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5. Scaling in the quantum Hall 
regime 

5.1. Introduction 

The unexpected observations of the quantum Hall effect (QHE) in 1980 and of the fractional 
quantum Hall effect2 in 1982 are among the most important discoveries in physics of the 
second half of this century. The precise quantisation of the electrical resistance in the quantum 
Hall effect has led to a new definition of the resistance standard. From a fundamental point of 
view, studies of quantum Hall phenomena are still a very active research area of physics. 

Immediately after the discovery of the integer quantum Hall effect by von Klitzing et 
al.1 the connection between the strong field localisation effect and the phenomenon of the 
quantum Hall effect was made3. The relationship between the metal-insulator transition and 
the quantum Hall effect is nowadays still a subject of considerable fundamental importance. 
The existence of localised states at Landau level tails and extended states at the centre is 
essential to explain the integer quantum Hall effect. Quantum Hall plateau transitions (PP 
transitions) are understood to arise from localisation-délocalisation transitions through narrow 
bands of extended states. The main part of this chapter describes the relationship between the 
metal-insulator transition and the quantum Hall effect. In particular we focus on the scaling 
behaviour of the QHE4. 

The quantum Hall plateau transition can be described by a quantum critical 
phenomenon, which has been verified experimentally during the last decade. Especially the 
work of Wei et al.5 on InGaAs/InP heterojunctions forms an impressive conformation of the 
scaling theory6. The scaling theory of the QHE is a result of a field theoretic approach to 
Anderson localisation with non-perturbative (topological) characteristics. The temperature 
dependence of the transition between localised and extended states in the integer quantum 
Hall regime can be described by a power law, with only a single critical exponent. According 
to the theory, PP transitions and the transition from a quantum Hall plateau to the insulator 
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(PI) are in the same universality class and thus should exhibit the same scaling behaviour. In 
this chapter we present our experimental investigations regarding the PI transition in an 
InGaAs/InP heterostructure and provide the reader with new insight in the scaling behaviour 
of this transition. 

In the next Section of this chapter the theoretical concept of scaling is given. In 
Section 5.3 a short overview of the relevant experimental and numerical results of scaling of 
the PP transitions is presented. In Section 5.4 results on the magnetic field induced metal-
insulator transition are reviewed. In Section 5.5 we present our new experimental results on 
the metal-insulator transition of an InGaAs/InP heterojunction and an analysis of the data in 
terms of the scaling theory. A short description of the InGaAs/InP sample has been given in 
section 1.3.2.1. In the last section a summary is presented. 

5.2. The concept of scaling in the quantum Hall regime 

It is nowadays clear that the integer quantum Hall steps are a unique laboratory example of a 
quantum phase transition (Anderson transition) in two dimensions. Quantum phase transitions 
differ from normal phase transitions in the fact that the transition takes place at zero Kelvin 
rather than finite temperatures. The renormalisation group theory is an outstanding theoretical 
framework for studying the quantum phase transition. It is a systematic approach that averages 
out unimportant fluctuations on small length scales and it extracts the physical information by 
retaining the fluctuations at large distances. Microscopically different systems can show the 
same asymptotic behaviour close to the critical transition. In this case the phenomena belong 
to the same universality class, i.e. the different systems have identical critical exponents. The 
important length scales in the quantum Hall regime are the localisation length and the sample 
size. In the quantum Hall regime the quantum phase transitions occur between adjacent QH 
plateaus and at T=0K. Close to T=OK the physics of the transport properties is still controlled 
by the critical point. This leads to a scaling of the conductances with varying magnetic field 
(B) and sample size. The transitions between quantum.Hall plateaus and the transition 
between the quantum Hall plateau and the insulating phase are all magnetic field induced 
metal-insulator transitions in the same universality class. They are described by a single 
universal critical exponent. This is a so-called two parameter scaling theory, where the two 
parameters are the longitudinal conductance GXX and the Hall conductance cxy. This two 
parameter scaling theory is an extension for strong magnetic fields of the one parameter 2D 
scaling theory of localisation described in Chapter 2.3. 

This so-called two-parameter scaling theory give rise to the idea of localised states at 
the Hall plateaus and delocalised states, or extended states, at the Hall steps. The resistance 
peak at the Hall steps is caused by a small energy interval of extended states in the density of 
states (DOS). The tails of the DOS are the localised states and they give rise to oxx=0 and 
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quantised oxy. In figure 5.1 the DOS is schematically drawn together with the effect of varying 

the magnetic field on the localisation length £, on the resistivity pxx and on the Hall resistivity 

pxy. At T=0K and infinite sample size, there is one extended energy at the critical field Bc. The 

localisation length £, diverges at Bc. The localisation length scales as a power law as function 

of magnetic field with the localisation length exponent v: 

Mfl-B, (5.1) 

From scaling considerations it follows that the resistance parameters depend on the ratio of 

two length scales only: 

Pirfij (5.2) 

Here L is the sample size and i; is the localisation length. At finite temperatures one can 

introduce an effective sample size, the inelastic scattering length t-m. When the sample size L 

is much bigger than i-m the resistances scale, according to equation 5.2, where L is replaced by 

lm, which now plays the role of 'effective' sample size. The inelastic scattering length 

depends on temperature in the following way: 

