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5. Scaling in the quantum Hall
regime

5.1. Introduction

The unexpected observations of the quantum Hall effect' (QHE) in 1980 and of the fractional
quantum Hall effect® in 1982 are among the most important discoveries in physics of the
second half of this century. The precise quantisation of the electrical resistance in the quantum
Hall effect has led to a new definition of the resistance standard. From a fundamental point of
view, studies of quantum Hall phenomena are still a very active research area of physics.

Immediately after the discovery of the integer quantum Hall effect by von Klitzing et
al.' the connection between the strong field localisation effect and the phenomenon of the
quantum Hall effect was made’. The relationship between the metal-insulator transition and
the quantum Hall effect is nowadays still a subject of considerable fundamental importance.
The existence of localised states at Landau level tails and extended states at the centre is
essential to explain the integer quantum Hall effect. Quantum Hall plateau transitions (PP
transitions) are understood to arise from localisation-delocalisation transitions through narrow
bands of extended states. The main part of this chapter describes the relationship between the
metal-insulator transition and the quantum Hall effect. In particular we focus on the scaling
behaviour of the QHE®.

The quantum Hall plateau transition can be described by a quantum critical
phenomenon, which has been verified experimentally during the last decade. Especially the
work of Wei et al.” on InGaAs/InP heterojunctions forms an impressive conformation of the
scaling theory®. The scaling theory of the QHE is a result of a field theoretic approach to
Anderson localisation with non-perturbative (topological) characteristics. The temperature
dependence of the transition between localised and extended states in the integer quantum
Hall regime can be described by a power law, with only a single critical exponent. According
to the theory, PP transitions and the transition from a quantum Hall plateau to the insulator
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(PI) are in the same universality class and thus should exhibit the same scaling behaviour. In
this chapter we present our experimental investigations regarding the PI transition in an
InGaAs/InP heterostructure and provide the reader with new insight in the scaling behaviour
of this transition.

In the next Section of this chapter the theoretical concept of scaling is given. In
Section 5.3 a short overview of the relevant experimental and numerical results of scaling of
the PP transitions is presented. In Section 5.4 results on the magnetic field induced metal-
insulator transition are reviewed. In Section 5.5 we present our new experimental results on
the metal-insulator transition of an InGaAs/InP heterojunction and an analysis of the data in
terms of the scaling theory. A short description of the InGaAs/InP sample has been given in
section 1.3.2.1. In the last section a summary is presented.

5.2. The concept of scaling in the quantum Hall regime

It is nowadays clear that the integer quantum Hall steps are a unique laboratory example of a
quantum phase transition (Anderson transition) in two dimensions. Quantum phase transitions
differ from normal phase transitions in the fact that the transition takes place at zero Kelvin
rather than finite temperatures. The renormalisation group theory is an outstanding theoretical
framework for studying the quantum phase transition. It is a systematic approach that averages
out unimportant fluctuations on small length scales and it extracts the physical information by
retaining the fluctuations at large distances. Microscopically different systems can show the
same asymptotic behaviour close to the critical transition. In this case the phenomena belong
to the same universality class, i.e. the different systems have identical critical exponents. The
important length scales in the quantum Hall regime are the localisation length and the sample
size. In the quantum Hall regime the quantum phase transitions occur between adjacent QH
plateaus and at T=0K. Close to T=0K the physics of the transport properties is still controlled
by the critical point. This leads to a scaling of the conductances with varying magnetic field
(B) and sample size. The transitions between quantum Hall plateaus and the transition
between the quantum Hall plateau and the insulating phase are all magnetic field induced
metal-insulator transitions in the same universality class. They are described by a single
universal critical exponent. This is a so-called two parameter scaling theory, where the two
parameters are the longitudinal conductance oy, and the Hall conductance oy, This two
parameter scaling theory is an extension for strong magnetic fields of the one parameter 2D
scaling theory of localisation described in Chapter 2.3.

This so-called two-parameter scaling theory give rise to the idea of localised states at
the Hall plateaus and delocalised states, or extended states, at the Hall steps. The resistance
peak at the Hall steps is caused by a small energy interval of extended states in the density of
states (DOS). The tails of the DOS are the localised states and they give rise to 0x=0 and
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quantised Oyy. In figure 5.1 the DOS is schematically drawn together with the effect of varying
the magnetic field on the localisation length &, on the resistivity pyx and on the Hall resistivity
Pxy- At T=0K and infinite sample size, there is one extended energy at the critical field B.. The
localisation length & diverges at B.. The localisation length scales as a power law as function
of magnetic field with the localisation length exponent v:°

-V

&~|B-B,

(5.1)

From scaling considerations it follows that the resistance parameters depend on the ratio of

L
V=gl 52
2; f;[g] (52)

two length scales only:

Here L is the sample size and & is the localisation length. At finite temperatures one can
introduce an effective sample size, the inelastic scattering length f;,. When the sample size L
is much bigger than £, the resistances scale, according to equation 5.2, where L is replaced by
fin, which now plays the role of ‘effective’ sample size. The inelastic scattering length
depends on temperature in the following way:

(5.3)

where p is the inelastic scattering length exponent. This result shows that the resistivity scales
with temperature. The width of the resistivity peak, AB, as well as the first derivative of the
Hall resistance, scale with temperature. The following scaling equations can be derived for the
transport coefficients:

p,(B.T)=g,(T *(B-B,)= g[_jU:%‘_} ]

such that

v
AB~T ¥ ~T* (5.4)
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Figure 5.1: Schematic representation of the concept of scaling in the
quantum Hall regime. The upper graph represents the density of states as
function of magnetic field. In the middle graph the localisation length vs.
magnetic field is plotted. The resistivity and Hall resistance are plotted in
the lower graph. For an explanation of the symbols see the text.

For the PI transition power law behaviour with the same critical exponent should be
valid. The most right Landau level in the schematic graph of the DOS in figure 5.1 is the
lowest Landau level. This lowest Landau level is responsible for the PI transition and has a
similar energy interval of extended states in the centre and localised states in the tails as the
other Landau levels. Also the temperature dependence (i.e. equation 5.4 and 5.5) is the same
and therefore the scaling properties are the same for all levels.

Notice that the behaviour of the resistivity and Hall resistance are quite different when
compared to the other Landau levels, because the transition is between a quantum Hall and an
insulating phase. This is schematically shown in figure 5.1. In this chapter the emphasis is on
this last PI transition.

