Concession. A typological study

Crevels, E.I.

Citation for published version (APA):
2 Some Basic Principles of Functional Grammar

Functional Grammar (FG) is a general theoretical framework which aims at developing a typologically, pragmatically, and psychologically adequate formal descriptive model for natural languages. Within FG a language is considered to be an instrument of social interaction, used primarily to establish communicative relationships. Therefore, the underlying clause structures which are used within the FG framework are of a semantic and pragmatic nature. These underlying structures are mapped onto the actual form of the corresponding linguistic expression by a system of expression rules (cf. Dik 1997: 49):

(1) Underlying Clause Structure
 ↓ Expression Rules
 ↓ Linguistic Expressions

2.1. Predicates, predicate frames, terms, and predications

Within FG predicates form the most basic building blocks at the morpho-semantic level of linguistic organization (cf. Dik 1997: 58). A predicate is embodied in a predicate frame, which contains a number of argument positions with their corresponding semantic functions. Participants which obligatorily take part in the state of affairs designated by a predicate frame are represented by these argument positions. Apart from specifying the essential syntactic and semantic properties of the predicate, the predicate frame specifies the category of the predicate (Verb, Noun, Adjective, or Adverb). A possible example of a predicate frame would be (2):

(2) give_V (x_i;^{anim})_{Ag} (x_j)_{Go} (x_j;^{anim})_{Rec}

As we can see, the verbal (V) predicate give in (2) has three argument positions (x_i). The first argument has the semantic function of Agent (Ag), the second argument Goal (Go), and the third Recipient (Rec). Thus, in each predicate frame the form, the category, and the valency of the predicate is specified. In (2), moreover,

1 This brief outline of the basic principles of Functional Grammar is based on Dik (1997) and Hengeveld (1992, 1997a, 1995). For a detailed description of the theory the reader is referred to Dik (1989, 1997). A critical approach to the theory is to be found in Siewierska (1991), who places the analyses of language structure proposed by Dik (1989) in the context of other grammatical frameworks.

2 See Hengeveld (1992) for a detailed discussion.
the first and the third argument are constrained by the selection restriction (animate).

Terms are expressions which can be inserted into the argument positions of a predicate frame. Terms are referring expressions which may range from pronouns to complex noun phrases. Terms are constructed according to the following general structure:

\[(\omega x_i; \Phi_1(x_i); \Phi_2(x_i); \ldots; \Phi_n(x_i)) \]

In this structure \(\omega \) stands for one or more term operators, while the term variable \(x_i \) represents the referent of the term. Each \(\Phi(x_i) \) is a predication in \(x_i \) which delimits the set of possible referents of the term. In (3) this is reflected by the colon which serves as a restriction operator. In constructing these open predications, the necessary predicates are taken from the lexicon. Consider the next example of a term structure:

\[(4) \]

(a) the big elephant that lives in the zoo

(b) (dix; elephant(\(x_i \)_\(\emptyset \)); big(\(x_i \)_\(\emptyset \)); live(\(x_i \)_\(\emptyset \)); zoo(\(x_i \)_\(\emptyset \); loc) \]

In (4b) we have a clear example of how term structures are construed from predicate frames: the first restrictor of \((x_i) \) is the predicate frame for elephant, the second restrictor is the predicate frame for big, and the third restrictor is construed from the predicate frame of live by inserting the term structure for the zoo into the second argument position of this predicate frame (cf. Dik 1997: 62). In this term structure \(d \) stands for definite and \(i \) for singular. Likewise, \(i \) may stand for indefinite and \(pl \) for plural.

Thus, on the one hand terms are construed from predicates, and on the other hand terms are inserted into the argument positions of predications in order to form predications. A predication designates an intended state of affairs, which is represented by a variable \(e \):

\[(5) \]

(a) The hen lays an egg.

(b) \((e; [\text{lay}(\text{dix}; \text{hen}(\text{x}_i)_\emptyset); \text{gen}(\text{xi}; \text{egg}(\text{xi})_\emptyset); \text{loc}] (e)) \)

In (5) the intended state of affairs is defined as one which concerns the laying of an egg \(x_i \) by a hen \(x_i \). The part between square brackets is called a nuclear predication, while the whole structure is referred to as an extended predication (cf. Hengeveld 1992: 5).

