Clinical and audiological aspects of stapes surgery otosclerosis

de Bruijn, A.J.G.

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
Chapter 10

Summary and Conclusions.
Summary

This thesis concerns the clinical and audiological aspects of stapes surgery performed in patients with clinically confirmed otosclerosis. The procedures were done at the Department of Otorhinolaryngology – Head and Neck Surgery, Academic Medical Center, University of Amsterdam, in the period from 1983 to 1998.

In chapter 1 a general introduction is presented. Firstly the definitions and several historical facts of the disease “otosclerosis” are reviewed. Subsequently aetiology, epidemiology, clinical features, and the non-surgical treatment are discussed. More extensively the fascinating history of the surgical treatment of hearing losses due to otosclerosis is described, and a short review of the current surgical techniques with the application of several prostheses is described.

Furthermore, this chapter goes into the several aspects related to the evaluation of the hearing results after stapes surgery. Reviewing the literature about stapes surgery, it appears that there exists a considerable diversity in the use of audiological parameters and criteria to establish success rates. This renders the comparison of different studies very difficult. In this context several guidelines have been drafted by various committees in order to make the reporting of hearing results more standardised.

In chapter 2 the patient group with otosclerosis is presented who had a surgical treatment in our clinic. The acquisition of data is briefly reviewed, and subsequently the symptoms and clinical findings are discussed of the patient group who underwent primary stapes surgery. Audiometric testing of patients and analysis of audiometric data are described. Several aspects considering the hearing loss caused by clinically confirmed otosclerosis are discussed for the patient group who had primary surgery in our hospital. It appears that when the influence of physiological ageing on cochlear function is corrected according to the ISO 7029 standards, there exists a weak but significant correlation between age and the degree of BC hearing loss. When the bone-conduction (BC) thresholds are not corrected for age, a Carhart notch ≥ 5 dB was found in 66.3 % and a notch value ≥ 10 dB was found in 39.6 % of the cases. The air-bone gap (ABG) has its maximum value at 0.25 kHz (48.8 dB, SD ± 14.5) and its minimum value at 2 kHz (18.2 dB, SD ± 11.2).

After a short review of the development of surgical treatment of otosclerosis in the past 50 years at the Academic Medical Center, University of Amsterdam (previously “Wilhelmina Gasthuis”), the standard surgical technique is described which is applied in our hospital at present.

Additionally the aims of this thesis are discussed in this chapter. The main purpose of this retrospective study is to evaluate clinical and audiological results in a large series of patients with special reference to several methods of analysing audiometric data.
In chapter 3 the consequences of choice in using several audiological parameters and criteria to establish success rates are discussed. It appears that choice of different frequencies in the pure-tone average (PTA) results in important differences in the evaluation of hearing results after stapes surgery. When the traditional three frequency PTA at 0.5, 1, and 2 kHz (so called Fletcherian index) is compared with a four frequency combination in which a higher frequency, like the 3 or 4 kHz, is included, significant differences were found in the postoperative improvement of the mean air-conduction (AC) level and ABG. Furthermore, it appears that the postoperative change in AC, calculated for a four frequency combination with a higher frequency, correlates best with the change in speech reception threshold (SRT). Because the improvement in speech perception is the most important goal in stapes surgery, the change in SRT is taken as the gold standard. Also choice of using pre- or postoperative BC in computing postoperative ABG results in significant differences when analysing the mean postoperative ABG values. Using preoperative BC results in better overall ABG values as ABG overclosure due to the Carhart effect is included. However, because the inertial component of bone conducted sound transmission is restored after surgery, the postoperative BC level corresponds better with the true cochlear function and should therefore be preferred to be used in computing postoperative ABG. Finally, the success rates are dependent on how to define success. In this perspective, the percentage of ears with a postoperative AC threshold ≤ 30 dB, also called “socially acceptable hearing”, does compare best with the percentage of ears with an ABG closure ≤ 10 dB, and is a more realistic measure of success than the achievement of “normal hearing” defined as an AC threshold ≤ 20 dB.

