ' /.. and total_support ' /0 has been set to SO1/, then the type represented by the
clusler r

{'Johnn makes (.)'. 'John likes (.)' 'John drinks (.)". 'John buys (.)"} .
{'tea',, 'coffee', 'lemonade', 'soup'}

wil ll be identified, in spite of the fact that one of the context /expression pair of
thee block, ('John buys (.)'. 'lemonade"), does not appear in the matrix. However,
thee expression 'apples' wil l not be added to the above type, since it appears with
lesss than expression_support'/0 of the contexts.

Secondly,, note that of the different expressions and contexts belonging to a gram-
maticall type, it can be expected that the short and medium-length ones (in terms
off number of words) wil l be encountered more often than the long ones. In other
words,, if we restrict the sample to short and medium-length contexts and expres-
sions,, it will be closer to a perfect sample. Implementing this notion. EMIL E
usess only short and medium-length contexts and expressions when searching for
grammaticall types.

12.44 Characteristic and secondary expressions
andd contexts

Too search for longer expressions and contexts associated with types. EMIL E uses
characteristicc expressions and contexts. As defined in Definition 11.2.5. a char-
acteristicacteristic expression of a type T only appears with contexts that are of type TV"
Sincee the types involved usually have not been fully identified yet. EMILE relaxes
thiss requirement to also allow untyped contexts.

JNotcc that a context may have more than one typo, so a context appearing with a expression
eharaeterisriee for a Type T may be of other types in addition to being of type T.

130 0 ChapterChapter 12. The algorithm* of EMILE

Occasionally,, a typo has no characteristic- expressions (due to imperfections in
thee sample or the inherent ambiguity of the type): in such cases, the primary
expressionss of the type are used in place of the characteristic expressions. We call
thesee the characteristic* expressions of T. i.e. the characteristic* expressions of
TT are defined as the characteristic expressions of T if there are any. and as the
primaryy expressions of T otherwise.
Thee definitions of characteristic and characteristic* contexts of a type T are
analogous. .
Anyy untyped context appearing with an characteristic expression of a type T is
likelyy to belong to T as well. Contexts which appear with (a certain percentage
off the) characteristic* expressions of T are called secondary contexts of T. as
opposedd to the primary contexts found by the clustering algorithm. Analogous
forr secondary expressions. Note that the constraint on the length of primary
contextss and expressions does not apply to secondary contexts and expressions,
andd hence tins allows for long contexts and expressions to be associated with
types. .

12.4.1.. EXAMPLE. In the previous example, for the type represented by the clus-
ter r

[[{"John likes (.)'} . {'eating', "tea', 'coffee')]

'Johnn likes (.)' only appears with 'eating', 'tea' and 'coffee', so it is a characteristic
(andd hence characteristic*) context for this type. The expression 'eating" also
appearss with the context 'John is (.)'. so it is not a characteristic expression. A
similarr condition obtains for 'tea' and 'coffee', so the type has no characteristic
expressionss at all. Consequentially, its primary expressions 'eating", 'tea1 and
'coffee'' are also its characteristic* expressions.
Forr the type represented by the cluster

[[{'John makes (.)'. 'John likes (.)'} . {'tea", 'coffee'}]

alll its expressions and contexts are characteristic.

12.4.2.. E X A M P L E. In Example 12.2.1. we used 1-dimensional clustering to ob-
tainn the cluster

[[{'John makes (.)'} . {'tea', 'coffee'}]

Here,, 'tea' and 'coffee' are not characteristic expressions, since they appear with
thee context 'John likes (.)'. which here is not a context belonging to the type.
Soo the type has no characteristic expressions. It is easy to see that when using
1-dimensionall clustering, whenever a context is ambiguous54, all types involved
wil ll lack characteristic expressions.

34'Ambiguous'' in the sense that the set of expressions it appears with is the union of several
smallerr sets associated with other contexts

12.5.12.5. Finding rules 131 1

12.4.3.. E X A M P L E. Assume that primary expressions are constrained to be at
mostt 5 words long. If we add the sentence 'John makes really really really really
strongg coffee' to the sample of the previous example, then the expression 'really
reallyy really really strong coffee' wil l not be added as a primary expression to the
typoo represented by the cluster

[[{'John makes (.)', 'John likes (.)'} {'tea', 'coffee'}]

However,, since 'John makes (.)' is a characteristic expression of this type, the
expressionn 'really really really really strong coffee" wil l be associated with the
typee as a secondary expression.

