UNIVERSITY OF AMSTERDAM
X

UvA-DARE (Digital Academic Repository)

Games, walks and grammars: Problems I've worked on

Vervoort, M.R.

Publication date
2000

Link to publication

Citation for published version (APA):
Vervoort, M. R. (2000). Games, walks and grammars: Problems I've worked on. ILLC.

General rights

It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s)
and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open
content license (like Creative Commons).

Disclaimer/Complaints regulations

If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please
let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material
inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter
to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You
will be contacted as soon as possible.

UVA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl)

Download date:05 Oct 2022

https://dare.uva.nl/personal/pure/en/publications/games-walks-and-grammars-problems-ive-worked-on(a1ea7ffa-dfe6-440b-9290-8887ad20dbb9).html

Chapter 12

The algorithms of EMILE

This chapter attempts to give soine iusight into the reasoning underlying the algo-
rithms of ENILE. We will start with a very simple version of the basic algorithm.
and in several steps change it to the full algorithm. at cach step elaborating on
the motivations for the change.

12.1 1-dimensional clustering

Given a sample of sentences, we want to obtain sets of expressions and contexts
that correspond to grammatical types. A simple clustering techuique is to extract
all possible context/expression combinations from a given sample of sentences.
and group together expressions that appear with the same context.

12.1.1. EXxaMPLE. If we take the sample sentences “John makes tea” and ~John
likes tea’. we get the following context/expression matrie:

(.} John | John | () | John | (.} | (.} | John
makes | () | wakes | tea [() likes | likes
tea tea () tea ()
John X X
makes X
fea X X
John miakes X
makes tea X

John makes tea X
likes X
John likes X
likes tea X
John likes tea X

125

126 Chapter 12. The algorithms of EMILE

from which we can obtain the clusters

“cJoln () tea’. {'makes’. “likes'}]
[(.} tea’, {'John makes’. “Johu likes'} |
[“John (). {'makes tea’. ‘likes tea’}]
RO John makes tea’. “Joln likes tea'} |

Next. we can group contexts together if they appear with exactly the same ex-
pressions.

12.1.2. ExAMPLE. If we add the sentences “John makes coffee’. ~Joln likes coffee
to the previous sample. the relevant part of the context fexpression matrix looks
like

Jolm | John | John | John !
{.) (.} | makes | likes
tea | coffee {.} (.}
makes X X
likes X X
fea X X
coffec X X

which vields the clusters

[{-John () tea’. "John (.} coffee’}. {rmakes’. ‘likes'} |
[{*John mdl\es (). ~John likes {.)"}. {"tea’. "coffee’}]

As stated before. a grammatical tvpe can be characterized by the expressions
that are of that tvpe, and the contexts in which expressions of that tvpe appear.
Hence the clusters we find here can be interpreted as granunatical tyvpes. For
instance. the clusters in the above example could be said to correspond to the
grammatical types of “verbs” and nouns’. respectively.

12.2 2-dimensional clustering

One of the flaws in this technigque is that it doesn't properly handle contexts
whose tyvpe is ambiguous.

12.2.1. ExXaMPLE. If we add the sentences *John likes eating” and ~John is eating’
to the previous example. the relevanr part of the context /expression matrix will

12.2, 2-dimensional clustering 127

look like this:

John | John | John | John | John | John

() {.) () makes | likes | s
tea | coffee | eating (.) {.) ()

makes X X

likes X X X

is X

tea o X X

coffee X

eating X X

Here we can intuitively identify four grammatical types: noun-phrases. verb-
phrases, ‘ing’-phrases, and "verbs-appearing-with-ing-phrases'-phrases. The con-
text “John likes (.)" is ambiguous. in the sense that it appears with both noun-
phrases and “ing’-phrases. If we proceed as before. we get the following clusters

[{*John (.) tea”. “John (.) coffee’}. {"makes’. "likes'}]
[{-John (.) eating’}, {'likes". "is’} |
[{*John makes (.)'}. {‘tea’. ‘coffee’}]
[{*John likes {.)"}. {tea’. ‘coffee’. ‘eating’} |
[{John is (.)'}, {eating’}]
i.e. the context “John likes (.)" is assigned a separate type.

Assigning ambiguous contexts a separate type not only results in a less natural
representation, in a later step it will prevent us from correctly identifving the
characteristic expressions of a type (as will be demonstrated in Example 12.4.2).
A more natural representation would be to allow ambiguous contexts and expres-
sions to belong to multiple types. For this. we need to use a different clustering
method. The clustering method EMILE uses is to search for maximum-sized
blocks in the matrix. This could be termed 2-dimensional clustering.

12.2.2. EXAMPLE. The following picture shows the matrix of the previous ex-
ample. with the maximum-sized blocks indicated by rectangles.??

John | John | John | John | John | John
. . . makes | likes is
tea |coffee |eating| (.) (.) (.)
makes X X
likes [x X X]
is X . _
eating = X
tea X X
coffee X X

32Please note that the expressions and contexts have been arranged to allow the blocks to be
easily indicated: in general. blocks will not consist of adjacent context /expression pairs.