2.2. Syntactic and pragmatic functions

As we have seen, semantic functions are tied to the argument positions in a predicate frame. However, syntactic and pragmatic functions may also be assigned to

1 Dik (1997: 61) defines a 'predication open in \(x_i \)' as a predicate frame of which all positions except the one occupied by \(x_i \) are filled by term structures.
these arguments. Syntactic functions specify the grammatical perspective from which a state of affairs is represented. The subject is taken to determine the primary and the object the secondary perspective for the interpretation of the state of affairs. Hengeveld (1992: 5) gives the following illustrations of the assignment of syntactic functions:

(6) John (AgSubj) read the book (Go).
(7) The book (GoSubj) was read by John (Ag).
(8) John (AgSubj) gave the book (GoObj) to Mary (Rec).
(9) John (AgSubj) gave Mary (RecObj) the book (Go).

Pragmatic functions specify the informational status of the constituents of a linguistic expression in relation to the wider communicative setting in which they are used. While constituents with Topic function characterize the things we talk about, constituents with Focus function characterize the most important or salient parts of what we say about the topical things (cf. Dik 1997:310). Hengeveld (1992: 5) gives the following examples of pragmatic function assignment, in which capitalization indicates emphasis:

(10) JOHN (AgSubjFoc) read the book (GoTop).
(11) John (AgSubjTop) read THE BOOK (GoFoc).

Apart from assigning clause-internal pragmatic functions, FG also assigns clause-external pragmatic functions. Extra-clausal pragmatic functions are expressed by so-called extra-clausal constituents (ECCs), which are typically set off from the clause proper by a disjuncture or an intonation break. Consider the next examples from Dik (1997: 311):

(12) (a) Well [Initiator], what about some dinner?
 (b) Ladies and gentlemen [Address], shall we start the game?
 (c) As for the students [Theme], they won’t be invited.
 (d) John was, so they say [Modal parenthesis], a bright student.
 (e) It’s rather hot in here, isn’t it? [Tag, Illocutionary Modifier]
 (g) He’s a nice chap, your brother. [Tail, clarification]

The examples in (12) show that ECCs may express a variety of pragmatic functions, which basically concern the ‘management’ of the discourse flow.

2.3. The hierarchical structure of discourse

For quite some time the focus of research in FG has been on single utterances. These utterances are represented as hierarchically ordered layered structures, of which each of the layers corresponds with a particular communicative function.

*Siewierska (1991: 74) observes that rather than being defined syntactically, the subject and object functions are defined notionally in relation to a theory-specific interpretation of the notion perspective, and that strictly speaking the subject and object functions are not syntactic but rather perspectival.
This so-called hierarchically layered structure of the clause (Hengeveld 1989, 1990, 1992; Dik 1989, 1997), as represented in Figure 1, has been considered a natural frame for the subcategorization of adverbial clauses in FG.

\[
(E; [(F; ILL (F)) (S) (A) (X; [] (X))])(E))
\]

\[
(e; [(f; Pred_p (f)) (x) \ldots (x_n) (e)])
\]

<table>
<thead>
<tr>
<th>Variable</th>
<th>Designation</th>
<th>Order</th>
<th>Linguistic unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>(E_r)</td>
<td>Speech act</td>
<td>4</td>
<td>Utterance</td>
</tr>
<tr>
<td>(X_r)</td>
<td>Propositional content</td>
<td>3</td>
<td>Proposition</td>
</tr>
<tr>
<td>(F_r)</td>
<td>Illocution</td>
<td>0</td>
<td>Illocutionary force</td>
</tr>
<tr>
<td>(e_n)</td>
<td>State of affairs</td>
<td>2</td>
<td>Predication</td>
</tr>
<tr>
<td>(x_n)</td>
<td>Individual</td>
<td>1</td>
<td>Term</td>
</tr>
<tr>
<td>(f_n)</td>
<td>Property/Relation</td>
<td>0</td>
<td>Predicate</td>
</tr>
</tbody>
</table>

Figure 1. The hierarchical structure of the utterance in FG

2.3.1. *The discourse model*

In recent years, however, the need for developing FG into a discourse grammar has arisen, since some grammatical phenomena can only be described in a proper way if they are related to structural units larger than the utterance. In the following I will discuss the model for describing the hierarchical structure of discourse as proposed in Hengeveld 1997b.

