Wrists in space: deformable models for segmentation and matching techniques for registration of 3-D MR and CT images of the wrist
Snel, J.G.

Citation for published version (APA):
WRISTS IN SPACE

DEFORMABLE MODELS FOR SEGMENTATION
AND MATCHING TECHNIQUES FOR
REGISTRATION OF
3-D MR AND CT IMAGES
OF THE WRIST

JEROEN G. SNEI
About this thesis

Advanced medical imaging techniques such as magnetic resonance imaging (MRI) or computed tomography (CT), provide exceptional views of the internal anatomy of the human body. However, the ability to quantify and analyze the embedded anatomical structures with any accuracy is limited.

Both in the areas of diagnostic radiology and wrist surgery there is a growing interest in quantitative methods for radiological diagnosis of wrist pathologies. These interests resulted into a Ph.D. project in the Academic Medical Center (AMC) at the University of Amsterdam. This thesis describes the image processing techniques that were developed as a part of this project to analyze three-dimensional (3-D) MR and CT images of wrists.

Contour tracing and surface extraction algorithms were designed to reconstruct the 3-D geometry of the wrist joint. For a kinematic joint analysis a 3-D image registration technique was developed that traces the relative movements of the different bones of the wrist. The analysis can provide valuable information on the long term results of operative interventions and possibly predict results of new techniques in the fast evolving field of wrist surgery.

Jeroen Snel (1968) studied applied physics (1988-1994) at the University of Amsterdam. In May 1994 he started his Ph.D. work in the Medical Technology group headed by professor C.A. Grimbergen at the department of Medical Physics of the AMC, Amsterdam. His research interests include geometric modeling, image processing, and visualization.

ISBN 90-9013992-3
WRISTS IN SPACE

DEFORMABLE MODELS FOR SEGMENTATION
AND MATCHING TECHNIQUES FOR
REGISTRATION OF
3-D MR AND CT IMAGES
OF THE WRIST
Wrists in Space

Deformable Models for Segmentation and Matching Techniques for Registration of 3-D MR and CT Images of the Wrist

ACADEMISCH PROEFSCHRIFT

TER VERKRIJGING VAN DE GRAAD VAN DOCTOR AAN DE UNIVERSITEIT VAN AMSTERDAM OP GEZAG VAN DE RECTOR MAGNIFICUS PROF. DR J.J.M. FRANSE TEN OVERSTAAN VAN EEN DOOR HET COLLEGE VOOR PROMOTIES INGESTELDE COMMISSIE, IN HET OPENBAAR TE VERDEDIGEN IN DE AULA DER UNIVERSITEIT

OP

DONDERDAG 5 OKTOBER 2000 TE 12:00 UUR

DOOR

Jeroen George Snel

geboren te Nederhorst den Berg
Promotiecommissie en oppositie

Promotores: Prof. dr ir C.A. Grimbergen
Prof. dr G.J. den Heeten

Co-promotor: Dr H.W. Venema

Overige leden: Dr E.M. Akkerman
Prof. dr K.E. Bos
Dr P.F. Dijkstra
Prof. dr ir A.W.M. Smeulders
Prof. dr ir H.G. Stassen
Prof. dr J. Strackee
Prof. dr ir M.A. Viergever
In herinnering aan Michaël en Boom
This thesis is based on the following articles:

Institute of Electrical and Electronics Engineers
TABLE OF CONTENTS
1 Medical Imaging and Image Analysis

1.1 The History of Medical Imaging 3
1.2 Medical Image Analysis 6
1.3 Purpose of the Study 7
1.4 Image Segmentation 9
1.5 MR and CT Imaging of the Wrist 10
 1.5.1 Magnetic resonance imaging (MRI) 11
 1.5.2 X-ray computed tomography (CT) 14
1.6 Overview of this Thesis 17

2 Detection of Carpal Bone Contours from 3-D MR Images

Abstract .. 21
2.1 Introduction .. 22
2.2 Materials .. 24
2.3 Methods .. 25
 2.3.1 Snake model 25
 2.3.2 Discrete snake 26
 2.3.3 Scale-space relaxation 27
 2.3.4 Problems and limitations of snake models 28
 2.3.5 Outline of our approach 30
 2.3.6 A radial image force based on 1-D second-order Gaussian filtering 31
 2.3.7 Radial scale-space relaxation 32
 2.3.8 Numerical approximation of the image force 33
 2.3.9 1-D contrast equalization 34
 2.3.10 Turning off the image force 35
 2.3.11 Resampling of the snake 35
 2.3.12 Parameter settings 35
 2.3.13 2 $\frac{1}{2}$-D contour detection 37
2.4 Results .. 37
 2.4.1 Experiments–Contour detection in test images 37
 2.4.2 Experiments–Contour detection in a MR image slice 40
 2.4.3 Contour detection of the carpal bones 40
2.5 Discussion .. 42
2.6 Conclusion .. 45
2.7 Acknowledgments 46

