Hepatocyte growth factor, Met, and CD44. Amenage a trois in B cells

van der Voort, R.

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
Chapter 2

Binding of cell-surface expressed CD44 to hyaluronate is dependent on splicing and cell type.

Robbert van der Voort \(^1\), Eveliene Manten-Horst \(^1\), Lia Smit \(^1\), Ellen Ostermann \(^2\), Frank van den Berg \(^1\), and Steven T. Pals \(^1\)

\(^1\) Department of Pathology, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands

\(^2\) Bender Co., Vienna, Austria

Biochemical and Biophysical Research Communications (1995) 214, 137-144
SUMMARY

CD44 is a major cell-surface receptor for hyaluronate (HA). By alternative RNA-splicing a large number of CD44 variants is generated. To explore the role of CD44 splicing in the regulation of cell binding to HA, three different isoforms of CD44 were transfected in the CD44 negative B cell lymphoma line Namalwa and in the fibroblastoid cell line COS7. We observed that whereas the standard form of CD44 (CD44s) mediated adhesion of Namalwa to HA, Namalwa transfected with CD44v3-10 or CD44v8-10 was unable to bind to either immobilized or soluble HA. After stimulation of CD44 with an activating anti-CD44 mAb or with phorbol ester, the binding of CD44s to HA was 5- to 10-fold higher than that of the other two isoforms. By contrast, COS7 cells transfected with CD44s, CD44v8-10, or CD44v3-10 bound equally effective to HA. Hence, in addition to alternative splicing, cell type determines CD44 binding to HA.

INTRODUCTION

CD44 is a broadly distributed family of cell surface glycoproteins that has been implicated in a number of important biological processes including lymphocyte homing, T cell activation, hematopoiesis, and tumor metastasis (1-11). The CD44 gene consists of 20 exons. Due to alternative RNA-splicing involving at least 10 exons encoding domains of the extracellular portion of the molecule, a large number of CD44 splice variants is generated (8, 12-15).

Although unique functional properties have been attributed to certain CD44 splice variants, the precise effects of particular inserted domains on the ligand binding specificity of the molecule have remained unclear. The standard (hematopoietic) form of CD44 has been shown to function as a receptor for hyaluronate (HA) (15-18). Cell surface HA receptors are believed to regulate many aspects of cell behaviour such as cell differentiation, cell migration and tumor metastasis (19). Interestingly, Stamenkovic and colleagues have reported that CD44E, a major CD44 splice variant on epithelium containing a 132 amino acid insert encoded by exons CD44v8-10, is unable to bind this ligand (16). This suggested that CD44 splicing might regulate cell adhesion to HA. This finding has remained controversial, however, since studies by He et al. (20) suggested that the murine homologue of CD44v8-10 (CD44E) is capable of mediating binding to HA. Furthermore, in a recent paper Dougherty et al. (21) reported that CD44v8-10 cloned from the human myelomonocytic leukemia line KG1a, binds avidly and specifically to HA when transfected in COS7 cells. The above controversy prompted us to further explore the role of alternative splicing of CD44 in the regulation of HA binding.
Splicing and cell type regulate HA binding

Figure 1. Schematic representation of CD44 DNA (A) and the CD44s, CD44v8-10, and CD44v3-10 cDNAs (B) used for transfection.

MATERIALS AND METHODS

Monoclonal antibodies (mAbs). The anti-CD44 mAbs used were NKI-P1 (3), Hermes-1 (2), and Hermes-3 (2) (kindly provided by Drs. C.G. Fiegdo, Nijmeegen and E.C. Butcher, Stanford) all reactive with epitopes on the constant portion of the extracellular domain of CD44.

CD44 cDNAs. CD44s, CD44v8-10, and CD44v3-10 cDNAs were cloned as EcoRI-BglII-PCR fragments from HPKII cells into EcoRI and BamHI cloning sites of the expression vector pAD-CMV2. The sequences of the inserts were identical to the CD44 sequences published by Screaton et al. (12). A schematic representation of the CD44 gene and the cDNAs is given in Fig. 1.

Cell cultures and transfections. Stable Namalwa (ATCC, Rockville, MD) CD44 transfectants were obtained by electroporation-mediated co-transfection of CD44 cDNAs and pSVneo plasmid containing the bacterial neomycin resistance gene driven by a SV40 promotor. Cells with surface expression of CD44 were identified by indirect immunofluorescence using the CD44 mAb NKI-P1 and cloned by single cell sorting using a Becton Dickinson FACStar plus flow cytometer (Mountain View, CA). At least two
Chapter 2

Figure 2. Expression of CD44 on untransfected Namalwa cells and on Namalwa cells transfected with CD44s, CD44v8-10, and CD44v3-10. CD44 expression was analysed by FACS using mAb NKI-P1 against a standard CD44 epitope.

independent transfectants expressing each CD44 variant were used. The SV40-transformed simian fibroblastoid cell line COS7 (ATCC) was transiently transfected with the different CD44 cDNAs by electroporation and then incubated for 72 h in DMEM culture medium to allow replication and expression.

Immunofluorescence. Surface expression of CD44 on Namalwa and COS transfectants was analysed by flow cytometry (FACScan, Becton Dickinson) using indirect immunofluorescence (13). The fluorescein-tagged hyaluronic acid (HA-FITC) (22) was a generous gift of Dr. P. Heldin (Dept. Of Medical and Physiological Chemistry, University of Uppsala, Sweden). HA-FITC binding to CD44 transfectants was performed as described by Lesley et al. (23).