(5.3) 

where p is the inelastic scattering length exponent. This result shows that the resistivity scales 

with temperature. The width of the resistivity peak, AB, as well as the first derivative of the 

Hall resistance, scale with temperature. The following scaling equations can be derived for the 

transport coefficients: 

plj(B,T) = glj(T^(B-Bc)) = gi 

- i l / v \ 

in 
such that 

AB~T2v~TK (5.4) 

dB 
(5.5) 
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Figure 5.1: Schematic representation of the concept of scaling in the 

quantum Hall regime. The upper graph represents the density of states as 

function of magnetic field. In the middle graph the localisation length vs. 

magnetic field is plotted. The resistivity and Hall resistance are plotted in 

the lower graph. For an explanation of the symbols see the text. 

For the PI transition power law behaviour with the same critical exponent should be 
valid. The most right Landau level in the schematic graph of the DOS in figure 5.1 is the 
lowest Landau level. This lowest Landau level is responsible for the PI transition and has a 
similar energy interval of extended states in the centre and localised states in the tails as the 
other Landau levels. Also the temperature dependence (i.e. equation 5.4 and 5.5) is the same 
and therefore the scaling properties are the same for all levels. 

Notice that the behaviour of the resistivity and Hall resistance are quite different when 
compared to the other Landau levels, because the transition is between a quantum Hall and an 
insulating phase. This is schematically shown in figure 5.1. In this chapter the emphasis is on 
this last PI transition. 

The results of the renormalisation group theory can be illustrated with a flow diagram 

in the axx-axy conductance plane6. The renormalisation parameters GXX and CTxy are 

dimensionless conductances in units of e2/h. The renormalisation group flow diagram for the 

conductance parameters is shown in figure 5.2. The flow is characterised by two different 
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fixed points. One is a stable fixed point describing the effect of the localised states near the 

Fermi energy (Ef), in this case O"xx=0 and Gxy is quantised. The other is an unstable fixed point, 

describing the effect of the extended states near Ef. These states carry the Hall current, they 

cause Gxx to be non-zero and axy to interpolate between two adjacent quantum Hall plateaus. 

The semi-circle (full line) in figure 5.2 is the flow at T=0K and infinite sample sizes. The flow 

towards this semi-circle indicates the effect of an increasing length-scale L. 

At finite, but low, temperatures such that the broadening of the Fermi-Dirac 

distribution does not play a significant role, inelastic scattering processes have to be taken into 

account. Just as we mentioned earlier, this amounts to the replacement of L by an 'effective' 

sample size, i.e. £-m (equation 5.3). 

Close to the critical unstable fixed point, the flow is described by two scaling 

variables, a relevant flow 6 and an 'irrelevant' one o defined by : 

e = o„-n-\ (5.6) 

where o*xx is the critical conductivity. Following the basic principles of the renormalisation 

-Bf"] - 4 S 
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Figure 5.2: Translation of the transport coefficient pxx and pxy into the renormalisation flow 

diagram for the conductance parameters. This graph is taken from Ref. 6. The inset shows the 

flow for different plateau transitions. The arrows on the flow lines indicate the direction for 

increasing length scales L. The flow towards the fixed points at integer values for the Hall 

conductance represent the quantum Hall plateau's of figure 5.1 as a scaling phenomenon. The 

unstable fixed point ® indicates a true quantum phase transition. The dashed parabolic line 

indicates the semiclassical value for the conductance, which serves as a starting point for 

scaling. B* corresponds to the critical magnetic field. 
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group, the 'relevant' scaling variable is the important one that determines the localisation 

length exponent v. Let the starting point for scaling be denoted by 0o=GXy-n-'/2°c(B-Bc). Here 

we use the fact that the mean field (SCBA)4 parameter o xy depends linearly on (B-Bc) for 

small (B-Bc). Then, the leading scaling behaviour can be obtained as6: 

Gl]{B,T)=gll(J-*{B-Bi.)) = giJ 

/ k/ 
l / v \ 

\ U_ J 
(5.7) 

It is important to stress that this result, which is completely equivalent to the result of equation 

5.4, follows directly from the existence of the 'unstable' fixed point at axy=n+'/2. We shall see 

later on that the phrase 'irrelevant scaling variable' gets a different meaning as far as the 

experiment is concerned. Experimentally, we do observe the effect of the 'irrelevant' variable 

o"=axx-a*xx which, however, turns out to be the result of 'macroscopic' sample 

inhomogeneities. We will discuss this complication in detail in section5.6.4. 
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5.3. An overview of the experiments on scaling in the 
quantum Hall regime 

The critical behaviour of the longitudinal resistivity pxx and Hall resistivity pxy was shown in 

1988 by Wei et al.5. These authors reported that in the temperature range O.IK < T < 4.2K the 

maximum of dpxy/dB diverges like T"K and the half-width AB for pxx vanishes as TK, with 

K=0.42±0.04, for the Landau levels N=0i, 1Î and l i . Figure 5.3 summarises their main 

results on a log-log plot. The exponent K was found to be the same (universal) for 3 different 

PP transitions. 