The results of the renormalisation group theory can be illustrated with a flow diagram
in the 0-0,, conductance piancﬁ, The renormalisation parameters o, and Oy are
dimensionless conductances in units of e’/h. The renormalisation group flow diagram for the
conductance parameters is shown in figure 5.2. The flow is characterised by two different
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fixed points. One is a stable fixed point describing the effect of the localised states near the
Fermi energy (Ey), in this case 0,,=0 and Gy, is quantised. The other is an unstable fixed point,
describing the effect of the extended states near Ep. These states carry the Hall current, they
cause Oy to be non-zero and Oy, to interpolate between two adjacent quantum Hall plateaus.
The semi-circle (full line) in figure 5.2 is the flow at T=0K and infinite sample sizes. The flow
towards this semi-circle indicates the effect of an increasing length-scale L.

At finite, but low, temperatures such that the broadening of the Fermi-Dirac
distribution does not play a significant role, inelastic scattering processes have to be taken into
account. Just as we mentioned earlier, this amounts to the replacement of L by an ‘effective’
sample size, i.e. fi; (equation 5.3).

Close to the critical unstable fixed point, the flow is described by two scaling
variables, a relevant flow 6 and an ‘irrelevant’ one o defined by i

8=zo,-n-1 : o=0,-0, (5.6)

xr xr

where %, is the critical conductivity. Following the basic principles of the renormalisation
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Figure 5.2: Translation of the transport coefficient py, and py, into the renormalisation flow
diagram for the conductance parameters. This graph is taken from Ref. 6. The inset shows the
flow for different plateau transitions. The arrows on the flow lines indicate the direction for
increasing length scales L. The flow towards the fixed points at integer values for the Hall
conductance represent the quantum Hall plateau’s of figure 5.1 as a scaling phenomenon. The
unstable fixed point & indicates a true quantum phase transition. The dashed parabolic line
indicates the semiclassical value for the conductance, which serves as a starting point for
scaling. B* corresponds to the critical magnetic field.
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group, the 'relevant’ scaling variable is the important one that determines the localisation
length exponent v. Let the starting point for scaling be denoted by Oo=Gyy-n-/2°c(B-B,). Here
we use the fact that the meen fidd (SCBA)* parameter o x depends linearly on (B-B) for
small (B-B,). Then, the leading scaling behaviour can be obtained as®:

/ 1/v\
G{BT=0(+{BBY) =g H 57)
\~_ ]

It isimportant to stress that this result, which is completely equivalent to the result of equation
5.4, follows directly from the existence of the 'unstable’ fixed point & ay=n+/2. We shdl see
later on that the phrase ‘irrelevant scaling variable' gets a different meaning as far as the
experiment is concerned. Experimentally, we do observe the effect of the ‘irrelevant' variable
0'=ax-a"yx Wwhich, however, turns out to be the result of 'macroscopic’ sample
inhomogeneities. We will discuss this complication in detail in section5.6.4.
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5.3.An overview of the experiments on scaling in the
guantum Hall regime

The critical behaviour of the longitudinal resistivity, @nd Hall resistivity g, was shown in

1988 by Weiet al®. These authors reported that in the temperature range O.IK < T < 4.2K the
maximum of dp/dB diverges like T and the half-widthAB for p, vanishes as"T with
K=0.42+0.04, for the Landau levels N=01] and li. Figure 5.3 summarises their main
results on a log-log plot. The expondhtwas found to be the same (universal) for 3 different
PP transitions.

One of the impressive results of this study is the large T range where scaling is
observed. Scaling is observed below a certain critical temperafyrehich in this study is
equal to 4.2K. 1. is defined as the temperature where the critical conducti¥ity versus
temperature is maximal. The critical conductivity is defined as the maximum in the
conductivity versus magnetic field. Above,TG*« increases with decreasing temperature,
while below T, G* decreases with decreasing temperature. The value.ds Bample
dependent.

04 0.60.8 10
TK>

Figure 5.3: Scaling behaviour observed for an InGaAs/InP heterostructure. The
three upper lines show the T dependence ofy{dB)mm for three Landau
levels.The lower two lines show the T dependence of the width 1/AB. The open
symbols are data taken in a dilution refrigerator, whereas the filled symbols are
data taken in #e system. The slope of the straight lines givesy(dB)max~T"
and AB~T with K=0.42+0.04. This graph is taken frdRef. 5.
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For this study Weet al® used an InGaAs/InP heterostructure with a fairly low mobility
u.=34000 crffVs and a density n=3.3xI0" cA#t T=4.2 K. The use of low mobility samples
prevents the appearance of the fractional quantum Hall effect. In low mobility samp
electron-electron interactions are weak and therefore, only the integer quantum Hall effec
observed. The 2DEG is located in the InGaAs layer, which is an alloy. In this case
dominant mechanism for elastic scattering is provided by the short-ranged poten
fluctuations

Scaling in spin-degenerate Landau levels was also studied in an InGaAs/
heterostructuré. The electron density in this sample is 2.0x10" %carid the mobility is
16000 crVs at T=4.2 K. When the spin splitting is not resol%ei$ roughly half of that in
the spin split situation. The widiB scales as T with K again equal to 0.42. By rotating the
sample the spin splitting was increased and the spin-split valuésvefe recovered. It has
been proposed that the spin splitting between the neighbouring spin levels in the
degenerate situation is small but finite. There are actually two critical energies in the s
degenerate case, which are experimentally unresolved because the temperature is too
Another explanation is the existence of a different universality class for spin degener
levels. Then there is one fixed point in the degenerate case and two in the spin split case.
Zeemarenergy controls the crossover of these two different regimes.

The universal critical exponeltis a quotient of two critical exponents: K=p/2v. In this
guotient p is the inelastic scattering length exponent and v is the localisation length expon
The inelastic scattering length can be determined by current scaling measuréonémesPP
transitions. The maximum slope inypscales with the current I, when | is larger than a
characteristic value. Combined with the temperature scaling this results in an effect
temperature Jof the 2DEG, which scales with the currentTasr®, independent of Landau
level and spin degeneracy. From this result a value for p=2 has been deduced. Together
the value forK this gives for the localisation length exponent a value=@f3. However, the
detailed mechanism for current scaling is not yet sufficiently understood and the results
inconclusive as of yet.