In chapter 4 a method is presented in which the individual results can be deduced from two plots, which we have named the “Amsterdam Hearing Evaluation Plots“ (AHEPs). The first plot provides information for the effect of surgery on cochlear function, which is of special interest in reporting results after stapes surgery. A Carhart effect can occur resulting in an improvement in BC. However, because the inner ear is opened during surgery, there is also a chance of iatrogenic cochlear damage resulting in a postoperative deterioration of BC. The second plot gives information on the change in AC related to the preoperative ABG. In this perspective, a few definitions are drafted with reference to a “successful result”, a “successful result with overclosure”, and a “not-successful result”. The number of ears with one of these three possible results can easily be deduced from the second plot.

In our opinion, the AHEPs form an easily understood visual presentation of audiometric results of individual cases and would gain additional information when it is combined with the guidelines of the Committee on Hearing and Equilibrium of the American Academy of Otolaryngology - Head and Neck Surgery. Another advantage of using the AHEPs is that hearing results with extreme audiometric values are visualised clearly. These values would influence summary statistics but are not always recognisable when presenting data with means and standard deviations.

In chapter 5 two different stapes replacement prostheses are compared: a Teflon piston (type Causse; Xomed Surgical Products, Jacksonville, FL, USA) and a gold piston (K-piston; Heinz
Kurzz GmbH Medizintechnik, Dusslingen, Germany). Both pistons have the same shaft diameter of 0.4 mm. An important difference between prostheses is the difference in weight: the gold piston is three times heavier than the Teflon piston. In this chapter it is emphasised that for a fair comparison of the transmission function of prostheses, it is important to take only the prostheses into account that are functioning normally with regard to sound transmission function. To identify the normal functioning prostheses, the “Amsterdam Hearing Evaluation Plots” can be of help. In a retrospective analysis of audiometric results obtained after implantation of 62 Teflon pistons and 66 gold pistons, it appeared that in the whole group of ears the gold piston gives a significant larger gain in AC for the frequency combination 0.5, 1, and 2 kHz and for the individual frequency at 2 kHz. However, there were no significant inter-group differences with regard to the change in BC and ABG.

When an analysis is done for the “normally” functioning prostheses, identified with the AHEPs, a trend was noticed that the heavier gold piston gives more gain in the lower frequencies and the lighter Teflon piston gives more gain in the higher frequencies. On theoretical grounds (e.g. Impedance formula) one would expect this trend.

In chapter 6 pre- and postoperative data from speech audiometry were analysed of ears receiving primary stapes surgery, in order to evaluate the effect of surgery on speech reception. Therefore, the change in SRT, the maximum speech discrimination score (MSDS), the slope of the speech reception curve (SRC), and the occurrence of a slope decay of the SRC were examined.

It appeared that stapes surgery had no significant effect on the slope, nor on the slope decay of the SRC after MSDS has been achieved. Phonemic regression (slope decay > 0.5 %/dB) was not found before surgery, but occurred in 15 cases after surgery. This low incidence of postoperative regression was probably related to the test circumstances in quiet. In 96 % of the cases the SRT improved and correlation analysis showed that the change in SRT correlates well with the change in AC levels for the PTA at 0.5, 1, 2, and 4 kHz.

A postoperative reduction in MSDS ≥ 10 % occurred in 8 cases, while 13 cases showed an improvement ≥ 10 % in MSDS. Factors involved with the occurrence of a deterioration or improvement in speech discrimination were further elaborated. Therefore, the change in speech discrimination were related to the slopes of the preoperative pure-tone thresholds in order to examine whether postoperative loss in speech discrimination can be predicted from the configurations of preoperative pure-tone curves. In three cases a reduction in postoperative speech discrimination was thought to be related to a masking effect of the high frequencies by the low frequency elements of speech, due to an increase of the steepness of the AC curve. The increase in the steepness of the AC curve could retrospectively be predicted from the steepness of the preoperative BC curve. However, it was found that the slope of the postoperative AC threshold is not always to be predicted from the preoperative BC curve, even when technical success is achieved with gap-closure ≤ 10 dB. The reason is that either a Carhart effect or cochlear damage can occur. Therefore, it is not possible to predict a reduction in speech discrimination from the shape of the preoperative pure-tone thresholds.
Summary and Conclusions

In chapter 7 results of bilaterally performed stapes surgeries are evaluated with the criteria of the "Guides to the Evaluation of Permanent Impairment" of the American Medical Association (AMA). On the basis of these criteria the degree of auditive impairment and the degree of general impairment in all patients with bilateral otosclerosis were established. Analysing results in this way gives a more disability-orientated approach, rather than a technical evaluation of results.

