Fusarium oxysporum from iridaceous crops: analysis of genetic diversity and host specialisation
Roebroeck, E.J.A.

Citation for published version (APA):
REFERENCES


Baayen RP, O'Donnell K, Waalwijk C, Bonants PJM, Cigelnik E and Roebroeck EJA (2000) Gene genealogies and AFLP analysis within the Fusarium oxysporum complex identify monophyletic and non-monophyletic formae speciales causing wilt and rot disease. Phytopathology, accepted for publication


Buxton EW and Robertson NF (1953) The Fusarium yellows disease of gladiolus. Plant Pathology 2: 61-64


Buxton EW (1955a) Fusarium diseases of gladiolus. Transactions of the British mycological Society 38: 193-201

Buxton EW (1955b) The taxonomy and variation in culture of *Fusarium oxysporum* from gladiolus. Transactions of the British mycological Society 38: 202-212

Buxton EW (1956) Heterokaryosis and parasexual recombination in pathogenic strains of *Fusarium oxysporum*. Journal of General Microbiology 15: 133-139


Daboussi M-J, Langin T and Brygoo Y (1992) Fot1, a new family of fungal transposable elements. Molecular and General Genetics 232: 12-16

REFERENCES

De Haan LAM, Numansen A, Roebroeck EJA and Van Doorn J (2000.) PCR detection of Fusarium oxysporum f.sp. gladioli race 1, causal agent of Gladiolus yellows disease, from infected corms. Plant Pathology 49: 89-100


Enkerli J, Bhatt G, Covert SF (1997) Nht1, a transposable element cloned from a dispensable chromosome in Nectria haematococca; Molecular Plant Microbe Interaction 10 :742-749


Jacobson DJ and Gordon TR (1990b) Variability of mitochondrial DNA as an indicator of relationships between populations of Fusarium oxysporum f.sp. melonis. Mycological Research 94: 734-744

REFERENCES


Kempken F and Kück U (1996) Restless, an active Ac-like transposon from the fungus *Tolypocladium inflatum*: structure, expression, and al ternative RNA splicing. Molecular and Cellular Biology 16: 6563-6572

Kim DH, Martyn RD and Magill CW (1993) Mitochondrial DNA (mtDNA) - Relatedness among formae speciales of *Fusarium oxysporum* in the cucurbitaceae. Phytopathology 83: 91-97


REFERENCES

Leslie JF and Zeller KA (1996) Heterokaryon incompatibility in fungi-more than just another way to die. J. Genet. 75: 415-424
McClellan WD (1945) Pathogenicity of the vascular *Fusarium* of gladiolus to some additional iridaceous plants. Phytopathology 35: 921-930


Molnár A, Hornok L and Pesti M (1985b) The high level of benomyl tolerance in Fusarium oxysporum is determined by the synergistic interaction of two genes. Experimental mycology 9: 326-333


Robertson NF (1952) Further Investigations of the “Fusarium yellows” disease of gladioli. Gladiolus Annual 1952: 26-31


Roebroeck EJA and Mes JJ (1992a) Physiological races and vegetative compatibility groups within *Fusarium oxysporum* f.sp. gladioli. Netherlands Journal of Plant Pathology 98: 57-64


REFERENCES

REFERENCES


Warren WD, Atkinson PW and O’Brochta, 1994. The Hermes transposable element from the house fly, Musca domestica, is a short inverted repeat-type element of the hobo, Ac and Tam3 (hAT) element family. Molecular and General Genetics 244: 1-8