A host of numerical work has been done on the subject of scaling of the PP transitic
Most of the numerical simulations indicate the existence of a critical point, where t
localisation length diverges according to equation 5.1. Direct finite-size numeric
simulation ' is a powerful tool to study the interplay between localised and extended ste
and has provided significant evidence in support of equation 5.1. The agreement betweer
numerical results obtained by different groups is striking and the localisation critical expone
is given byv=2.3.This result was obtained from numerical simulations of the lowest Landa
level and a short ranged scattering potential. For the higher Landau level N=I an unique vz
of v has not been obtained, but the quality of the numerical results is much less for this hic
Landau level than for the lowest one. Also simulations for a non-interacting 2DEG in a slow
varying potential landscape giwe=2.3. The classical percolation problem, which has been
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analytically solved", produceg=4/3. If quantum tunnelling is included in the percolation
calculatiort? the localisation length exponent changes to 7/3. One of the important problems
left in the problem is the effect of the Coulomb interaction on the numerical value of v. There
is a tendency in the literature that argues for the same value of v, independent whether
Coulomb interactions are present or not. However, a microscopic approach to the problem
seems to indicate a different universality class. This approach is still in develGpment

Koch et al'* were able to measure directly the critical localisation length exponent v, by

using samples in a Hall bar geometry with different sizes L. For different GaAs
heterostructures with sample sizes ranging from 10 pirnup to 64jamang R, were
measured. In the temperature regime where the inelastic scattering jeigytirdater than the
physical sample size, the width of;fand the slope of,pdepend on the sample size. From
this sample size dependence, v can be directly determined using the following powerlaws, \~
(AB)" and (dp/dB)". The localisation length exponent derived from the experiments2i8.
This is equal to the value derived from the measurements on InGaAs/InP heterostructures anc
from the numerical results, as discussed above. The results should be taken with some car
because only four different sample sizes were used. Also conductance fluctuations are presen
in the samples due to the lack of ensemble averaging, because the phase coherence leng
exceeds the sample size. These conductance fluctuations hamper the determination of al
accurate width of the,ppeak.

Temperature scaling in GaAs/AlGaAs heterostructures was also investigatedhost
al.’®. The measured exponeritsanged from 0.2 up to 0.9 and it appeared Khahs Landau
level dependent. A trend was signalled with K increasing as the mobility of the sample
decreased. This led to the claim that, because v is a constant universal value, which was
determined by size dependent measurements, the value for the inelastic scattering length i
sample dependent and not universal.

There is a distinct difference between the scaling results of the measurements in
InGaAs/InP*® heterojunctions and in GaAs/AlGaAsheterojunctions. In the first material
system universal scaling with the exponent K=0.42 is observed, while in the other material
system no universal scaling was observed. One of the most important differences between
both material systems is the dominant scattering proteds the InGaAs material it is
predominantly alloy scattering and in GaAs the most important scattering process is scattering
at ionised impurities. Alloy scattering is a short ranged potential scattering process in contrast
to GaAs heterostructures where the potential fluctuations usually vary slowly over distances of
the order of the magnetic length. This difference in scattering process is the main reason for
the misleading results in GaAs. In GaAs only at very low temperatures (T<200mK) scaling
with the universal exponent k=0.42 is obseMednd in most cases, it is beyond the
limitations of the experiments. This important long standing aspect of the problem has been
theoretically understood only very recehtlyTo observe genuine scaling over a wide T range
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a short ranged scattering potential is an essential condition and therefore, InGaAs is the
suitable material system to investigate scaling.

5.4. Magnetic field induced metal-insulator transition: an
overview

Nowadays there is much interest in the metal-insulator transition and its critical behaviol
Therefore, most of the recent experimental investigations do not concentrate on PP transitic
but on the quantum Hall plateau to insulator transition in high magnetic fields.

The first observation of a magnetic field induced metal-insulator transition was mac
by Jianget al.’” on a GaAs/AlGaAs heterostructure. In fact, this transiton was from an
insulator at B=OT to a quantum Hall conductor at fields above =2.5T. Moreover this samp
shows at B=4.5T a transition from a quantum Hall plateau with filling factor v=2 to ar
insulating phase. Between the critical magnetic field values B=2.5T and B=4.5T a metal lil
temperature dependent behaviour, i.e. a decreasing resistance with decreasing temperature
found. On the insulator sides the reverse temperature dependence was observed. The n
insulator transition is an Anderson transition, caused by disorder. The temperature depende
of the resistance on the insulator side follows the law for variable range hoppin
R-expfTo/T}* for non-interacting 2DEG as expected for an Anderson insulator. The
magnetic field inducediélocalisationindicates a floating down in energy of the extended
states below the Fermi energy. This is consistent with the theory ofévtiation (or
floatation) of the extended states as B—2(0This prediction is based on the idea that
extended states can not disappear discontinuously. The transition, reported st aibisg
also consistent with the 'global phase diagram' of the quantum Halfeffect

Wang et al. also report on the magnetic field induced insulator-metal-insulator
transition in a GaAs/AlGaAs heterostructure. They observed, in principle, the same transiti
as was observed by Jiarg al'’. For the first time scaling of the PI transition was
investigated. From a plot of giB at the critical field, B as function of 1/TWang et al.
obtained a critical exponer{=0.21. A resemblance with the scaling for PP transitions was
claimed. Because the transition is from the v=2 plateau a comparison was made with the <
degenerate case in the quantum Hall regime. In this case the critical exponent derived fr
scaling is alsd®.21'.

Wong et al.' have investigated the scaling properties of a disorder tuned metal
insulator transition. At a certain value of the magnetic field they changed the disorder |
changing the gate voltage and then measured the temperature dependence of the resist
Transitions from Landau levels with filing factor v=2 and v=I/3 towards the insulator were
investigated in two different samples. The change in electron density by applying the ge
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Wong et al. have investigated the scaling properties of a disorder tuned metal
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investigated in two different samples. The change in electron density by applying the ge



Scaling in the quantum Hall regime 79

voltage is comparable to changing the magnetic field. For the scaling wérpus (n-9T,

where n is the density and the critical density, a critical exponent K=0.43 was found. Khis

is the same for both filling factors. This result is claimed to confirm the theoretical prediction
of universal scaling for the PP transitions and the PI tran&ifionhe same critical behaviour

is expected theoretically for the integer QHE and the fractional QHE, because of the
microscopic law of corresponding states, which relates both effects to each other . It should
be noted however, that there is a difference between the exponent K=043 derived & Wong
al?! and the one k=0.21 derived BYang et af’. Both transitions are from the v=2 quantum

Hall plateau to the insulator, but K=0.43 is comparable to the spin split exponent derived for
the PP transitions, while k=0.21 is the exponent for the spin degenerate case. The authors d
not give a clear explanation for the difference between the two exponents.