12.55 Finding rules

Thee EMIL E program also transforms the grammatical types found into deriva-
tionn rules. For reasons of simplicity. EMILE constructs a context-free grammar
ratherr than a context-sensitive grammar. For this construction, only the sets of
expressionss associated with the types are needed: the sets of contexts associated
withh the types are not used in creating the derivation rules.
First.. EMIL E searches for rules that are supported. Obviously, if an expression e
belongss to a type X (as a secondary expression), the rule

[X]] => e

iss supported. EMIL E finds more complex rules, by searching for characteristic*
expressionss of one type that appear in the secondary expressions of another (or
thee same) type. For example, if the characteristic* expressions of a type X are

{dog.. cat. gerbil}

andd the type [0] contains the secondary expressions

{ II feed my dog. I feed my cat. I feed my gerbil}

thenn EMIL E wil l find the rule

[0]] =* I feed my [X]

Thiss process of abstraction is repeated to obtain more abstract rules. Formally,
aa rule R is considered to be supported if it is of the form [X] => e (with e being a
secondaryy expression of X). or if it is of the form [X] => sQ[Ti]s][T2] ...$(.. k > 1.
andd for some i £ {1 k } .

{ tt €. Tp \ R with [X] replaced by e is supported} > #X£ r u le .support'/,
(12.1))

132 2 ChapterChapter 12. The algorithm* of EM1LE

Inn certain erases, using characteristic* and secondary expressions in this manner
allowss EMIL E TO find recursive rules. For instance, a characteristic* expression
off the type of sentences S might be

Maryy drinks tea

Iff the maximum length for primary expressions is seT To 4 or 5. the sentence

Johnn observes that Mary drinks tea

wil ll be a secondary expression of 5, but not a primary or characteristic one. So
iff there are no other expressions involved, EMILE would derive the rules

[5]] => Mary drinks tea

[5]] =̂ John observes that [S]

whichh would allow the resulting grammar to generate, for instance.

Johnn observes that John observes that John observes thaT Mary drinks tea

EMIL EE creates a set of supported rules capable of generating all sentences in the
originall sample. To reduce the size of this grammar, the program discards from
thee final output rides which are superfluous, such as rules which are instantiations
off other rules35, and rules for types which aren't referred to in other rules.
Experimentss showed that often. EMIL E finds several types which where only
slightt variations of one another. If all these types are referred to in the rules, this
resultss in a much larger rule-set than is necessary. The most recent incarnation
off EMILE tries to prevent this by being actively conservative in the number of
typess used: a set of used types is maintained, and only rules using those types are
consideredd for inclusion. This set initiall y contains only the whole-sentence type
[0].. and types are added only if this would result in a decrease in the size of the
totall rule-set.36

12.66 Future Developments

Theree is still a lot of room for improvement. The clustering algorithm could be ex-
tendedd to use negative samples (i.e. sentences which should not be constructible)
ass well as positive ones. Furthermore, a module can be added to EMIL E which
allowss it to identify those sentences whose grammatically is the most uncertain
(fromm those sentences which EMIL E considers grammatical but which are not in
thee original sample), which would allow it to query an oracle in a directed fashion.

35I.e.. which can be obtained from other rules by replacing a type reference by a secondary
expressionn of that type

36EMIL EE can also be set to allow a small increase: this often results in a more meaningful
grammarr at the expense of a slightly larger rulo-set.

1212 6. Mtftthe Developments m m
Anotherr possible extension is tö the algorithm constructing thé 4^nA^io^rule
grammars** Ourreötiy ÊMÏLÈ dönstjfucts a GOöta&fc-feee $mï&st. It may be
possiblee to adapt JS&uLË to produce a more sensible context-sensitive grammars,
nsmgg the sets of contexts ptódüced by thë éïügtëïitig algorithm-