One of the impressive results of this study is the large T range where scaling is 
observed. Scaling is observed below a certain critical temperature Tsc, which in this study is 
equal to 4.2K. Tsc is defined as the temperature where the critical conductivity G*xx versus 
temperature is maximal. The critical conductivity is defined as the maximum in the 
conductivity versus magnetic field. Above Tsc, G*XX increases with decreasing temperature, 
while below Tsc G*XX decreases with decreasing temperature. The value of Tsc is sample 
dependent. 

04 0.60.8 1.0 
T(K> 

Figure 5.3: Scaling behaviour observed for an InGaAs/InP heterostructure. The 

three upper lines show the T dependence of (dpxy/dB)mm for three Landau 

levels. The lower two lines show the T dependence of the width 1/AB. The open 

symbols are data taken in a dilution refrigerator, whereas the filled symbols are 

data taken in a 3He system. The slope of the straight lines gives (dpxy/dB)max~T" 

and AB~TK with K=0.42±0.04. This graph is taken from Ref. 5. 
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5 For this study Wei et al. used an InGaAs/InP heterostructure with a fairly low mobility 
u.=34000 cm2/Vs and a density n=3.3xl0" cm"2 at T=4.2 K. The use of low mobility samples 
prevents the appearance of the fractional quantum Hall effect. In low mobility samples 
electron-electron interactions are weak and therefore, only the integer quantum Hall effect is 
observed. The 2DEG is located in the InGaAs layer, which is an alloy. In this case the 
dominant mechanism for elastic scattering is provided by the short-ranged potential 
fluctuations 

Scaling in spin-degenerate Landau levels was also studied in an InGaAs/InP 
heterostructure.7 The electron density in this sample is 2.0x10" cm"2 and the mobility is 
16000 cm2/Vs at T=4.2 K. When the spin splitting is not resolved K is roughly half of that in 
the spin split situation. The width AB scales as T*'2, with K again equal to 0.42. By rotating the 
sample the spin splitting was increased and the spin-split values of K were recovered. It has 
been proposed that the spin splitting between the neighbouring spin levels in the spin 
degenerate situation is small but finite. There are actually two critical energies in the spin 
degenerate case, which are experimentally unresolved because the temperature is too high. 
Another explanation is the existence of a different universality class for spin degenerate 
levels. Then there is one fixed point in the degenerate case and two in the spin split case. The 
Zeeman energy controls the crossover of these two different regimes. 

The universal critical exponent K is a quotient of two critical exponents: K=p/2v. In this 
quotient p is the inelastic scattering length exponent and v is the localisation length exponent. 
The inelastic scattering length can be determined by current scaling measurements9 for the PP 
transitions. The maximum slope in pxy scales with the current I, when I is larger than a 
characteristic value. Combined with the temperature scaling this results in an effective 
temperature Te of the 2DEG, which scales with the current as Te~r5, independent of Landau 
level and spin degeneracy. From this result a value for p=2 has been deduced. Together with 
the value for K this gives for the localisation length exponent a value of v=2.3. However, the 
detailed mechanism for current scaling is not yet sufficiently understood and the results are 
inconclusive as of yet. 

A host of numerical work has been done on the subject of scaling of the PP transitions. 
Most of the numerical simulations indicate the existence of a critical point, where the 
localisation length diverges according to equation 5.1. Direct finite-size numerical 
simulation ' is a powerful tool to study the interplay between localised and extended states 
and has provided significant evidence in support of equation 5.1. The agreement between the 
numerical results obtained by different groups is striking and the localisation critical exponent 
is given by v=2.3. This result was obtained from numerical simulations of the lowest Landau 
level and a short ranged scattering potential. For the higher Landau level N=l an unique value 
of v has not been obtained, but the quality of the numerical results is much less for this higher 
Landau level than for the lowest one. Also simulations for a non-interacting 2DEG in a slowly 
varying potential landscape give v=2.3. The classical percolation problem, which has been 
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analytically solved", produces v=4/3. If quantum tunnelling is included in the percolation 
calculation12 the localisation length exponent changes to 7/3. One of the important problems 
left in the problem is the effect of the Coulomb interaction on the numerical value of v. There 
is a tendency in the literature that argues for the same value of v, independent whether 
Coulomb interactions are present or not. However, a microscopic approach to the problem 
seems to indicate a different universality class. This approach is still in development13. 

Koch et al.14 were able to measure directly the critical localisation length exponent v, by 
using samples in a Hall bar geometry with different sizes L. For different GaAs 
heterostructures with sample sizes ranging from 10 pirn up to 64|am, pxx and pxy were 
measured. In the temperature regime where the inelastic scattering length lm is greater than the 
physical sample size, the width of pxx and the slope of pxy depend on the sample size. From 
this sample size dependence, v can be directly determined using the following powerlaws, \~ 
(AB)"V and (dpxy/dB)v. The localisation length exponent derived from the experiments is v=2.3. 
This is equal to the value derived from the measurements on InGaAs/InP heterostructures and 
from the numerical results, as discussed above. The results should be taken with some care 
because only four different sample sizes were used. Also conductance fluctuations are present 
in the samples due to the lack of ensemble averaging, because the phase coherence length 
exceeds the sample size. These conductance fluctuations hamper the determination of an 
accurate width of the pxx peak. 