Figure 2 shows the relevant layers within this model and the three functional-semantic levels at which these layers occur. The highest level in Figure 2 is called the rhetorical level. It represents the discourse as a whole (D), and is structured on the basis of a discourse frame (T), which determines the relations between moves (M). The intermediate level is called the interpersonal level (Halliday 1985a) and it represents the speech act (E) and is structured on the basis of an illocutionary frame (F), which takes the speaker (S), the addressee (A), and the propositional content (X) as its arguments. Within the propositional content reference is made to a state of affairs (e). The lowest level is called the representational level (Bühler 1934). It represents the state of affairs (e) referred to in the speech act, and it is structured on the basis of a predicate frame (f), which takes one or more individuals (x) as its arguments.

5 For a detailed discussion of recent approaches and attempts in FG to formalize the relationship between the model of clause structure and a model of discourse structure the reader is referred to Hannay and Bolkestein (1998) and Conolly et al. (1997).

6 Moves are thematically coherent parts of the discourse (cf. Kroon 1995).
The structure in Figure 2 thus contains six layers and three frames. The respective layers and frames are summed up with their corresponding variables and matching entity types (cf. Section 2.3.2) in Table 1.

Table 1. Layers in FG

<table>
<thead>
<tr>
<th>Variable</th>
<th>Designation</th>
<th>Underlying unit</th>
<th>Representation</th>
<th>Order</th>
</tr>
</thead>
<tbody>
<tr>
<td>(D;)</td>
<td>Discourse</td>
<td>Text</td>
<td>(D; [TYP (M;) ... (M_n)] (D;))</td>
<td>6</td>
</tr>
<tr>
<td>(T;)</td>
<td>Discourse type</td>
<td>Discourse frame</td>
<td>(T; (M; ... (M_n) (T;))</td>
<td>0</td>
</tr>
<tr>
<td>(M;)</td>
<td>Move</td>
<td>Paragraph</td>
<td>(M; (E; ... (E;))</td>
<td>5</td>
</tr>
<tr>
<td>(E;)</td>
<td>Speech act</td>
<td>Utterance</td>
<td>(E; [ILL (S) (A) (X; [etc.] (X;)) (E;))</td>
<td>4</td>
</tr>
<tr>
<td>(F;)</td>
<td>Illocution</td>
<td>Illoc. frame</td>
<td>(F; (S) (A) (X; (F;))</td>
<td>0</td>
</tr>
<tr>
<td>(X;)</td>
<td>Propositional content</td>
<td>Proposition</td>
<td>(X; [(e; [etc.] (e;)] (X;))</td>
<td>3</td>
</tr>
<tr>
<td>(e;)</td>
<td>State of affairs</td>
<td>Predication</td>
<td>(e; [Pred (x; ... (x_n)] (e;))</td>
<td>2</td>
</tr>
<tr>
<td>(f;)</td>
<td>Relation/Property</td>
<td>Predicate frame</td>
<td>(f; Pred (f;))</td>
<td>0</td>
</tr>
<tr>
<td>(x;)</td>
<td>Individual</td>
<td>Term</td>
<td>(x; Pred (x;))</td>
<td>1</td>
</tr>
</tbody>
</table>
2.3.2. Entity types

Extending the analysis proposed by Lyons (1977: 442–7), Hengeveld (1989, 1992, 1997a) classifies speech acts (E) as fourth order entities, which are characterized by the fact that they can locate themselves in space and time. Propositional contents (X) which are contained in speech acts are classified as third order entities, which can be located neither in time nor space. Within the propositional content reference is made to a state of affairs (e), a second order entity, which can be located in space and time. This state of affairs involves one or more individuals (x), first order entities, which can be located in space but not in time. While the definition of first and fourth order entities is relatively unproblematic, the distinction between states of affairs or events on the one side, and propositional contents on the other, is more complicated. Contrary to states of affairs—which exist independently—propositional contents can be asserted, known, negated or questioned; they are mental conceptions about states of affairs and they only exist in the mind of their user.

Extending Lyons’ 1977 analysis even further, we could state that the outermost layer (D) in Figure 2, which represents the discourse as a whole, designates a sixth order entity, which is characterized by its textual coherence. The discourse contains one or more moves (M), fifth order entities, which are characterized by their thematic continuity. Each move consists of one or more speech acts, which, as we have seen, are classified as fourth order entities, etc. (cf. Table 1).