Cell adhesion to immobilized hyaluronate. To study the adhesion of cells to HA, wells of a 96-wells-plate (Costar, Cambridge, MA) were coated with 0.001-5 mg/ml rooster
Splicing and cell type regulate HA binding

Figure 3. Percentage of Namalwa cells transfected with different CD44 splice variants bound to immobilized HA before (-) or after treatment with the stimulating anti-CD44 mAb NKI-P1 or with PMA. Mean +/- standard deviation of 4 experiments.

comb HA (Sigma, St Louis, MO) at 4°C overnight followed by 1 h at 37°C. Aspecific binding was blocked by incubating the wells with 4% BSA/RPMI 1640 at 37°C for 1 h. Subsequently, cells (100 ml, 1 x 10⁶ cells/ml) were added to the wells and incubated for 1 h at 37°C in 5% CO₂ in air. In some cases, cells were incubated with mAbs (for 1 h on ice) or PMA (50 ng/ml, for 18 h at 37°C in 5% CO₂ in air), before adding the cells to the HA coated wells. After binding to HA, the wells were washed 6 times with 1% BSA/RPMI. The adherent cells were scored using a quantitative determination MTT assay (Boehringer, Mannheim, Germany) (24).

RESULTS AND DISCUSSION

Namalwa cells transfected with different CD44 variants show differential binding to hyaluronan. cDNAs of CD44s, CD44v8-10, and CD44v3-10 (Fig.1) were transfected into Namalwa cells, which in accordance with previous reports (9, 25), were negative for CD44 at both the protein (Fig. 2) and RNA level (data not
shown). CD44 positive cells were cloned and several independent clones were established for each CD44 variant. Fig. 2 shows the approximately equal levels of expression of CD44 on a panel of representative CD44s, CD44v8-10, and CD44v3-10 transfectants.

To assess whether modification of the extracellular domain of CD44 by alternative splicing plays a role in regulating the HA receptor function of CD44, the binding of the various CD44 Namalwa transfectants to plastic immobilized and soluble HA was measured. Untransfected and mock transfected Namalwa cells, which lack CD44, were unable to bind to coated HA (Fig. 3). However, transfection of CD44s resulted in a significant adhesion of Namalwa to HA. This adhesion was completely blocked by Hermes-1, a mAb that is known to interfere with CD44-HA binding, confirming the direct role of CD44 in the binding (not shown). By contrast, CD44v8-10 or CD44v3-10, did not support adhesion of Namalwa cells to HA. Like immobilized HA, hyaluronate in solution (FITC-labeled) also bound to CD44s but hardly or not to CD44v8-10 and CD44v3-10 (Fig. 4).

Previous studies of CD44-HA interaction have shown that CD44 can exist

Figure 4. Binding of HA-FITC to untransfected Namalwa cells transfected with CD44s, CD44v8-10, and CD44v3-10.
Figure 5. Binding of HA-FITC to untransfected COS7 cells and to COS7 cells transfected with different CD44 splice variants. CD44 positive cells were identified by FACS double staining with HA-FITC and anti-CD44-PE (NKI-P1). 1. HA-FITC binding to untransfected cells; 2. HA-FITC binding to CD44 transfected cells.

on the cell surface in either an inactive, a low affinity, or a high affinity state. Activation of CD44 could be achieved by PMA and by certain stimulating anti-CD44 mAbs (1, 22). To assess whether the HA binding activity of CD44v8-10 and CD44v3-10 is inducible, we treated the various CD44 transfectants with either the stimulating anti-CD44 mAb NKI-P1 or with the phorbol ester PMA. As shown in Fig. 3, both the antibody and the PMA treatment resulted in a strong increase in adhesion of CD44s bearing Namalwa cells. Low levels of HA binding were also induced in the CD44v8-10 and CD44v3-10 transfectants after PMA stimulation (Fig. 3), but this binding remained 5- to 10-fold lower than that of CD44s. Thus, whereas CD44s on Namalwa cells is either constitutively active or can be readily activated to mediate binding to HA, CD44v8-10 and CD44v3-10 are unable to bind HA efficiently.

CD44 isoforms expressed by COS7 cells show identical hyaluronate binding. Both CD44s and CD44v8-10 transfected into the Simian monkey fibroblastoid cell line COS7 have been reported to mediate HA binding (21). We studied the interaction of CD44s, CD44v8-10, and CD44v3-10 transfected COS7 cells with HA-FITC (Fig. 5). FACS double staining with mAb NKI-P1 against CD44 and HA-FITC clearly showed that the transfected COS7 bound on average
approximately 10-fold the amount of HA-FITC of the non-transfected cells. Interestingly, this binding was similar for cells transfected with all three CD44 cDNAs. Hence, unlike in Namalwa cells, CD44s, CD44v8-10, and CD44v3-10 variants transfected to COS7 cells bind HA effectively.

The molecular basis for the huge differences in HA affinity of the CD44 isoforms when expressed on Namalwa and for the cell type specific character of this difference in affinity is presently unknown. Possible mechanisms include conformational changes at the HA binding site of CD44 induced by insertion of the alternatively spliced domains, differences in receptor clustering on the cell surface, and interactions with other cell surface molecules. Also, the observed differences in affinity for HA might be caused by differential association with the cytoskeleton, which in turn might be regulated by phosphorylation of cytoplasmic serine residues. Indeed, it has recently been shown that serine phosphorylation of CD44 regulates HA binding (26). In conclusion, our data provide further evidence that CD44 mediated cell adhesion to HA is subject to complex regulation. This regulation involves alternative splicing as well as other unknown cell type-specific factors, and presumably allows for functional activity of CD44 at the appropriate time and location.

REFERENCES

Splicing and cell type regulate HA binding