In order to establish the degree of auditive impairment, expressed in the percentage "Binaural Hearing Impairment" (BHI), a modification was applied to determine the "Decibel Sum of the Hearing threshold Levels" (DSHL). The "Modified DSHL" (MDSHL) was determined by totalling the AC thresholds at 0.5, 1, 2 and the mean thresholds at 2 and 4 kHz. According to the AMA criteria the general impairment, expressed in the percentage "Impairment of the Whole Person", can be derived as different categories of percentage of BHI are corresponding to certain percentages of IWP.

Analysing the pre- and postoperative values, either the BHI percentage and the IWP percentage showed an important decrease after the first operation. The justification to offer second-side surgery to patients with bilateral otosclerosis appears from a further significant decline in both the percentages BHI and IWP after the second operation. During follow-up there were no serious complications and it was concluded that bilateral stapedotomy is a safe procedure which improves the chance of achieving normal and symmetrical hearing.

In establishing the indication to perform stapes surgery, it is important to realise that a good result from a technical point of view is not always a good result in the opinion of the patient. The Glasgow Benefit Plot, designed by Browning et all, can be a valuable instrument to determine the potential functional benefit a patient can achieve from hearing improvement surgery. In doing so, the Glasgow Benefit Plot takes the hearing at both sides into consideration. In chapter 8 we used the Glasgow Benefit Plot to judge retrospectively if it was worthwhile to perform stapes surgery in patients with bilateral otosclerosis, and particularly if it was worthwhile to do second-ear surgery at the contralateral side and consequently expose patients to the potential risk related to this type of surgery for a second time. From analysis of the bilaterally operated patient group it appears that the GBP is a valuable instrument to identify those patients in whom it is not possible to make the operated ear the better-hearing ear, because the preoperative BC thresholds are no better than the AC thresholds in the contralateral ear. In these situations the functional gain of a (n) (second) operation will be less beneficial.

In chapter 9 a retrospective study on 79 revision stapes operations is presented. The preoperative symptoms, intraoperative findings, and surgical techniques as well as the occurrence of eventual complications are discussed. Most common causes of failures of previous stapes surgery were a dislocated prosthesis, incus erosion, inadequate prosthesis length, and fibrous adhesions. Several surgical solutions are described. The hearing results were established by computing postoperative ABG with the conventional method (postoperative AC minus preoperative BC) and with the method according to the guidelines of the American Academy of
Otolaryngology – Head and Neck Surgery (postoperative AC minus postoperative BC). The overall hearing results were favourable with an ABG closure ≤ 10 dB in 64 % and in 60 % for the first and second method, respectively. Iatrogenic sensorineural hearing loss occurred in 1.3 % of the cases. In this chapter the intraoperative findings as well as the hearing results were compared with those found in the literature.

CONCLUSIONS

Based on the results of this study, the following can be concluded.

1. The overall results of stapes surgery in the Academic Medical Center, University of Amsterdam are comparable with the results reported by other authors in the literature. The use of different parameters and criteria in the evaluation of hearing results after stapes surgery can result in significant differences and should therefore not be underestimated. In this respect it is to be recommended to calculate PTAs for four-frequency combinations at 0.5, 1, 2, and 3 or 4 kHz. For computing postoperative ABG it is to be recommended to use postoperative BC, as the postoperative BC threshold represents the true cochlear function. For the definition of success rate, the percentage of ears with ABG closure ≤ 10 dB appears to be a good measure of technical success.

2. The application of the "Amsterdam Hearing Evaluation Plots" (AHEPs) in the evaluation of hearing results, gives an easily understood visual presentation of the technical result of each ear operated on. The plots can be used for stapes surgery, but likewise for other types of hearing improvement surgery.

3. Implantation of the Teflon piston (type Causse) and the gold piston (K-piston) gives comparable good results. The use of the heavier gold piston tends to give better sound transmission in the lower frequencies and on the other hand insertion of the lighter Teflon piston tends to result in a better transmission function in the higher frequencies, with the cross-over frequency between 3 and 4 kHz.

4. Speech audiometry should be involved more frequently in the evaluation of hearing results after stapes surgery. It is especially important to be informed about the change in maximum speech discrimination. From our study it appears that preoperatively it is not possible to identify a group of patients who are at risk for a loss in speech discrimination after surgery.