In GaAs structures, delta doped with silicon, also an insulator to quantum Hall phase-
to-insulator transition was observed by Hugbesl. . These authors investigated the scaling
behaviour of ¢ and qy as function of (B-@T"K. For g, a critical exponent K=0.45 was
found. The value for the exponent is again for a PI transition with v=2. fah@& same
critical exponent was reported, however, because of the weak temperature dependgnce of a
at the transition, the scaling was not very good and therefore, the derived exponent is not very
reliable. The v-2 plateau-to-insulator transition was also observed in a multiple
GaAs/AlGaAs quantum well, with the doping in the well. A critical exponent K2b.36
resulted.

Panet al?* measured the quantum Hall plateau to insulator transition in an InGaAs/InP
heterostructure. These authors measured the first field induced transition for a Pl transition
with v=I. The sample showed metallic behaviour at B=0T in contrast to the samples in the
former studies. The electron density amounted to'2EM™® and the mobility to 94000
cn?/Vs at 4.2K. This low electron density results in a low critical magnetic figleR.BT.

Scaling of the transition was only observed in a small temperature range between 300mK and
730mK. The extracted value for the critical exponent is K=0.45+0.05. This value is consistent
with the critical exponent for the PP transitions for the spin split case. The transition from the
v=Il plateau is a spin split transition in contrast with the spin degenerate v-2 transition. No
mentioning in the article was made about the scaling of the PP transitions. Also the current
scaling behaviour of this PI transition was investigated. The critical exponent derived,from p
versus |[B-BI"" is b=0.23+0.05. In the quantum Hall regime a exponent equal to 0.21 was
observed for current scalihg

Obviously, the experimental situation reported in literature regarding scaling
behaviour of the PI transition is unclear. The experimental studies have led to different critical
exponents. For the spin-degenerate v=2 PI transitions values of K=0.4 as well as K=0.2 were
reported. The temperature range where scaling is observed is rather limited and certainly muct
smaller as in the case of the PP transitions. Another shortcoming of the before mentioned
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studies is that no comparison of the Pl and the PP transitions can be made for one and
same sample.

Recently Shahaet a
quantum Hall effect for the quantum Hall plateau to insulator transition. They proposed
phenomenological law (v, T)=pw*exp(-A(v)/Vo(T)), where A(v)=v-v*, v* is the critical
filling factor and py*~e /h is the critical resistivity. This law was found to be valid over a

125 claimed to have observed a new transport regime in the

wide temperature- and magnetic field range for several samples. Instead of the scaling res
Vo<*T\ the parameter Vo was found to follow a linear temperature dependéocetT+M3.
Shaharet al.investigated GaAs/AlGaAs and InGaAs/InP heterostructures.

For GaAs based structures genuine scaling was only observed at very low temperatut
(T<200 mK) for the PP transitions. But for InGaAs heterojunctions there is an impressivi
conformation of scaling behaviour over a wide T-range (T<4.2 K). The claim of Slkahar
al.?® contradicts the universality of the PP transitions and the PI transition. In the remainder
this chapter we will show that also the field induced metal-insulator transition as measured
an InGaAs/InP heterostructure shows proper scaling.

5.5. Universality ofa*cx and p**

For the scaling behaviour in the quantum Hall regime not only predictions were made for th
universality of the critical exponent, but also for the zero temperature peak value of th
longitudinal conductivity @*. The prediction of an universab,* with a value€’/2h at the
unstable fixed point in the flow diagram follows from dimensional grounds. The 'global phast
diagram' proposed by Kivelsoet al’® predicted for transitions between quantum Hall
plateaus, an universal critical pointxx(‘any*)z('lz,n+1/2)e /h, independent of the microscopic
details of the model. Theoretically, the behaviour gf ip the insulator phase is unclear. The
‘global phase diagram' predicts a finite Hall resistance in the insulating phase. Other theorie
based on the 'semicircle’ relationszr?imetween N« and &y, predict a quantised Hall
resistance far into the insulating phase. This implies that the Hall resistance remains quantis
through the PI transition and the material is then termed a quantised Hall inSuldtor
important assumption in case of the ‘semicircle law' is that the sample should b
homogeneous and isotropic on a large length scale. In contrast, Entin-Woldmah
concluded that j diverges in the limit T—0K, based on a model of local hopping in an
external magnetic field. Pryadket al. investigated the importance of electron interaction
effects for the quantum Hall insulator. In the quantum coherent regime, where the dephasit
length | is larger than the elastic scattering lenf@hit was found that g scales with the
resistivity p«. In the insulating phase both quantities diverge at T—>0K. In the Ohmic regime
(E <£Q) pyy remains quantised and independent ,gf p
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In contrast with theoretical predictions, there is no convincing experimental evidence
for an universal value dB.*. Wei et al®® observed a temperature dependent maximum value
of Gy Which is at low temperature significantly smaller th&@te This was observed in the
same sample, as later used in the temperature scaling studies .

Also in a high-mobility sample the value 6f* is not universal. Rokhinsoet al.
showed that the values @* were equal for transitions in a wide range of integer filling
factors 3<v<16. This is consistent with the prediction of scaling theories in the quantum Hall
regime. But the measured value gf*owas not equal to the expected vaeéh. In this
study they used the Corbino geometry in order to avoid edge channels, which are present i
Hall-bar geometry. In the Hall-bar geometry the resistangasmot proportional to the local
resistivity p, because of non-local transpgort This non-local transport is only observed in
high-mobility samples and is of no importance in the InGaAs/InP samples measuredety Wei
al. and the ones discussed further in this chapter. A way to prevent problems with non-local
transport is a scheme describedRaf. 33 to separate bulk and edge contributions. The
authors ofRef. 33 analysed the resistivity for thé"Ndge state (%) that varied through the
transition from 0 to °°. The corresponding conductivity, &b /[(PxX"Y+(Pxy")] has a
maximum value o&%/2h if pxyN is set equal to hfeHowever, as pointed out by Komiyaret
al3 if prN is not assumed constant but is determined experimentally, it is found to increase
from h/é& to °° asp,," varies from 0 to «». The peak value ¢f & then significantly smaller
than é/2h.

Experimental evidence to support the universal valug,gfis found in the activation
plots by Clarket al®, which have intercepts of Gat T=OK of é&/2h. It is argued by
Coleridgé® that this indirect measurement can lead to apparently universal values, while at
low temperature the direct measuremenBGgf give different values.