Temperature scaling in GaAs/AlGaAs heterostructures was also investigated by Koch et 
al.15. The measured exponents K ranged from 0.2 up to 0.9 and it appeared that K was Landau 
level dependent. A trend was signalled with K increasing as the mobility of the sample 
decreased. This led to the claim that, because v is a constant universal value, which was 
determined by size dependent measurements, the value for the inelastic scattering length is 
sample dependent and not universal. 

There is a distinct difference between the scaling results of the measurements in 
InGaAs/InP5'9 heterojunctions and in GaAs/AlGaAs15 heterojunctions. In the first material 
system universal scaling with the exponent K=0.42 is observed, while in the other material 
system no universal scaling was observed. One of the most important differences between 
both material systems is the dominant scattering process5,1 . In the InGaAs material it is 
predominantly alloy scattering and in GaAs the most important scattering process is scattering 
at ionised impurities. Alloy scattering is a short ranged potential scattering process in contrast 
to GaAs heterostructures where the potential fluctuations usually vary slowly over distances of 
the order of the magnetic length. This difference in scattering process is the main reason for 
the misleading results in GaAs. In GaAs only at very low temperatures (T<200mK) scaling 
with the universal exponent K=0.42 is observed16 and in most cases, it is beyond the 
limitations of the experiments. This important long standing aspect of the problem has been 
theoretically understood only very recently1 . To observe genuine scaling over a wide T range 
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a short ranged scattering potential is an essential condition and therefore, InGaAs is the only 
suitable material system to investigate scaling. 

5.4. Magnetic field induced metal-insulator transition: an 
overview 

Nowadays there is much interest in the metal-insulator transition and its critical behaviour. 
Therefore, most of the recent experimental investigations do not concentrate on PP transitions, 
but on the quantum Hall plateau to insulator transition in high magnetic fields. 

The first observation of a magnetic field induced metal-insulator transition was made 
by Jiang et al. 17 on a GaAs/AlGaAs heterostructure. In fact, this transition was from an 
insulator at B=OT to a quantum Hall conductor at fields above =2.5T. Moreover this sample 
shows at B=4.5T a transition from a quantum Hall plateau with filling factor v=2 to an 
insulating phase. Between the critical magnetic field values B=2.5T and B=4.5T a metal like 
temperature dependent behaviour, i.e. a decreasing resistance with decreasing temperature was 
found. On the insulator sides the reverse temperature dependence was observed. The metal-
insulator transition is an Anderson transition, caused by disorder. The temperature dependence 
of the resistance on the insulator side follows the law for variable range hopping 
R-expfTo/T)1' for non-interacting 2DEG as expected for an Anderson insulator. The 
magnetic field induced délocalisation indicates a floating down in energy of the extended 
states below the Fermi energy. This is consistent with the theory of the lévitation (or 
floatation) of the extended states as B—>0T18. This prediction is based on the idea that 
extended states can not disappear discontinuously. The transition, reported by Jiang et al. is 
also consistent with the 'global phase diagram' of the quantum Hall effect19. 

Wang et al. also report on the magnetic field induced insulator-metal-insulator 
transition in a GaAs/AlGaAs heterostructure. They observed, in principle, the same transition 
as was observed by Jiang et al.17. For the first time scaling of the PI transition was 
investigated. From a plot of dpxx/dB at the critical field, Bc, as function of 1/T Wang et al. 
obtained a critical exponent K=0.21. A resemblance with the scaling for PP transitions was 
claimed. Because the transition is from the v=2 plateau a comparison was made with the spin 
degenerate case in the quantum Hall regime. In this case the critical exponent derived from 
scaling is also 0.217. 

Wong et al. ' have investigated the scaling properties of a disorder tuned metal-
insulator transition. At a certain value of the magnetic field they changed the disorder by 
changing the gate voltage and then measured the temperature dependence of the resistance. 
Transitions from Landau levels with filling factor v=2 and v=l/3 towards the insulator were 
investigated in two different samples. The change in electron density by applying the gate 
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analytically solved11, produces v=4/3. If quantum tunnelling is included in the percolation 
calculation12 the localisation length exponent changes to 7/3. One of the important problems 
left in the problem is the effect of the Coulomb interaction on the numerical value of v. There 
is a tendency in the literature that argues for the same value of v, independent whether 
Coulomb interactions are present or not. However, a microscopic approach to the problem 
seems to indicate a different universality class. This approach is still in development13. 

Koch et al.14 were able to measure directly the critical localisation length exponent v, by 
using samples in a Hall bar geometry with different sizes L. For different GaAs 
heterostructures with sample sizes ranging from 10 um up to 64um, pxx and pxy were 
measured. In the temperature regime where the inelastic scattering length £m is greater than the 
physical sample size, the width of pxx and the slope of pxy depend on the sample size. From 
this sample size dependence, v can be directly determined using the following powerlaws, Ç~ 
(AB)"V and (dpxy/dB)v. The localisation length exponent derived from the experiments is v=2.3. 
This is equal to the value derived from the measurements on InGaAs/InP heterostructures and 
from the numerical results, as discussed above. The results should be taken with some care 
because only four different sample sizes were used. Also conductance fluctuations are present 
in the samples due to the lack of ensemble averaging, because the phase coherence length 
exceeds the sample size. These conductance fluctuations hamper the determination of an 
accurate width of the pxx peak. 