5. To obtain a more handicap orientated evaluation of hearing results after stapes surgery, the application of the criteria of the American Medical Association (AMA) forms a useful method. The AMA-criteria are internationally used to establish auditive handicap and this is expressed in a percentage.

6. The use of the Glasgow Benefit Plot forms a useful method to establish patient's benefit of stapes surgery. Therefore, it can be of value to establish the indication for stapes surgery and particularly in establishing the indication for second-ear surgery in the contralateral ear in cases of bilateral hearing losses due to otosclerosis.

7. Revision surgery goes along with more pathological variables, and, therefore, a greater expertise of the surgeon is necessary. The results of revision stapes surgery in our clinic
are in agreement with the results of other experienced surgeons, although less good compared to primary surgery. They give support to continue the policy to offer revision surgery to patients, even when previous revision surgeries have been performed.
Samenvatting

In hoofdstuk 1 wordt een algemene inleiding gegeven. Allereerst wordt ingegaan op de definitie en enkele historische feiten met betrekking tot de aandoening otosclerose. Vervolgens worden achtereenvolgens de etiologie, de epidemiologie, de klinische kenmerken en de niet chirurgische behandeling van otosclerose beschreven. Uitgebreider wordt ingegaan op de fascinerende geschiedenis van de chirurgische behandeling van gehoorverlies door otosclerose, waarbij tevens een kort overzicht wordt gegeven van de huidige chirurgische technieken met gebruik van verschillende prothesen.

Verder wordt in dit hoofdstuk ingegaan op de verschillende aspecten gerelateerd aan het evalueren van gehoorresultaten na stapes chirurgie. Bij het doornemen van de literatuur over stapes chirurgie blijkt dat er een aanzienlijke diversiteit bestaat in het gebruik van audiologische parameters en criteria voor het analyseren van de succespercentages, waardoor het zeer moeilijk wordt om de verschillende studies met elkaar te vergelijken. In dit verband zijn er in het verleden verschillende richtlijnen opgesteld door diverse commissies met als doel om tot een meer gestandaardiseerde rapportage te komen van gehoorresultaten.

Hoofdstuk 2 beschrijft de patiëntengroep met otosclerose die een chirurgische behandeling hebben ondergaan in onze kliniek. Kort wordt ingegaan op de wijze van data acquisitie en vervolgens worden de symptomen en klinische bevindingen van de patiëntengroep beschreven die een primaire stapes operatie hebben ondergaan. Het audiemtrisch testen van de patiënten en het analyseren van de audiologische data worden behandeld. Verschillende aspecten m.b.t. het gehoorverlies veroorzaakt door klinisch bewezen otosclerose worden beschreven voor de patiëntengroep die een primaire stapes operatie hebben ondergaan in onze kliniek. Daarbij blijkt dat wanneer de invloed van de fysiologische veroudering op de functie van de cochlea wordt gecorrigeerd volgens de ISO 7029 standaarden, een zwakke maar significante correlatie bestaat tussen de leeftijd en de beengeleidingsdrempels. Indien de beengeleidingsdrempels niet worden gecorrigeerd voor de leeftijd, wordt een Carhart notch van ≥ 5 dB gevonden in 66.3 % en een Carhart notch van ≥ 10 dB in 39.6 %. De airborne gap heeft zijn grootste waarde bij 0.25 kHz (48.8 dB, SD ± 14.5) en zijn kleinste waarde bij 2 kHz (18.2 dB, SD ± 11.2).

Na een kort overzicht van de ontwikkelingen van de chirurgische behandeling van otosclerose in de afgelopen 50 jaar in het Academisch Medisch Centrum, Universiteit van Amsterdam (voorheen “Wilhelmina Gasthuis”), wordt vervolgens de huidige standaard techniek beschreven zoals die tegenwoordig in onze kliniek wordt toegepast.
Tot slot worden in dit hoofdstuk de doelen beschreven van dit proefschrift. Over het geheel is het doel van deze retrospectieve studie de klinische en audiologische resultaten te evalueren in een grote groep patiënten met speciale aandacht voor verschillende methoden voor het analyseren van audiometrische data.