The universality ofGyw* is also predicted for the field induced metal-insulator
transition. In this respect the difference is that pigb is universal. Shahaat al.” studied the
PI transition in a wide variety of samples. The results suggest that the resistivity at the
transition is universal and close to the quantum unit of resistéftte(#20%). They also
observed the same value fog* at the PI transition from the fractional plateati/3. In a
later publication they increased the amount of studied samples and came up with the sam
conclusion . The criticab* is related toG* by a tensor relation, which gives a value of
€/2h for Gy, if Py is quantised through the metal-insulator transition. In a recent publication
a claim is made for a quantised Hall insulator after compensating for contact misalfgnment
But in this publication the criticgh,* is 1.65h/&, far from the universal value.

So far there is no convincing experimental evidence for the universalidyofand
p*«. Also the observation of a quantised Hall insulator is not convincing. Our measurements
of the PI transition demonstrate that it is very difficult to prove experimentally this
universality, due to inhomogeneities in the samples
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5.6. Scaling of the quantum Hall plateau-to-insulator
transition in InGaAs

5.6.1.Probing the quantum Hall plateau-to-insulator transition

One of the most important predictions of thaormalisationgroup theory is that the plateau-
to-insulator (PI) transition and the plateau-to-plateau (PP) transition show the same scal
behaviour . This means that the same exponent K should be observed as T approac
absolute zero and that the (electron-hole) symmetry in fheng conductance plane should
be retained. The experiments on the PI tranSti8fi%*** mentioned in section 5.4, did not
make a comparison between the PP and PI transition as measured for the same sample.
was either not possiblerjust no appropriate data were reported in these references.
In this section the results on magnetotransport measurements performed on
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Figure 5.4: Resistivity jy and Hall resistancep (inset) versus magnetic field..Bs the

critical magnetic field defined in the text. The curves are labelled a,b, n and the
corresponding temperatures are 0.13, 0.21, 0.26, 0.35, 0.47, 0.59, 0.83, 1.04, 14, 15, 1.9, 2.2,
3.1 and4.2K.
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InGaAs/InP heterostructure are reported. The sample structure has already been discussed ir
section 1.3.2.1. Our main objective is to study the critical behaviour of the PI transition and to
compare the results to the PP transition measured on the same sample. We benefit from the
fact that our sample has been studied beforeRek&). In this sample the critical exponéfit

for the PP transition was found to be 0.42 and 0.20 for spin polarised and spin degenerate
Landau levels, respectively. The transport mobility of the sample is 07=16000 cm /Vs at
T=4.2K. The electron density is 2.2XI@m?, which means that the Pl transition occurs at
B=16T.

The experiments were carried out in a Bitter magnet (B<20T) using a plastic dilution
refrigerator (0.1-2K) and a battryostat (1.5-4.2K). The magnetotransport properties were
measured with a standard ac-technique with a frequency of 6Hz and an excitation current of
5nA. The main experimental results are presented in figure 5.4 where the resigtietd p
Hall resistance ,y are plotted versus magnetic field. Thg pata are plotted versus the
magnetic field B minus the critical magnetic field, Bvhich has a characteristic value of
Bc=16T. This critical magnetic field separates the insulating phase ahamBhe quantum
Hall phase at loweB. Below B. py increases with increasing temperature, while abQubeB
opposite behaviour of an insulator is observed. The critical figid Bot a constant value, but
has a weak temperature dependence. The critical field varies from 16.3T for the lowest
temperature (130mK) up to 16.9T for the highest temperature (4.2K). This indicates a small
increase in electron density 85% at high B, by raising T from 0.13K to 4.2K.

The py data are shown in the inset of figure 5.4. At low temperatugeis plearly not
qguantised through the PI transition. The Hall resistance at low temperatures diverges in a way
comparable to the resistivity,p Theory predicts that,p is finite’® or even quantised
through the transition. The divergence of the Hall resistance implies that our sample is not a
Hall insulator according to the definition of Kivels@ al’®. The divergence of the Hall
resistance is not due to misalignment of the voltage contacts as was obsé&gedh This
point will be discussed in more detail at the end of section 5.6.4.

5.6.2. Scaling of the conductivities

The conductivity G and the Hall conductivity  were calculated in the standard
fashion using the measureg, pnd gy. The results for & at different T are plotted in figure
5.5. The maximum of the g{B) curves, the critical conductivitgt*s, defines the critical field
B.. A weak temperature dependence gfiBobserved. Branges from 16.3T at the lowest
temperature up to 16.9T at the highest T. At the lowest temperature, 130mK, the lowest value
of c*, and B are found.
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Figure 5.5: The conductivity,a versus magnetic field for the PI transition. The
curves labelled a,b, i correspond to temperatures 0.13, 0.21, 0.25, 0.35, 0.47,
0.59, 0.83, 14, 3.3 and 4.2K. The top of a,(B), the critical conductiaity,
defines the critical magnetic field.B

In the T interval 3.3K-4.2K the temperature dependend@*gfis mainly caused by the
temperature dependence of the Fermi-Dirac distribution. This is illustrated by an increase
G*« with decreasing T in this range. At lower<r*, decreases with decreasing T and the
scaling regime is entered. The Fermi-Dirac distribution can then be considered as a s
function. For this PI transition the scaling regime is reached at T-1.5K. For the PP transitio
of this sample the scaling regime extends over a larger range (T<3K).

From the @ and g, data the critical exponent can be extracted in a similar fashion as
was previously done from theypand Ry, data for the PP transitiohd or Q, we obtain the
power law dependence of the halfwidth, AB~T\ with an exponent K=0.46+0.05. For the
temperature dependence of the Hall conductivity ~ (-*/,/T4% with k=0.43+0.05 is found.

In figure 5.7 the widthAB versus temperature is plotted for the Pl as well as for the PP 2—>1
transition. The latter data were derived from the T dependence of the widthaofdpgave a
critical exponent of K=0.42+0.05, equal to the one derived for the PP transition ley aMei
The low temperature data for the field derivative of the Hall conductivity versus temperatur
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Figure 5.6: @ versusrjy, of the PI transition at some selected temperatures. The

dashed lines are at temperatures 4.2K, 3.3K and 2.2K (classical regime). In this
classical regime o increases with decreasing temperature. In the scaling regime

(T<1.5K) a* decreases with further lowering of the temperature.

is also plotted in figure 5.7. The exponents K=0.46+0.05, 0.43+0.05 and 0.42+0.05 are all the
same, within the experimental error, indicating that the PP and the PI transition are transitions
with the same scaling behaviour. This is a most important result, which proves that the PP and
the PI transitions are in the same universality class.