128 Chapter 12. The algorithins of EMILE

These blocks correspond to the clusters

[{-John {.) tea’. "John (.} coffee’}. {"makes’. “likes'} |
[{~John () cating}. {likes". "is'} |
[{~John makes (). “John likes ()} {tea’. "coffee’}]
[{John is (.)". “John likes (.)}. {"eating’}]
“{-John (.} tea’. "John (.) coffec’. “John (.} eating’}. {likes}]
[{-John likes ()}, {"eating’. "tea’. “coffee’}]

The last rwo clusters correspond to sets of context/expression pairs which are
already ~covered” by the other blocks. In a sense these blocks are superflnous.

The algorithm to find these blocks is very simple: starting from a single con-
text fexpression pair. EMILE randomly adds contexts and expressions while en-
suring that the resulting block is still contained in the matrix. and keeps adding
coutexts and expressions until the block can no longer be enlarged. This is done
for each context/expression pair that is not already contained in some block.
Once all context /expression pairs have heen “covered'. the superfluous blocks
{those completely covered by other blocks) are discarded.

12.3 Allowing for imperfect data

In the previous section. the requirement for a block was that it was entirely con-
tained within the matrix, i.c. the clustering algoritinn did not find a type unless
every possible combination of contexts and expressions of that type had actually
been encountered and stored in the matrix. This only works if a perfect sam-
ple has heen provided. In practical use, we need to allow for imperfect samples.
There are many context /expression combinations. such as for instance *John likes
evaporating’, which are grammatical but nevertheless will appear infrequently. if
ever.

To allow EMILE to be used with imperfect samples. two enliancements have been
made to the algorithm. First. the requirement that the block is completely con-
tained in the matrix. is weakened to a requirenient that the block is mostly con-
tained in the matrix. Specifically. a certain percentage of the context/expression
pairs of the block as a whole should be contained in the matrix. as well as a cer-
tain percentage of the context/expression pairs in each individual row or coluinn.
We can express this as

#(AM N (TexTe)) > #(Te x Tg) - total_support¥
VeeTe: #(MN{c}xTg)) = #Ty - context_support’
Yo € T o #(MN{Tex{eh)) > #T - expression_support’

where M is the set of all encountered context/expression pairs. and the values
XXX_support? are constants that can be set by the user.

12.4. Charactervistic and secondary expressions and conterts 129

12.3.1. ExAMPLE. Suppose that the matrix of context /expression pairs EXILE
has encountered has the following sub-matrix:

John | John | John | John
wakes | likes | drinks | buys

() (.} () ()

tea X N X X
coffec X X X
lemonade X X X
soup X X X X
apples X

If the settings context_support’% and expression_support’ have been set to
5% and total supporth lias been set to 80 then the type represented by the
cluster

{*Johu makes (.). “John likes ()" “John drinks {.)". “John buvs ()7}
{*tea’. “coffee’. *lemonade’, "sonp’}

will be identified, in spite of the fact that one of the context/expression pair of
the block, (*John buys (). "lemonade’). does not appear in the matrix. However.
the expression “apples’ will not he added to the above type. since it appears with

less than expression_support% of the contexts.

Secondly, note that of the different expressions and contexts belonging to a gram-
matical type. it can be expected that the short and medium-length ones (in terms
of nuniber of words) will be encountered more often than the long ones. In other
words. if we restrict the sample to short and medin-length contexts and expres-
sions. it will be closer to a perfect sample. Implementing this notion. EAMILE
uses only short and medium-length contexts and expressions when searching for
granumatical types.

12.4 Characteristic and secondary expressions
and contexts

To search for longer expressions and contexts associated with types. ENIILE uses
characteristic expressions and contexts, As defined in Definition 11.2.5. a char-
acteristic expression of a tvpe T only appears with contexts that are of tvpe T.%
Since the types involved usually have not beeu fully identified vet. EMILE relaxes
this requirement to also allow untyped contexts.

#Note that a context may have more than one type. 5o a context appearing with a expression
characteristic for a type T may be of other types in addition to being of type T

130 Chapter 12. The algorithms of EMILE

Occasionally. a type has no characteristic expressions {due to imperfections in
the sample or the inherent ambiguity of the type): in such cases. the primarv
expressions of the type are used in place of the characteristic expressions. We call
these the characteristic* expressions of T. i.e. the characteristic* expressions of
T are defined as the characteristic expressions of T if there are any. and as the
primary expressions of T otherwise.

The definitions of characteristic and characteristic® contexts of a tvpe T are
analogous.

Any untyped context appearing with an characteristic expression of a type T is
likely to helong to T as well. Contexts which appear with (a certain percentage
of the) characteristic* expressions of T are called secondary contexts of T. as
opposed to the primary contexts found by the clustering algorithm. Analogous
for secondary expressions. Note that the constraint on the length of primary
contexts and expressions does not apply to secondary contexts and expressions.
and hence this allows for long contexts and expressions to be associated with
tvpes.