In **hoofdstuk 3** worden de consequenties van de keuze van het gebruik van verschillende audiologische parameters en criteria op succespercentages geëvalueerd. Het blijkt dat de keuze van verschillende frequenties in de pure-tone average (PTA) belangrijke verschillen kunnen opleveren bij de beoordeling van de verbetering van het gehoor na stapes chirurgie. Indien de traditionele frequentiecombinatie bij 0.5, 1 en 2 kHz (zogenaamde Fletcher-index) wordt vergeleken met een frequentiecombinatie waarbij een hogere frequentie, zoals de 3 of 4 kHz, is inbegrepen, levert dat significante verschillen op voor het berekenen van de verbetering in de luchtgeleiding en air-bone gap. Verder blijkt dat de verbetering in luchtgeleiding, berekend voor een vier-frequentiecombinatie waarin de 3 of 4 kHz is inbegrepen, het best correleert met de verbetering in de speech reception threshold (SRT). Aangezien de verbetering in spraakverstaan het belangrijkste doel is van stapes chirurgie, wordt de verbetering in de SRT beschouwd als de gouden standaard. Ook de keuze van de pre- of postoperatieve beengeleiding in het berekenen van de postoperatieve air-bone gap levert een significant verschil op bij het analyseren van de postoperatieve gemiddelde air-bone gap waarden. Het gebruik van de preoperatieve beengeleiding resulteert over het algemeen in betere air-bone gap waarden, omdat oversluiting van de air-bone gap door het Carhart effect wordt meteteld. Echter, omdat na chirurgie de inertiële component van geluidstransmissie via de beengeleiding is hersteld, correspondeert de postoperatieve beengeleiding beter met de werkelijke functie van de cochlea en is daarom te prefereren bij het berekenen van de postoperatieve air-bone gap. Tot slot is het succespercentage afhankelijk van hoe men succes definieert. In dit opzicht komt het percentage oren met een postoperatieve luchtgeleidingsdrempeel ≤ 30 dB, ook wel “sociaal aanvaardbaar gehoor” genoemd, het meeste overeen met het percentage oren met een air-bone gap sluiting ≤ 10 dB en is dit een meer realistische maat voor succes dan het bereiken van een “normaal gehoor” met een luchtgeleidingsdrempeel ≤ 20 dB.

In **hoofdstuk 4** wordt een methode beschreven waarbij de individuele gehoorresultaten kunnen worden herleid vanuit een tweetal plots, die wij de “Amsterdam Hearing Evaluation Plots” (AHEPs) hebben genoemd. Daarbij geeft de eerste plot informatie over de invloed van chirurgie op de cochleaire functie, wat met name bij stapes chirurgie van belang is. Een Carhart effect kan optreden, zich uiten in een verbeterde beengeleidingsdrempeel. Echter, doordat tijdens de ingreep het binnenoor wordt geopend, bestaat er ook een kans op iatrogene cochleaire schade, zich uiten in een verslechterde beengeleidingsdrempeel na de ingreep. De tweede plot geeft informatie over de verandering in de luchtgeleidingsdrempeel in relatie met de preoperatieve air-bone gap. Hierbij zijn een aantal definities opgesteld die betrekking hebben op een “succesvol resultaat”, een “succesvol resultaat met oversluiting van de air-bone gap” en een “niet succesvol resultaat”. Het aantal oren met een van deze drie resultaten kan makkelijk worden herleid uit de tweede plot.
In onze opinie resulteert het gebruik van de AHEPs in een inzichtelijke en eenvoudig te begrijpen grafische weergave van de individuele gehoorresultaten, die, indien gecombineerd met de richtlijnen van de “Committee of Hearing and Equilibrium” van de American Academy of Otologyngology – Head and Neck Surgery, veel additionele informatie kunnen verschaffen. Een ander voordeel van het gebruik van de AHEPs is dat gehoorresultaten met extreme audiometrische waarden duidelijk worden visualiseerd. Deze resultaten hebben invloed op de statistiek, maar zouden minder duidelijk aan het licht komen indien data worden gepresenteerd met behulp van gemiddelden en standaard deviaties.