We attribute the small differences in the derived exponents to uncertainties caused by
mixing the px and R, data in the computation of the conductivitlesp,, and Ry are
measured at different parts of the sample. Especially fluctuations in the electron density may
induce errors in calculating,pand q,. For the PI transition this seems not to be the case. The
reason for this can be found in thg-G,, diagram, which is plotted for different temperatures
in figure 5.6. The symmetry about the liag=V2 is striking and reflects the high quality of the
experimental data. The same symmetry was observed and discussed in the original work on
the PP transitio8 The possibility to determine the critical exponents from the conductivities
is due to the symmetry in the flow diagram. The symmetry in theaG diagram is a direct
consequence of the following relations:
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T(K)

Figure 5.7: Left axis: width of thei,apeak, 1/AB, versus temperature for the PI transition (0)
with a slope K=0.46 and for the PP 2->| transition (o) with K=0.42. Right axis;/@@)\in
versus temperature for the PP 2-#ransition (¢) withK=0.43.

Oxt(AV) =0y(-Av);0 (AV) =1-6 (-Av). (5.8)

Here Av = 1/B-1/B.. We have explicitly verified the validity of equation 5.8. This result is
important since it fundamentally reflects the electron-hole symmetry in the problem. Our dat
do not follow the statement of 'dualiy*® which says that g(Av)=l/p«(-Av) and py
remains quantised through the PI transition. Instead we observe that the critical conductivi
c*y« develops a maximum around 15K. This is related with the divergence of the Hall
resistance for the PI transition. But also for the PP transition a similar temperature dependen
of rj*,x was observed The critical conductivity has clearly not the ‘universal' value/ah

as predicted by Kivelsoat al’®.

5.6.3.A different approach to the PI transition

It is interesting to note that the critical behaviour can be obtained from the resistivity alone a
well, i.e. without involving the calculation of the conductivities. This can be demonstrated by
plotting the resistivity on a log scale as function of the difference Av. Such a procedure wa:
recently followed by Shahaet al?® for the PI transition measured on different GaAs and
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InGaAs samples. In figure 5.8 we shoyy persus Av plotted in this way for our InGaAs/InP
sample. The resistivity is described by the following equation:

AV
Pl .V, T)= 5.9
(v, T)=poex vo(T) (5.9)

The slope (Vo) of the straight lines around zero can be accurately determined at each
temperature. In figure 5.9 livo is plotted versus temperature on a log-log scale. The data nicely
follow a power law behaviour IVo¥T with k'=0.55+0.05. This value differs from the
expected value K=0.42 by more than the experimental error. The data can not be described
with a linear lawVo=ocT+R as proposed by Shahat al?. This linear dependence on
temperature does not describe the asymptotics of the quantum phase transition at zero Kelvin.
Instead it is semiclassical in nature and typically observed at finite temperature for samples
with predominantly slowly varying potential fluctuations . It is connected with the classical

-0.005 0.000 0.005 0.010
1/B-1/B(1/T)

Figure 5.8: p, data on a logarithmic scale versus inverse magnetic field. The labels
and temperatures are the same as in figure 5.4.
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Figure 5.9: Left axis: Iy versus temperature for the RPRP>1transition (¢) with a
slope K=0.51 and the PI transition (¢) with a sl¢pe0.55. Right axis: width of the

0, peak, LAB, versus temperature for the PI transition (G) with a slope K=0.46
and the PP 2-»| transition (O) with K=0.42.

regime, where the temperature dependence of the Fermi-Dirac distribution governs tt
physics. Below 15K, the PI transition in our sample does certainly not take place in thi
classical regime, as shown in figure 5.6. The linear temperature law is observed in sampl
which will reach the scaling regime at very low temperatures and thus a regime which |
experimentally very difficult to access.

The 2—1 PP transition can be transformed into a -0 PI transition in order to shov
that the value Kk'=0.55 is not a specific property of the PI transition. The following
transformation steps are performegl,pyy .(Gy-e /h) P xxP: This
scheme was also usedRef. 41 and is closely akin to that used by McEeeal” to separate
different edge-state contributions to the resistivity. The conductivity of the N=04- Landau leve
only, responsible for th&—1 PP transition, is obtained by subtracting the contribution of the
lowest full Landau level. This procedure is valid under the assumption that the only
contribution of the lowest Landau level to the Hall conductivity?.en figure 5.10 this
procedure is shown for two different temperatures. A remarkable resemblance between t
measured PI transition and the transformed 2—1 transition is observed. It is especial
noteworthy that gy diverges in a similar way asypat the PI transition. Theypdata after
transformation are described by the exponential expression (equation 5.9) leading to a value
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T = 130mK

T = 1.04K
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Figure 5.10: p, and gy vs. B for the 2-M transition at T=130mK arid04K.This

2-M transition is transformed into the |->0 transition, which is labelled with p'
and pyy. There is a clear resemblance between this transformed PI transition and the
directly measured PI transition plotted in figure 5.4.

K'=0.51+0.05. Transformations like this generally lead to less quality data. Nevertheless the
results in figure 5.9 indicate that different exponents can be extracted from the same
experimental data.

5.6.4. Origin of the different exponents

In this section we address the origin of the difference in exponents derived for the InGaAs/InP
sample. From the width of the conductivity and the first derivative of the Hall conductivity
K=0.44 was derived. From the temperature dependence of the gl@eritical exponent
K=0.55 was found. In this section we will show that inhomogeneity effects are responsible for
the difference.

The transport data of the PI transition can be accurately described by equation 5.9,
where p* denotes the critical resistance. It can be written as pf{t@**,) +Vi) where 0%
is the critical conductivity, as defined in figure 5.4. Both quantities are weakly dependent on
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Figure 5.111/vo versustemperature for thé®l transition (full squaresK'=0.55).
inset: (7" +]j

(da,,/dB)min Versus temperature, the slope of the straight line equals 0.43.

temperature and this temperature dependence is not simply irrelevant as thought previou
Irrelevant in this respect means, no influence on the scaling properties of the transition. T
temperature dependencead, turned out to be marginal and it accounts for the difference in
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versus temperature. The slope of the straight line equals 0.15. Lower inset:

the observed exponents.