3 Surface Segmentation in 3-D MR and CT Images of the Wrist

Abstract .. 49
3.1 Introduction .. 50
3.2 Materials .. 51
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.3</td>
<td>Methods</td>
<td>52</td>
</tr>
<tr>
<td>3.3.1</td>
<td>Local deformable surface model (DSM)</td>
<td>52</td>
</tr>
<tr>
<td>3.3.2</td>
<td>Binary approximation of the boundary</td>
<td>56</td>
</tr>
<tr>
<td>3.3.3</td>
<td>Definition of internal and external forces</td>
<td>57</td>
</tr>
<tr>
<td>3.3.4</td>
<td>Regularization of triangulations</td>
<td>61</td>
</tr>
<tr>
<td>3.3.5</td>
<td>Resampling of a triangulated surface</td>
<td>63</td>
</tr>
<tr>
<td>3.3.6</td>
<td>Parameter settings</td>
<td>68</td>
</tr>
<tr>
<td>3.4</td>
<td>Results</td>
<td>70</td>
</tr>
<tr>
<td>3.4.1</td>
<td>Experiments</td>
<td>70</td>
</tr>
<tr>
<td>3.4.2</td>
<td>Surface detection in 3-D MR and CT images</td>
<td>71</td>
</tr>
<tr>
<td>3.5</td>
<td>Discussion</td>
<td>79</td>
</tr>
<tr>
<td>3.6</td>
<td>Acknowledgments</td>
<td>85</td>
</tr>
<tr>
<td>3.7</td>
<td>Appendix</td>
<td>85</td>
</tr>
<tr>
<td>4</td>
<td>Analysis of Carpal Kinematics from 3-D CT Images of the Wrist</td>
<td>87</td>
</tr>
<tr>
<td>4.1</td>
<td>Introduction</td>
<td>90</td>
</tr>
<tr>
<td>4.2</td>
<td>Materials</td>
<td>91</td>
</tr>
<tr>
<td>4.2.1</td>
<td>Image acquisition</td>
<td>91</td>
</tr>
<tr>
<td>4.2.2</td>
<td>Wrist posture device</td>
<td>92</td>
</tr>
<tr>
<td>4.3</td>
<td>Registration Method</td>
<td>92</td>
</tr>
<tr>
<td>4.3.1</td>
<td>Chamfer matching</td>
<td>94</td>
</tr>
<tr>
<td>4.3.2</td>
<td>Gray value matching</td>
<td>96</td>
</tr>
<tr>
<td>4.3.3</td>
<td>Verification methods</td>
<td>96</td>
</tr>
<tr>
<td>4.3.4</td>
<td>Co-ordinate transformations</td>
<td>96</td>
</tr>
<tr>
<td>4.3.5</td>
<td>Finite helical axis (FHA) representation</td>
<td>97</td>
</tr>
<tr>
<td>4.4</td>
<td>Results</td>
<td>100</td>
</tr>
<tr>
<td>4.4.1</td>
<td>Validation of the method</td>
<td>100</td>
</tr>
<tr>
<td>4.4.2</td>
<td>Registration of the carpal bones, the radius, and ulna in 3-D CT images of the wrist</td>
<td>101</td>
</tr>
<tr>
<td>4.5</td>
<td>Discussion</td>
<td>106</td>
</tr>
<tr>
<td>5</td>
<td>Discussion and Concluding Remarks</td>
<td>113</td>
</tr>
<tr>
<td>5.1</td>
<td>2-D Deformable Contour Model</td>
<td>116</td>
</tr>
<tr>
<td>5.2</td>
<td>3-D Deformable Surface Model</td>
<td>116</td>
</tr>
<tr>
<td>5.3</td>
<td>Quantification of 4-D Joint Kinematics</td>
<td>118</td>
</tr>
<tr>
<td>5.4</td>
<td>Future Research</td>
<td>119</td>
</tr>
<tr>
<td>5.5</td>
<td>Conclusion</td>
<td>121</td>
</tr>
<tr>
<td>6</td>
<td>Samenvatting in het Nederlands</td>
<td>123</td>
</tr>
</tbody>
</table>