In hoofdstuk 5 worden twee verschillende stapes vervangingsprothesen met elkaar vergeleken, namelijk een Teflon piston (type Cause; Xomed Surgical Products, Jacksonville, FL, USA) en een gouden piston (K-piston; Heinz Kurz GmbH Medizintechnik, Düşlingen, Germany). Beide pistons hebben een schacht diameter van 0.4 mm. Een belangrijk verschil tussen beide prothesen is het verschil in gewicht: de gouden piston is drie keer zwaarder dan de Teflon piston. In het hoofdstuk wordt benadrukt dat wanneer men een eerlijke vergelijking wil uitvoeren naar de transmissiefunctie van prothesen, het belangrijk is om alleen de prothesen in de analyse te betrekken die op normale wijze functioneren met betrekking tot de transmissie van geluidstreillingen. Voor het bepalen van de “normaal” functionerende prothesen kunnen de AHEPs van dienst zijn. Bij retrospectieve analyse van de audiometrische resultaten verkregen na het implanteren van 62 Teflon pistons en 66 gouden pistons, bleek dat in de gehele groep van oren de gouden piston een significant grotere winst geeft in luchtleiding voor de frequentiecombinaties 0.5, 1 en 2 kHz en voor de individuele frequentie bij 2 kHz. Er werden echter geen significante inter-groep verschillen gevonden met betrekking tot de verandering in de beengeleiding en air-bone gap.

Wanneer een analyse wordt uitgevoerd bij de “normaal” functionerende prothesen, geïdentificeerd m.b.v. de AHEPs, blijkt een trend waarnembaar waarbij de zwaardere gouden piston meer winst geeft in de lagere frequenties en de lichtere Teflon piston meer winst geeft in de hogere frequenties. Op theoretische gronden (o.a. de Impedantieformule) zou men deze trend ook kunnen verwachten.

In hoofdstuk 6 worden de pre- en postoperatieve data van spraakaudiometrie geanalyseerd bij oren die een primaire stapes operatie voor otosclerose hadden ondergaan, om zo de invloed van stapes chirurgie op spraakverstaan te evalueren. Daartoe werden de veranderingen in de speech reception threshold (SRT), de maximale spraakdiscriminatie score, en de steilheid van de spraakverstaan curve onderzocht, alsmede het optreden van een afname van de spraakverstaan curve bij toenemende geluidsniveau. Het bleek dat stapes chirurgie geen significante invloed had op de steilheid van de spraakverstaan curve, alsook niet op de afname van de spraakverstaan curve nadat maximaal spraakverstaan was bereikt. Fonemische regressie (afname van de curve > 0.5 %/dB) werd in geen van de gevallen gevonden voorafgaand aan de operaties, maar kwam bij 15 oren voor na chirurgie. Deze lage postoperatieve incidentie van regressie was waarschijnlijk gerelateerd aan het feit dat spraakaudiometrie in stilte werd uitgevoerd. In 96 % trad er een verbetering op
van de SRT en uit correlatie analyse bleek dat deze verandering goed correleert met de verandering in de luchtgeleidingsdrempel voor de frequentiecombinatie 0.5, 1, 2 en 4 kHz. Een postoperatieve afname in maximale spraakdiscriminatie ≥ 10 % trad op bij 8 oren, terwijl 13 oren een toename ≥ 10 % lieten zien. Factoren die mogelijk een rol spelen bij het optreden van een verlies of winst in de maximale spraakdiscriminatie werden nader onderzocht. De verandering in de maximale spraakdiscriminatie werd gerelateerd aan de steilheid van de afname van de preoperatieve drempels van toonaudiometrie als een functie van de frequentie. Op deze wijze werd onderzocht of het optreden van discriminatieverlies kan worden voorspeld op grond van de vorm van deze toonaudiometrie drempels. In drie gevallen werd een afname in spraakdiscriminatie verweten aan het maskeringseffect van lagere frequentie op hogere frequenties in het spraaksignaal. Dit zou kunnen zijn ontstaan doordat de steilheid van de luchtgeleidingsdrempel is toegenomen na de ingrepen. Deze toename van de steilheid kon in retrospectie worden voorspeld op grond van de steilheid van de preoperatieve beengeleidingsdrempel. Echter, uit de resultaten van de studie bleek dat de vorm van de postoperatieve luchtgeleidingsdrempel niet altijd kan worden voorspeld vanuit de vorm van de preoperatieve beengeleidingsdrempel, ook niet wanneer een technisch goed resultaat wordt verkregen met sluiting van de air-bone gap ≤ 10 dB. Dit komt omdat een Carhart effect danwel cochleaire schade kan optreden. Het is daarom niet mogelijk om een verlies in spraakdiscriminatie te voorspellen op grond van de vorm van de preoperatieve drempels bij toonaudiometrie.