Following equation 5.8 4(Av) can be related tog-Av), such that the ratio can be
written as R(Av)/px(-Av)=exp(-2T°Av). As a good check upon the validity of this result the
exponential on the right hand side is fitted to the experimental data inserted in the left he
side.The same numerical value K'=0.55 was obtained indicating once more that equation

represents the fundamental symmetry of the problem. From the gaho)fpu(-Av) the
following renormalisationgroup equation for small 65/2 can be obtained:
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- -KO ; K=K . (5.10)
d\nT dinT

Equation 5.10 shows how a relatively weak temperature dependergg*ittan lead to
different exponents extracted from different quantities. In figure 5.11 1Mo versus temperature
is replotted on a log-log scale. The solid line gives k'=0.55. In the upper inset the low
temperature data fokn((G.*)%+V4) versus In T are shown and a slope of 0.1510.03 is
obtained. According to equation 5.11 a valu& aff 0.40 results, which should be compared

to the value K=0.43 derived from the low temperature dependence,@d@ai.. (see lower

inset figure 5.11)

One can conclude from the marginal dependence,gf on temperature that the
electron gas has not yet fully developed criticality. This would mean that a much lower
temperature is necessary before the critical fixed point is truly reached. However it is
important to stress that the small changes.in observed at low temperatures are most likely
the result of macroscopic inhomogeneities in the sample. One way of showing this is by
writing equation 5.9 as

&V-Sv(T)

o€ VoM (5.11)

The shift in the critical filling fraction (S)¥and the critical resistivity(p*) are related through
p*(T)=exp(SwWVo). This shift is next to be compared to the difference,) (& it is obtained
from the definitions G=/2 and da/dB=0. These two definitions give a small difference in
critical magnetic fields which can be transformed into values far I6vfigure 5.12 5B/B¢
(equal to W5v;) with varying T for both cases are plotted. Both effects are comparable.

Notice that the uncertainty 8v. in the definition of v clearly shows the effect of
macroscopic inhomogeneities (in electron density) which caysesbe slightly different in
the different regions of the sample wheyg and g, are being probed. The inset of figure 5.7
therefore indicates that the weak or marginal temperature dependegge i, in fact, an
inhomogeneity effect. This lack of universality igoalso shows up in the different data sets
taken at different experimental runs. After heating up the system to room temperature and
then cooling down again one usually finds thathBs-shifted along with a shift B*. The
shift in Bcindicates a change in electron density, whereas the shiff*inndicates a change
in inhomogeneity profile of the density.

The effect of the temperature dependences.t is strongly related with the Hall
resistance. As shown in the inset of figure 5.4 the Hall resistance diverges at low
temperaturesHilke et al*® showed for p-SiGe samples that the Hall resistance remains
guantised far into the insulating phase. However, the as-measured experimental data show a
not quantised Hall resistance, which is claimed to be due to misalignment of the Hall contacts.
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Figure 5.12:5B¢/Bc versus T. The squarese thedataderived from
p*, Egs.5.9 and 5.11, the circles are the data obtained from the
different definitions of B (see text).

By reversing the magnetic field and averaging out the resistance contribution a quantised t
plateau was recovered at low temperatures. We do not think misalignment of contacts
cause the observed diverging Hall resistance for the PI transition in the InGaAs/Ir
heterostructure. The effect of misalignment can be described,by.ptc*p., where the
parametec gives the coupling of the resistivity into the Hall resistance. In our case this woul
mean that the parameter c is strongly field and temperature dependent and at low tempera
almost one. The divergence g, 5 already present when,ps still below h/e .

This misalignment can not be reconciled with the symmetric flow diagram shown i
figure 5.6. From the flow diagram we conclude that the divergence is a sample propel
important for the PI transition. Also for the transformd=>1transition the qualitative same
behaviour for p, is observed as for the 10 transition as shown in figure 5.8. Misalignmer
can not play a role for the—>1 transition because,pis sufficiently small for this transition.
The diverging R, is due to different critical fields SBrelated to inhomogeneities in the
sample. The inhomogeneities, although small in our sample but always present, mak
impossible to observe a quantised Hall insulator. Most thédfiehat predict the quantised
Hall insulator make the assumption of a homogenous sample, which is not valid for re
samples.

The marginal temperature dependence ,jt ¢s common to both the PP and PI
transition in our sample. This was previously also observ&fins. The universality of g
for both transitions is difficult to prove convincingly by experiment, due to inhomogeneitie
present in the samples. It is important to note that equation 5.10, upon modification,
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applicable to the PP transitions as well. For example, foP-thd transition equation 5.11 is

modified according tK*-K = — . By inserting thé&,* data we find in this case
d\nT
K'-K<0.01 which is well within the experimental error. The constant 9/4 instead of 1/4 in the
equation results in different valu&sK between the 1—0 transition and the 2—»1 transition.
The value of &y at the transition defines this constant. The 2—1 PP transition occurs at
G,=3/2, while the PI transition occurs a8/2. This result explains why a single exponent
K=K'=0.42+0.04 was previously extracted for tBexltransition as well as from the higher
Landau levels over a wide range in temperature.

5.7. Crossover from classical to quantum transport

The temperature dependence of the integer quantum Hall transition can be interpreted by
identifying two regimes, the classical and quantum transport regime. In the classical regime
the temperature dependence of the transitions are characterised by the linear temperature
dependence reported by Shahetr al®®. The quantum transport regime is described
consistently with the scaling theory. In this section the crossover between the two regimes is
investigated. The different crossover temperatures in different samples are discussed. The
nature of the potential fluctuations plays an important role in this discussion.

The PI transition and the transformed 271 transition in the InGaAs/InP sample,
discussed in section 5.6, show a clear power law temperature dependence and not the linea
temperature dependence reported by Shehaf®. Two types of samples, InGaAs/InP and
GaAs/AlGaAs, were investigated by Shafeiraf® and no scaling was observed in the
measured temperature range. The low electron densigy2@) in the InGaAs/InP
heterostructure measured by these authors is responsible for the different results compared tc
ours obtained on the InGaAs/InP heterostructurg~1BT). The long-ranged potential
scattering mechanism is responsible for the absence of scaling in the GaAs/AlGaAs
heterostructures.