Whereas the illocutionary relation (F) characterizes the participants in the speech event at the interpersonal level, the property or relation (f) characterizes the participants in the narrated event at the representational level. Both relations designate zero order entities, which cannot occur independently, but can only be predicated of other entity types. In this context the discourse type (T) obviously designates a zero order entity as well, since it characterizes the participants in the textual event at the rhetorical level.

2.3.3. Layers and frames

Table 1 shows an inconsistency in so far as, contrary to other entities, zero order entities consist of three different types, namely (f), (F), and (T), each applying to one of the functional-semantic levels. This leads to the question whether these frames should be classified as entities; an alternative would be to simply distinguish between layers on the one hand, and frames on the other. As will be shown in the next section, this implies that a distinction will have to be made between operators and satellites which modify layers, and operators and satellites which modify frames.

7 See Hengeveld (1997b) for a more detailed description.
2.3.4. Operators and satellites

Figure 3 is a representation of the extended underlying structure of discourse in FG.

\[
(D_n; \text{TYP} (M_i; \left[\left(M_j \right) \ldots (M_n) \sigma_j \right] \left(D_i \right)) ; \sigma_e (D_i))
\]

\[
(E; \left[\text{ILL} (S) (A) \right] (\pi_3 X; \left[\left(X_j \right) \sigma_j \right] (E_j)); \sigma_4 (E_j))
\]

\[
(\pi_2 e; [\text{Pred}_p (x_1) \ldots (x_n)] (e_i); \sigma_j)
\]

<table>
<thead>
<tr>
<th>Layers</th>
<th>Operators</th>
<th>Satellites</th>
</tr>
</thead>
<tbody>
<tr>
<td>(D_n)</td>
<td>Text</td>
<td>(\sigma_e) Text satellites</td>
</tr>
<tr>
<td>(M_n)</td>
<td>Paragraph</td>
<td>(\sigma_5) Paragraph satellites</td>
</tr>
<tr>
<td>(E_n)</td>
<td>Utterance</td>
<td>(\sigma_4) Utterance satellites</td>
</tr>
<tr>
<td>(X_n)</td>
<td>Proposition</td>
<td>(\pi_3) Proposition operators</td>
</tr>
<tr>
<td>(e_n)</td>
<td>Predication</td>
<td>(\sigma_3) Predication satellites</td>
</tr>
<tr>
<td>(x_n)</td>
<td>Term</td>
<td>(\Omega) Term operators</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Frames</th>
</tr>
</thead>
<tbody>
<tr>
<td>(T_n)</td>
</tr>
<tr>
<td>(F_n)</td>
</tr>
<tr>
<td>(f_n)</td>
</tr>
<tr>
<td>(\pi_F)</td>
</tr>
<tr>
<td>(\sigma_t)</td>
</tr>
</tbody>
</table>

Figure 3. The extended hierarchical structure of discourse

The difference between Figure 3 and Figure 2 in Section 2.3.1 lies in the fact that each layer in Figure 3 has been provided additionally with its corresponding operators \((\pi_n)\) and satellites \((\sigma_n)\). While operators are abstract elements which represent semantic distinctions, which may be expressed by grammatical means, satellites represent modifications caused by lexical means. In short, one might say that term operators \((\Omega)\) represent grammatical distinctions which specify additional properties of entities, such as number and definiteness, predicate operators \((\pi_t)\) cover aspectual distinctions, predication operators \((\pi_2)\) apply to temporal distinctions, proposition operators \((\pi_3)\) to modal distinctions, and that, finally, illocutionary operators \((\pi_F)\) have to do with modifications of basic illocutions. The functions of the satellites are comparable to those of the corresponding operators. While predicate satellites \((\sigma_t)\) specify additional properties of the internal structure of a state of affairs (Manner, Direction), predication satellites \((\sigma_2)\) specify the spatial, temporal, and cognitive, or, in other words, the external setting of entities.

\[\text{For reasons of transparency, and since frames do not play an important role in the following, Figure 2 is limited to an elaborated representation of layers.}\]
the state of affairs (Location, Time, Reason). Proposition satellites (σ_3) specify the speaker's attitude towards the propositional content of the speech act (Evidence), illocution satellites (σ_2) specify or modify the speaker's communicative strategy (Manner (of speech act)), and utterance satellites (σ_1) specify the lexical means used by the speaker to locate his utterance in the discourse context. Paragraph satellites (σ_0), finally, specify the speaker's attitude towards a whole preceding text unit.