Temperature scaling in GaAs/AlGaAs heterostructures was also investigated by Koch et 
al.15. The measured exponents K ranged from 0.2 up to 0.9 and it appeared that K was Landau 
level dependent. A trend was signalled with K increasing as the mobility of the sample 
decreased. This led to the claim that, because v is a constant universal value, which was 
determined by size dependent measurements, the value for the inelastic scattering length is 
sample dependent and not universal. 

There is a distinct difference between the scaling results of the measurements in 
InGaAs/InP5'9 heterojunctions and in GaAs/AlGaAs15 heterojunctions. In the first material 
system universal scaling with the exponent K=0.42 is observed, while in the other material 
system no universal scaling was observed. One of the most important differences between 
both material systems is the dominant scattering process5,16. In the InGaAs material it is 
predominantly alloy scattering and in GaAs the most important scattering process is scattering 
at ionised impurities. Alloy scattering is a short ranged potential scattering process in contrast 
to GaAs heterostructures where the potential fluctuations usually vary slowly over distances of 
the order of the magnetic length. This difference in scattering process is the main reason for 
the misleading results in GaAs. In GaAs only at very low temperatures (T<200mK) scaling 
with the universal exponent K=0.42 is observed16 and in most cases, it is beyond the 
limitations of the experiments. This important long standing aspect of the problem has been 
theoretically understood only very recently13. To observe genuine scaling over a wide T range 
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a short ranged scattering potential is an essentia] condition and therefore, InGaAs is the only 
suitable material system to investigate scaling. 

5.4. Magnetic field induced metal-insulator transition: an 
overview 

Nowadays there is much interest in the metal-insulator transition and its critical behaviour. 
Therefore, most of the recent experimental investigations do not concentrate on PP transitions, 
but on the quantum Hall plateau to insulator transition in high magnetic fields. 

The first observation of a magnetic field induced metal-insulator transition was made 
by Jiang et al. ' on a GaAs/AlGaAs heterostructure. In fact, this transition was from an 
insulator at B=0T to a quantum Hall conductor at fields above =2.5T. Moreover this sample 
shows at B=4.5T a transition from a quantum Hall plateau with filling factor v=2 to an 
insulating phase. Between the critical magnetic field values B=2.5T and B=4.5T a metal like 
temperature dependent behaviour, i.e. a decreasing resistance with decreasing temperature was 
found. On the insulator sides the reverse temperature dependence was observed. The metal-
insulator transition is an Anderson transition, caused by disorder. The temperature dependence 
of the resistance on the insulator side follows the law for variable range hopping 
R~exp(To/T)" for non-interacting 2DEG as expected for an Anderson insulator. The 
magnetic field induced délocalisation indicates a floating down in energy of the extended 
states below the Fermi energy. This is consistent with the theory of the lévitation (or 
floatation) of the extended states as B—>0T18. This prediction is based on the idea that 
extended states can not disappear discontinuously. The transition, reported by Jiang et al. is 
also consistent with the 'global phase diagram' of the quantum Hall effect19. 

Wang et al.20 also report on the magnetic field induced insulator-metal-insulator 
transition in a GaAs/AlGaAs heterostructure. They observed, in principle, the same transition 
as was observed by Jiang et al.17. For the first time scaling of the PI transition was 
investigated. From a plot of dpxx/dB at the critical field, Bc, as function of 1/T Wang et al. 
obtained a critical exponent K=0.21. A resemblance with the scaling for PP transitions was 
claimed. Because the transition is from the v=2 plateau a comparison was made with the spin 
degenerate case in the quantum Hall regime. In this case the critical exponent derived from 
scaling is also 0.217. 

Wong et al. have investigated the scaling properties of a disorder tuned metal-
insulator transition. At a certain value of the magnetic field they changed the disorder by 
changing the gate voltage and then measured the temperature dependence of the resistance. 
Transitions from Landau levels with filling factor v-2 and v=l/3 towards the insulator were 
investigated in two different samples. The change in electron density by applying the gate 
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voltage is comparable to changing the magnetic field. For the scaling of pxx versus (n-nc)T
K, 

where n is the density and nc the critical density, a critical exponent K=0.43 was found. This K 
is the same for both filling factors. This result is claimed to confirm the theoretical prediction 
of universal scaling for the PP transitions and the PI transition6'19. The same critical behaviour 
is expected theoretically for the integer QHE and the fractional QHE, because of the 
microscopic law of corresponding states, which relates both effects to each other . It should 
be noted however, that there is a difference between the exponent K==0.43 derived by Wong et 
al.21 and the one K=0.21 derived by Wang et al.20. Both transitions are from the v=2 quantum 
Hall plateau to the insulator, but K=0.43 is comparable to the spin split exponent derived for 
the PP transitions, while K=0.21 is the exponent for the spin degenerate case. The authors do 
not give a clear explanation for the difference between the two exponents. 