However, short-ranged potential scattering alone is not a sufficient condition for
genuine scaling over a wide temperature range. For an InGaAs/AlGaAs heterostructure we
measured the 2—1 PP transition in the range T=70mK-2.4K. For this sample the electron
density is 2.7x10" cri‘and the transport mobility,lis 34000 crfiVs. The PP transition was
transformed to a PI transition in a similar way as described above. In figure 5.13 the slope Vo,
of the log(px) versus Av curves, is shown versus T on a linear-linear scale and on a log-log
scale. For T>0.4K the results can be described by a linear temperature dependgnéé of v
low temperature (T<0.4K) a clear deviation from this linear dependence is found. The log-log
plot shows that below 400mK the temperature dependence is given by a power law. The
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Figure 5.13: The slope,) determined from a plot ofypas function
of Av for an InGaAs/AlGaAs sample on a linear-linear scale (a) and on a

log-log scale (b).

parameters a an@ describing the linear law,=aT+R are 0.033K* and 0.096, respectively,
while the ratio 3/a=2.9K. The ratio 3/cc defines a temperature that was reported to be
characteristic of the material system. Values (3¢a reported inRef. 25 are 0.5K and 50-
IOOMK for InGaAs/InP and GaAs/AlGaAs heterostructures, respectively. The critica
exponent derived from a power law fit amounts to K=0.46 for T<400mK. This critical
exponent is equal to the value obtained for our InGaAs/InP sample. The relevant paramet
of the samples discussed in this section are listed in Table I.

The nature of the potential fluctuations is the same for the investigated InGaAs/InP al
InGaAs/AlGaAs heterostructures. The ratio of the transport mobility and the quantur
mobility UM gives an indication for the range of the potential fluctuati8hsThe quantum
mobility depends on the quantum lifetimg tkat characterises the Landau level width. The
guantum lifetime is defined as the mean time between two successive scattering events
every scattering event is equally important. The transport mobility is determined by th
momentum transfer in the direction of the electric field and therefore depends on tt
scattering angle. This transport mobility contains a small contribution of small angle
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scattering,asthese scattering events hawevery limited effecton theelectron drift velocity.
The ratio \j\i;, dependson themomentum weighing (I-cos8jiueto thengle dependencef

the transport mobility.Theratio is ~1 if thedominant scattering proceds short ranged. This
should be thecasefor alloy scattering, whichis ashort-ranged potential scattering procels.
long-ranged potential scattering processes like ionised impurity scatteamgmportantthe

ratio ismuch highet?, typically between20 and dew hundred.

For our InGaAs/InP heterostructurethe ratio (J/ugq equals 2.7, while for the
InGaAs/AlGaAs heterostructure fiig=3.4. This indicates thatherange of the potential
fluctuations is almost the same. The sample usedby Weiet al. for thefirst scaling
experimentshad aratio \x.J\§~I. This sample shows scaling witthehighest characteristic
temperature Ts.. Recently, scaling experiments were performed ap-SiGe sample with
[itr/(v=1**- This sample shows possiblgn onset of scaling at 150mK. Therefore onljthe
assumptionof ashort-ranged potentials notsufficient to explain theappearanceof scalingin
an experimentally accessible temperature ranigés notthewidth of the Landau level, which
is important,butthe bandwidthofthe extended stateis: the Landau level.

The Landau level widthV can berelated to the quantum mobility in the Born

approximationfor 5-scatterers:

‘ :he \2B (5.12)
Material - iVHq  T25%  TCTx a K3 Bla
m?/Vs m?/Vs K K K-t K

InGaAs/InP 16 0.6 2.7 15 15
InGaAs/AlGaAs 34 10 3.4 0.4 # 0.033 0.096 29
p-SiGe 13 15 0.9 0.065 # 0.08
InGaAs/InP 3.6 0.5 7.3 4.2 4.2
GaAs/AlGaA¢d 18 0.24 0014 0.06
InGaAs/InF 3.0 0.088 0.054 0.60

a: this work

b: Ref. 44

c:Ref. 5

d: Ref. 25

#: no maximum in rj*, observable

Table I: The transport mobility u,, the quantum mobility, the ratio |Jug, the
temperature where -25% of the Landau level states are extended (see text), the
temperature wherex has a maximum, the parameters in the linear law
Vo(T)=aT+Rand the ratid3/a, for different materials.
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The width at half maximum of the conductivity peaks, \§ives an indication for the width of
the extended states energy band in the Landau level. The width of the extended states er
band (W) can now be compared with the Landau level width (T). In the InGaAs/InP
heterostructure r/\}-4 at T=1.5K, which implies that 25% of all states is extended at this
temperature. The scaling regime starts at T-1.5K, as concluded from figure 5.6. T
identification of the maximum value @f* as the starting point of scaling was noted in the
first results published on localisation and scéfin§or the InGaAs/AlGaAs sample this 25%
is reached at T=400mK, which relates nicely to the temperature where the power le
temperature dependence of starts (see figure 5.13). For this InGaAs/AlGaAs sample no
maximum value ofG*, can be identified, becausg*,, is constant below 800mK. For the p-
SiGe sample inRef. 44 only at T=65mK this value of 25% is reached. For these
measurements @Fincreases up to the lowest temperatures (T=65mK).

At these low temperatures the width of the Fermi function (-8f/3E) is about 10% of the
width of band of extended states. The important condition is not the width of the Landau lev
but the width of the extended states, which should be narrow enough around the Landau b
centre to obtain scaling. For the samples discussed this seems to be around 25% of the Lat
level width. Of course the extended states bandwidth should be large compared to the width
the Fermi function (around 10% in the investigated samples).

The samples mentioned in the above paragraph could be compared because in all tt
samples short-ranged potential scattering is important. However, if long-ranged potenti
fluctuations become important an effective bandwidth is introduced, where also the inelas
scattering time plays a role . Inelastic scattering processes, like electron-electron interactio
affect in the long-ranged potential case the extended states energy widihprihciple one
can assume an effective bandwidthgWwhere the inelastic scattering timeg, s
included :Wy =W, +r~'. Due to the broadening of the bandwidth lower temperatures are
needed to observe scaling.

5.8. Conclusions

In summary we can say that the PP and PI transitions show the same scaling behaviour, v
the same critical exponent. This is in complete agreement with the predictions of th
renormalisationtheor)?. We have shown that the critical conductaigg® as well as the
exponent of the PI transition are weakly affected by the (weak) macroscopic inhomogeneitie
in the sample. Our data retain fundamental aspects such as the electron-hole symmetry in
GuGy diagram. It is important that this symmetry is not confused with the statement of
duality*®, which is in fact not verified by our experiments.
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The difference in exponents determined with the two different analyses can be
explained by the temperature dependence in the critical condudjyityBy combining the
results for the PP and PI transitions we conclude that K=0.42 stands for the universal critical
exponent of the quantum phase transition. The numerical value k'=0.55 on the other hand is
the result of macroscopic inhomogeneities. Following equation 5.10 it represents an effective
exponent.
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