In hoofdstuk 7 worden de resultaten beoordeeld van dubbelzijdig uitgevoerde stapedotomiën met behulp van de criteria van de "Guides to the Evaluation of Permanent Impairment" van de American Medical Association (AMA). Op basis van deze criteria werden bij alle patiënten het percentage van de auditieve invaliditeit, alsmede het percentage algemene invaliditeit bepaald. Het op deze wijze analyseren van resultaten geeft een meer handicap georiënteerde benadering in plaats van een technische benadering van de gehoorresultaten. Om de mate van auditieve invaliditeit, uitgedrukt in het percentage "Binaural Hearing Impairment" (BHI), te bepalen werd er een modificatie toegepast om de "Decibel Sum of the Hearing threshold Levels" (DSHL) te berekenen. De "Modified DSHL" (MDSHL) wordt daarbij berekend door de luchtgeleidingsdrempels bij 0.5, 1, 2 en de gemiddelde waarde bij 2 en 4 kHz te totaliseren. De algemene invaliditeit, uitgedrukt in het percentage "Impairment of the Whole Person (IWP), kan volgens de AMA criteria worden herleid doordat verschillende categorieën percentages van de BHI overeenkomen met verschillende percentages van de IWP.

Uit analyse van de pre- en postoperatieve waarden bleek dat zowel het BHI percentage als het IWP percentage belangrijk afnamen na de eerste operatie. De rechtvaardiging van het aanbieden van een tweede operatie aan de contralaterale zijde bij patiënten met bilaterale otosclerose, bleek uit verdere significante afnamen van beide percentages na de tweede operatie. Er traden gedurende de follow-up geen serieuze complicaties op en er werd geconcludeerd dat een bilateraal uitgevoerde stapedotomie een veilige procedure is welke de kans op het bereiken van een normaal en symmetrisch gehoor vergroot.
Bij het vaststellen van de indicatie tot uitvoeren van een stapes operatie is het van belang te be蔡ffen dat een goed resultaat vanuit chirurgisch standpunt niet altijd hoeft te betekenen dat het resultaat gunstig is vanuit de optiek van de patiënt. De Glasgow Benefit Plot, ontworpen door Browning et al., kan een waardevol hulpmiddel zijn bij het beoordelen van de potentiële functionele winst die een patiënt kan verkrijgen na een gehoorverbeterende operatie. De Glasgow Benefit Plot houdt daarbij rekening met het gehoor aan beide zijden. In hoofdstuk 8 hebben we gebruik gemaakt van de Glasgow Benefit Plot om retrospectief te beoordelen of het waardevol was om een stapes operatie uit te voeren bij patiënten met bilaterale otosclerosis en in het bijzonder of het waardevol was om een tweede stapes operatie uit te voeren aan de contralaterale zijde met als consequentie dat de patiënt voor een tweede keer wordt bloot gesteld aan de potentiële risico's die zijn verbonden aan deze vorm van chirurgie. Uit de evaluatie van de bilateraal geopereerde patiëntengroep blijkt dat de Glasgow Benefit Plot een belangrijk hulpmiddel kan zijn bij het identificeren van patiënten met een gehoorsvermindering bij wie het niet mogelijk is om van het te opereren slechthorende oor het beter horende oor te maken, omdat de preoperatieve beengeleiding van dit oor niet beter is dan de luchtgeleidingsdrempel van het contralaterale oor. In zulke situaties zal de functionele winst van een (tweede) operatie voor de patiënt niet groot zijn.