In GaAs structures, delta doped with silicon, also an insulator to quantum Hall phase-
to-insulator transition was observed by Hughes et al. . These authors investigated the scaling 
behaviour of cxx and oxy as function of (B-BC)T"K. For oxy a critical exponent K=0.45 was 
found. The value for the exponent is again for a PI transition with v=2. For axx the same 
critical exponent was reported, however, because of the weak temperature dependence of axx 

at the transition, the scaling was not very good and therefore, the derived exponent is not very 
reliable. The v-2 plateau-to-insulator transition was also observed in a multiple 
GaAs/AlGaAs quantum well, with the doping in the well. A critical exponent K=0.3623 

resulted. 

Pan et al.24 measured the quantum Hall plateau to insulator transition in an InGaAs/InP 
heterostructure. These authors measured the first field induced transition for a PI transition 
with v=l. The sample showed metallic behaviour at B=0T in contrast to the samples in the 
former studies. The electron density amounted to 4T010 cm"2 and the mobility to 94000 
cm2/Vs at 4.2K. This low electron density results in a low critical magnetic field BC=2.6T. 
Scaling of the transition was only observed in a small temperature range between 300mK and 
730mK. The extracted value for the critical exponent is K=0.45±0.05. This value is consistent 
with the critical exponent for the PP transitions for the spin split case. The transition from the 
v=l plateau is a spin split transition in contrast with the spin degenerate v-2 transition. No 
mentioning in the article was made about the scaling of the PP transitions. Also the current 
scaling behaviour of this PI transition was investigated. The critical exponent derived from pxx 

versus |B-Bc|I"
b is b=0.23±0.05. In the quantum Hall regime a exponent equal to 0.21 was 

observed for current scaling9. 

Obviously, the experimental situation reported in literature regarding scaling 
behaviour of the PI transition is unclear. The experimental studies have led to different critical 
exponents. For the spin-degenerate v=2 PI transitions values of K=0.4 as well as K=0.2 were 
reported. The temperature range where scaling is observed is rather limited and certainly much 
smaller as in the case of the PP transitions. Another shortcoming of the before mentioned 
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studies is that no comparison of the PI and the PP transitions can be made for one and the 

same sample. 

Recently Shahar et al.25 claimed to have observed a new transport regime in the 

quantum Hall effect for the quantum Hall plateau to insulator transition. They proposed a 

phenomenological law pxx(v,T)=pxx*exp(-A(v)/Vo(T)), where A(v)=v-v*, v* is the critical 

filling factor and pxx*~e /h is the critical resistivity. This law was found to be valid over a 

wide temperature- and magnetic field range for several samples. Instead of the scaling result 

Vo<*T\ the parameter Vo was found to follow a linear temperature dependence Vo=otT+ß. 

Shahar et al. investigated GaAs/AlGaAs and InGaAs/InP heterostructures. 

For GaAs based structures genuine scaling was only observed at very low temperatures 

(T<200 mK) for the PP transitions. But for InGaAs heterojunctions there is an impressive 

conformation of scaling behaviour over a wide T-range (T<4.2 K). The claim of Shahar et 

al.25 contradicts the universality of the PP transitions and the PI transition. In the remainder of 

this chapter we will show that also the field induced metal-insulator transition as measured in 

an InGaAs/InP heterostructure shows proper scaling. 

5.5. Universality of a*KX and p*^ 

For the scaling behaviour in the quantum Hall regime not only predictions were made for the 

universality of the critical exponent, but also for the zero temperature peak value of the 

longitudinal conductivity oxx*. The prediction of an universal Gxx*  with a value e2/2h at the 

unstable fixed point in the flow diagram follows from dimensional grounds. The 'global phase 

diagram' proposed by Kivelson et al.19 predicted for transitions between quantum Hall 

plateaus, an universal critical point (axx*,Gxy*)=('/2,n+1/2)e /h, independent of the microscopic 

details of the model. Theoretically, the behaviour of pxy in the insulator phase is unclear. The 

'global phase diagram' predicts a finite Hall resistance in the insulating phase. Other theories, 

based on the 'semicircle' relationship26 between rjxx and axy, predict a quantised Hall 

resistance far into the insulating phase. This implies that the Hall resistance remains quantised 

through the PI transition and the material is then termed a quantised Hall insulator27. An 

important assumption in case of the 'semicircle law' is that the sample should be 

homogeneous and isotropic on a large length scale. In contrast, Entin-Wohlman et al. 

concluded that pxy diverges in the limit T—>0K, based on a model of local hopping in an 

external magnetic field. Pryadko et al. investigated the importance of electron interaction 

effects for the quantum Hall insulator. In the quantum coherent regime, where the dephasing 

length I is larger than the elastic scattering length £Q, it was found that pxy scales with the 

resistivity pxx. In the insulating phase both quantities diverge at T—>0K. In the Ohmic regime 

(£ <£Q) pxy remains quantised and independent of pxx. 
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In contrast with theoretical predictions, there is no convincing experimental evidence 

for an universal value of Gxx*. Wei et al.30 observed a temperature dependent maximum value 

of Gxx, which is at low temperature significantly smaller than e2/2h. This was observed in the 

same sample, as later used in the temperature scaling studies . 