12.4.1. EXAMPLE. In the previous example. for the type represented by the clus-
ter
[{-John likes (.)'}. {*eating’. "tea’. “coffec’} |

“John likes (.} only appears with "eating’. "tea” and ‘coffee’. so it is a characteristic
(and hence characteristic*) context for this type. The expression ‘eating’ also
appears with the context “John is (.)". so it is not a characteristic expression. A
similar condition obtains for ‘tea’ and ‘coffee’, so the type has no characteristic
expressions at all. Consequentially. its primary expressions ‘eating’. ‘tea’ and
‘coffee” are also its characteristic* expressions.

For the type represented by the cluster

[{*John makes (.)". ~John likes (.}'}. {"tea’. ‘coffee’'}]
all its expressions and contexts are characteristic.
12.4.2. ExaMPLE. In Example 12.2.1. we used 1-dimensional clustering to ob-

tain the cluster
[{-John makes (.)'}. {tea’. "coffee’} |

Here, ‘tea’ and ‘coffee” are not characteristic expressions. since thev appear with
the context “John likes (.)". which here is nor a context belonging to the tvpe.

So the tvpe has no characteristic expressions. It is easy to see that when using
4

1-dimensional clustering. whenever a context is ambiguous™. all types involved

will lack characteristic expressions.

34 Ambiguous in the seuse that the set of expressions it appears with is the union of several
smaller sets associated with other contexts

12.5. Finding rules 131

12.4.3. EXAMPLE. Assume that primary expressions are constrained to he at
most 3 words long. If we add the sentence “John makes really really really really
strong coffee’ to the sample of the previous example. then the expression ‘really
really really really strong coffee’ will not be added as a primary expression to the
type represented by the cluster

[{~John makes (.)". "John likes (.)'}. {"tea’. ‘coffec’} |

However. since *John makes (.)° is a characteristic expression of this type. the
expression ‘really really really reallv strong coffee” will be associated with the
type as a secondary expression.

12.5 Finding rules

The EMILE program also transforms the grammatical types found into deriva-
tion rules. For reasons of siniplicity. EMILE constructs a context-free grammar
rather than a context-sensitive grammar. For this construction. only the sets of
expressions associated with the tvpes are needed: the sets of contexts associated
with the tvpes are not used in creating the derivation rules.

First. EMILE searches for rules that ave supported. Obviously. if an expression ¢
belongs to a type T (as a secondary expression). the rule

[Tl=e

is supported. EMILE finds more complex rules. by searching for characteristic*
expressions of one tvpe that appear in the secondary expressions of another (or
the same) type. For example. if the characteristic* expressions of a tvpe T are

{dog. cat. gerbil}
and the type [0] contains the secondary expressions
{I feed my clog. I feed my car. [feed my gerbil}
then EMILE will find the rule
[0] = I feed my [T
This process of abstraction is repeated to obtain more abstract rules. Formally.
a rule R is considered to be supported if it is of the form [T] = ¢ (with ¢ heing a

secondary expression of T). or if it is of the form [T] = so[T\)5[T2] . .. sp. k > 1,
and for some / € {1..... kY.

#{e €Ty | R with [T}] replaced by ¢ is supported} > #7% - rule_support}
(12.1)

132 Chapter 12. The algorithms of EMILE

In certain cases, using characteristic* and secondary expressions in this manner
allows EMILE to find recursive rules. For instance. a characteristic® expression
of the type of sentences S might be

Mary drinks tea
If the maximum length for primary expressions is set to 4 or 3. the sentence
John observes that Mary drinks tea

will be a secondary expression of S, but not a primary or characteristic one. So
if there are no other expressions involved. EMILE would derive the rules

[S] = Mlary drinks tea
[S] = John observes that [S]

which would allow the resulting grammar to generate. for instance.
John observes that John observes that John observes that Mary drinks tea

EMILE creates a set of supported rules capable of generating all sentences in the
original sample. To reduce the size of this grammar, the program discards from
the final output rules which are superflunous. such as rules which are instantiations
of other rules®. and rules for tvpes which aren’t referred to in other rules.
Experiments showed that often, EMILE finds several types which where only
slight variations of one another. If all these types are referred to in the rules. this
results in a much larger rule-set than is necessary. The most recent incarnation
of EMILE tries to prevent this by being actively conservative in the numnber of
types used: a set of used types is maintained. and only rules using those types are
considered for inclusion. This set initially contains only the whole-sentence type
[0]. and types are added ouly if this would result in a decrease in the size of the
total rule-set.*

12.6 Future Developments

There is still a lot of room for improvement. The clustering algorithm could be ex-
tended to use negative samples (i.c. sentences which should not be constructible)
as well as positive ones. Furthermore, a module can be added to EMILE which
allows it to identify those sentences whose grammaticality is the most uncertain
(from those sentences which EMILE considers grammatical but which are not in
the original sample). which would allow it to query an oracle in a directed fashion.

35.e. which can be obtained from other rules by replacing a type reference by a secondary
expression of that type

3SENILE can also be set to allow a small increase: this often results in a more meaningful
grammar at the expense of a slightly larger rule-set.

.
|
M

o T T