2.4. Subordinated constructions in FG

A major advantage of the hierarchical structure of discourse is that layers of lower levels together with their corresponding operators and satellites are completely integrated within the layers of higher levels. Thus, each proposition contains a predication, or each propositional content contains a description of a state of affairs. In view of the fact that subordinated constructions may be classified according to the highest layer of the underlying structure they contain, the hierarchically layered structure of discourse also functions as a model for the research of formal properties of subordinated constructions, among which adverbial clauses, a subtype of satellites in FG. In the following I will discuss the FG approach to subordinated clauses.

Satellites cannot only be classified on the basis of their external structure, i.e. the layer they modify, but also on the basis of their internal structure, i.e. the structure of the whole construction. First consider examples (13) through (17):

(13) I speak Catalan, and I read and write it, but I wouldn't be able to write works of literary creation in any other language than Spanish, although I have done it at times.

(14) Susan isn't here, for I don't see her.

(15) Jenny went home because her sister would visit her.

(16) Before I go out for dinner I want to wash my hair.

(17) I bought this ring in Amsterdam.

In (13) the Concession satellite refers to a fifth order entity (the move I have done it many times, which takes the whole preceding paragraph I speak Catalan, and I read and write it, but I wouldn't be able to write works of literary creation in any other language than Spanish in its scope). In (14) the Explanation satellite describes a fourth order entity (the speech act I don't see her), and in (15) the Reason satellite describes a third order entity (the propositional content her sister would visit her. The Time satellite in (16) describes a second order entity (the state of affairs my going out for dinner), while the Location satellite in (17) describes a first order entity (the individual Amsterdam).
First order entities do not play a role in the context of adverbial subordination, since they can only be expressed by NP's, and not by clauses. As shown in examples (13)–(16), the other four types, however, do manifest themselves in the form of adverbial clauses. The difference between the Time satellite (16) and the Reason satellite (15) is the same as the one that Lyons (1977) makes between second and third order entities, i.e. between states of affairs and propositional contents. As discussed in Hengeveld (1998: 346), the difference between the entity types is reflected by a difference in syntactic behaviour. Thus, Reason clauses, being propositional, admit the expression of a propositional attitude, whereas Time clauses do not. Consider the Reason clause in (18) and the Time clause in (19):

(18) Jenny went home because her sister might visit her.
(19) *Before I might go out for dinner I want to wash my hair.

The difference between the Reason and the Explanation satellite is that whereas in (15) the source of the reason is the main-clause participant Jenny—as indicated by the presence of would—the source of the explanation in (14) is the speaker. Thus the Explanation clause is not the reason for which the main clause event took place, but rather reflects the reasoning which led the speaker to the conclusion contained in the main clause. Since Explanation clauses have this illocutionary component, they allow for illocutionary modification, whereas Reason clauses do not. Consider (20) and (21):

(20) Susan isn’t here, for, honestly, I don’t see her.
(21) *Jenny went home because, frankly, her sister would visit her.

The difference between the Explanation and the Concession satellite is that whereas the Explanation clause is part of a single construction, and, therefore, specifies a single preceding speech act, the Concession clause in this case modifies a series of preceding speech acts. Unlike the Explanation clause, the Concession clause allows for the addition of the phrase now that I come to think of it:

(22) I speak Catalan, and I read and write it, but I wouldn’t be able to write works of literary creation in any other language than Spanish, although, now that I come to think of it I have done it at times.

(23) *Susan isn’t here, for, now that I come to think of it, I don’t see her.

As shown in (24) the internal structure of the distinct types of satellites has a decreasing degree of complexity:

(24) \[(M_1; \text{paragraph } (M_i))_{\text{Concession}}
(\text{E}_i; \text{utterance } (\text{E}_j))_{\text{Explanation}}
(\text{X}_i; \text{proposition } (\text{X}_j))_{\text{Reason}}
(\text{e}_i; \text{predic} (\text{e}_j))_{\text{Time}}
(\text{x}_i; \text{pred}_N (\text{x}_j))_{\text{Location}}\]
2.5. Conclusion

In this chapter I have given a short overview of some of the basic principles of FG and more specifically the hierarchically layered structure of discourse. In the next chapter we will see that concessive clauses may occur as predication, proposition, utterance and paragraph satellites, respectively. In Section 3.3 I will return to the subject of FG’s hierarchical structure of discourse and propose a possible way of representing concessives within this structure.