Also in a high-mobility sample the value of GXX*  is not universal. Rokhinson et al. 

showed that the values of Gxx*  were equal for transitions in a wide range of integer filling 

factors 3<v<16. This is consistent with the prediction of scaling theories in the quantum Hall 

regime. But the measured value of oxx* was not equal to the expected value e /2h. In this 

study they used the Corbino geometry in order to avoid edge channels, which are present in 

Hall-bar geometry. In the Hall-bar geometry the resistance Rxx is not proportional to the local 

resistivity pxx, because of non-local transport32,33. This non-local transport is only observed in 

high-mobility samples and is of no importance in the InGaAs/InP samples measured by Wei et 

al. and the ones discussed further in this chapter. A way to prevent problems with non-local 

transport is a scheme described in Ref. 33 to separate bulk and edge contributions. The 

authors of Ref. 33 analysed the resistivity for the Nth edge state (pxx
N) that varied through the 

transition from 0 to °°. The corresponding conductivity o"xx
N=pxx

N/[(pXxN)2+(PxyN)2] has a 

maximum value of e2/2h if  pxy
N is set equal to h/e2. However, as pointed out by Komiyama et 

al.34, if  pxy
N is not assumed constant but is determined experimentally, it is found to increase 

from h/e2 to °° as pxx
N varies from 0 to •». The peak value of axx is then significantly smaller 

than e2/2h. 

Experimental evidence to support the universal value of axx*  is found in the activation 

plots by Clark et al.35, which have intercepts of Gxx at T=0K of e2/2h. It is argued by 

Coleridge36 that this indirect measurement can lead to apparently universal values, while at 

low temperature the direct measurement of Gxx*  give different values. 

The universality of GXX*  is also predicted for the field induced metal-insulator 

transition. In this respect the difference is that also pxx*  is universal. Shahar et al. 7 studied the 

PI transition in a wide variety of samples. The results suggest that the resistivity at the 

transition is universal and close to the quantum unit of resistance e2/h (±20%). They also 

observed the same value for pxx*  at the PI transition from the fractional plateau v=l/3. In a 

later publication they increased the amount of studied samples and came up with the same 

conclusion . The critical pxx*  is related to Gxx*  by a tensor relation, which gives a value of 

e2/2h for GXX*, if pxy is quantised through the metal-insulator transition. In a recent publication 

a claim is made for a quantised Hall insulator after compensating for contact misalignment39. 

But in this publication the critical pxx*  is 1.65h/e2, far from the universal value. 

So far there is no convincing experimental evidence for the universality of GXX*  and 

p*xx. Also the observation of a quantised Hall insulator is not convincing. Our measurements 

of the PI transition demonstrate that it is very difficult to prove experimentally this 

universality, due to inhomogeneities in the samples 
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5.6. Scaling of the quantum Hall plateau-to-insulator 
transition in InGaAs 

5.6.1. Probing the quantum Hall plateau-to-insulator transition 

One of the most important predictions of the renormalisation group theory is that the plateau-
to-insulator (PI) transition and the plateau-to-plateau (PP) transition show the same scaling 
behaviour . This means that the same exponent K should be observed as T approaches 
absolute zero and that the (electron-hole) symmetry in the Gxx, oxy conductance plane should 
be retained. The experiments on the PI transtion17'20'21,22'24 mentioned in section 5.4, did not 
make a comparison between the PP and PI transition as measured for the same sample. This 
was either not possible or just no appropriate data were reported in these references. 

In this section the results on magnetotransport measurements performed on an 
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Figure 5.4: Resistivity pxx and Hall resistance pxy (inset) versus magnetic field. Bc is the 

critical magnetic field defined in the text. The curves are labelled a,b, n and the 
corresponding temperatures are 0.13, 0.21, 0.26, 0.35, 0.47, 0.59, 0.83, 1.04, 1.4, 1.5, 1.9, 2.2, 
3.1 and4.2K. 



Scaling in the quantum Hall regime 83 

InGaAs/InP heterostructure are reported. The sample structure has already been discussed in 
section 1.3.2.1. Our main objective is to study the critical behaviour of the PI transition and to 
compare the results to the PP transition measured on the same sample. We benefit from the 
fact that our sample has been studied before (see Ref. 7). In this sample the critical exponent K 
for the PP transition was found to be 0.42 and 0.20 for spin polarised and spin degenerate 
Landau levels, respectively. The transport mobility of the sample is 0^=16000 cm /Vs at 
T=4.2K. The electron density is 2.2xl0n cm2, which means that the PI transition occurs at 
B=16T. 