In hoofdstuk 9 wordt een retrospectieve studie uitgevoerd van 79 revisie stapes operaties. Daarbij worden de preoperatieve symptomen, de intraoperatieve bevindingen en de chirurgische technieken, alsmede het optreden van eventuele complicaties beschreven. De meest voorkomende oorzaken voor het falen van de eerder verrichte stapes operatie waren een gedisloceerde prothese, erosie van de incus, een inadequate lengte van de prothese en fibreuze adhesies. Verschillende chirurgisch technische oplossingen worden beschreven. De gehoorresultaten werden beoordeeld waarbij de postoperatieve air-bone gap wordt berekend volgens de conventionele methode (postoperatieve luchtgeleiding min preoperatieve beengeleiding) en de methode volgens de richtlijnen van de American Academy of Otolaryngology - Head and Neck Surgery (postoperatieve luchtgeleiding min postoperatieve beengeleiding). De overall gehoorresultaten waren gunstig met een air-bone gap sluiting ≤ 10 dB van 64 % en 60 % voor respectievelijk de eerste methode en de tweede methode. Een iatrogene cochleaire gehoorverlies trad op in 1.3 % van de gevallen. In dit hoofdstuk worden de intraoperatieve bevindingen alsook de gehoorresultaten vergeleken met die van de literatuur.

CONCLUSIES

Op basis van de resultaten van deze studie kan het volgende worden geconcludeerd.
1. De overall resultaten van stapes chirurgie in het Academisch Medisch Centrum, Universiteit van Amsterdam zijn overeenkomstig met andere gerapporteerde resultaten in de literatuur.
2. Het toepassen van verschillende parameters en criteria bij het evalueren van gehoorresultaten na stapes chirurgie kan belangrijke verschillen opleveren en moet derhalve niet worden onderschat. Daarbij is het aan te bevelen om voor het berekenen van het gemid-
delde toonaudiometrisch verlies een vier-frequentie combinatie te nemen bestaande uit de 0.5, 1, 2, en de 3 of 4 kHz. Voor het berekenen van de postoperatieve air-bone gap is het aan te bevelen om de postoperatieve beengeleiding te nemen, omdat de postoperatieve beengeleidingsdrempel de beste schatting geeft van de ware cochleaire functie. Voor het definiëren van succes blijkt het percentage oren met een air-bone gap sluiting ≤ 10 dB een goede maat voor technisch succes.

3. Het gebruik van de “Amsterdam Hearing Evaluation Plots” (AHEPs) bij het evalueren van gehoorresultaten resulteert in een inzichtelijke visuele presentatie van het technische resultaat van ieder afzonderlijk geopereerd oor. De plots kunnen worden gebruikt bij stapes chirurgie maar ook bij andere typen gehoorverbeterende operaties.

4. Implantatie van de Teflon piston (type Causse) en de gouden piston (K-piston) lever vergelijkbaar goede resultaten op. Het gebruik van de zwaardere gouden piston lijkt te resulteren in een betere geluidstransmissie van de lagere frequenties en daarentegen lijkt toepassing van de lichtere Teflon piston een betere transmissie in de hogere frequenties te geven, waarbij het omslagpunt zich tussen de 3 en 4 kHz bevindt.

5. Spraakaudiometrie zou vaker moeten worden betrokken bij het evalueren van gehoorresultaten na stapes chirurgie, waarbij vooral van belang is om geïnformeerd te worden over de verandering in de maximale spraakdiscriminatie. Uit onze studie bleek dat het niet mogelijk is om preoperatief een risicogroep te identificeren die meer kans heeft op verlies van spraakdiscriminatie na de ingreep.

6. Voor een meer handicap-georiënteerde evaluatie van gehoorresultaten na stapes chirurgie vormen de criteria van de American Medical Association (AMA) een geschikte methode. De AMA-criteria worden internationaal gebruikt voor het vaststellen van de auditieve handicap en deze wordt uitgedrukt in een percentage.

7. Toepassing van de Glasgow Benefit Plot vormt een geschikte methode om de baten van stapes chirurgie voor de patiënt vast te stellen. Derhalve kan het van waarde zijn bij het stellen van de indicatie voor stapes chirurgie en in het bijzonder voor het stellen van de indicatie voor het uitvoeren van een tweede operatie aan het contralaterale oor bij dubbelzijdige gehoorverlies door otosclerose.

8. Revisie stapes chirurgie gaat gepaard met meer gevarieerde pathologie en vereist derhalve een grotere expertise van de operator. De resultaten van revisie stapes chirurgie in onze kliniek zijn in overeenstemming met andere resultaten van ervaren operateurs, hoewel minder goed in vergelijking met die van primaire chirurgie. Ze geven ondersteuning om het beleid te continueren revisie chirurgie aan te bieden aan patiënten, ook als reeds eerdere revisie operaties zijn uitgevoerd.