The experiments were carried out in a Bitter magnet (B<20T) using a plastic dilution 
refrigerator (0.1-2K) and a bath cryostat (1.5-4.2K). The magnetotransport properties were 
measured with a standard ac-technique with a frequency of 6Hz and an excitation current of 
5nA. The main experimental results are presented in figure 5.4 where the resistivity pxx and 
Hall resistance pxy are plotted versus magnetic field. The pxx data are plotted versus the 
magnetic field B minus the critical magnetic field Bc, which has a characteristic value of 
BC=16T. This critical magnetic field separates the insulating phase above Bc and the quantum 
Hall phase at lower B. Below Bc pxx increases with increasing temperature, while above Bc the 
opposite behaviour of an insulator is observed. The critical field Bc is not a constant value, but 
has a weak temperature dependence. The critical field varies from 16.3T for the lowest 
temperature (130mK) up to 16.9T for the highest temperature (4.2K). This indicates a small 
increase in electron density of 3.5% at high B, by raising T from 0.13K to 4.2K. 

The pxy data are shown in the inset of figure 5.4. At low temperatures pxy is clearly not 
quantised through the PI transition. The Hall resistance at low temperatures diverges in a way 
comparable to the resistivity pxx. Theory predicts that pxy is finite19 or even quantised ' 
through the transition. The divergence of the Hall resistance implies that our sample is not a 
Hall insulator according to the definition of Kivelson et al.19. The divergence of the Hall 
resistance is not due to misalignment of the voltage contacts as was observed in Ref. 39. This 
point will be discussed in more detail at the end of section 5.6.4. 

5.6.2. Scaling of the conductivities 

The conductivity 0"xx and the Hall conductivity Gxy were calculated in the standard 

fashion using the measured pxx and pxy. The results for Gxx at different T are plotted in figure 

5.5. The maximum of the o~xx(B) curves, the critical conductivity a*xx, defines the critical field 

Bc. A weak temperature dependence of Bc is observed. Bc ranges from 16.3T at the lowest 

temperature up to 16.9T at the highest T. At the lowest temperature, 130mK, the lowest value 

of c*xx and Bc are found. 
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Figure 5.5: The conductivity axx versus magnetic field for the PI transition. The 

curves labelled a,b, ,i correspond to temperatures 0.13, 0.21, 0.25, 0.35, 0.47, 

0.59, 0.83, 1.4, 3.3 and 4.2K. The top of a„(B), the critical conductivity a*xx, 

defines the critical magnetic field Bc. 

In the T interval 3.3K-4.2K the temperature dependence of G*xx is mainly caused by the 
temperature dependence of the Fermi-Dirac distribution. This is illustrated by an increase of 
G*xx with decreasing T in this range. At lower T <7*xx decreases with decreasing T and the 
scaling regime is entered. The Fermi-Dirac distribution can then be considered as a step 
function. For this PI transition the scaling regime is reached at T-1.5K. For the PP transitions 
of this sample the scaling regime extends over a larger range (T<3K).7 

From the axx and axy data the critical exponent can be extracted in a similar fashion as 

was previously done from the pxx and pxy data for the PP transitions5. For 0xx we obtain the 

power law dependence of the halfwidth, AB~T\ with an exponent K=0.46±0.05. For the 

temperature dependence of the Hall conductivity (-^/„^ ^ T~K with K=0.43±0.05 is found. 

In figure 5.7 the width AB versus temperature is plotted for the PI as well as for the PP (2—>1) 

transition. The latter data were derived from the T dependence of the width of pxx and gave a 

critical exponent of K=0.42±0.05, equal to the one derived for the PP transition by Wei et al.5. 

The low temperature data for the field derivative of the Hall conductivity versus temperature 
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oxy (e'/h) 

Figure 5.6: axx versus rjXJ, of the PI transition at some selected temperatures. The 

dashed lines are at temperatures 4.2K, 3.3K and 2.2K (classical regime). In this 

classical regime o"*xx increases with decreasing temperature. In the scaling regime 

(T<1.5K) a*xx decreases with further lowering of the temperature. 

is also plotted in figure 5.7. The exponents K=0.46±0.05, 0.43±0.05 and 0.42±0.05 are all the 
same, within the experimental error, indicating that the PP and the PI transition are transitions 
with the same scaling behaviour. This is a most important result, which proves that the PP and 
the PI transitions are in the same universality class. 

We attribute the small differences in the derived exponents to uncertainties caused by 

mixing the pxx and pxy data in the computation of the conductivities30. pxx and pxy are 

measured at different parts of the sample. Especially fluctuations in the electron density may 

induce errors in calculating oxx and oxy. For the PI transition this seems not to be the case. The 

reason for this can be found in the oxx-Gxy diagram, which is plotted for different temperatures 

in figure 5.6. The symmetry about the line axy=V2 is striking and reflects the high quality of the 

experimental data. The same symmetry was observed and discussed in the original work on 

the PP transitions30. The possibility to determine the critical exponents from the conductivities 

is due to the symmetry in the flow diagram. The symmetry in the Gxx, axy diagram is a direct 

consequence of the following relations: 
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t: 
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Figure 5.7: Left axis: width of the axx peak, 1/AB, versus temperature for the PI transition (o) 

with a slope K=0.46 and for the PP 2->l transition (o) with K=0.42. Right axis: (do\y/dB)min 

versus temperature for the PP 2-> 1 transition (•) with K=0.43. 

oxt(Av) = ox t ( -Av) ;o (AV) = 1 - ö (-Av). (5.8) 

Here Av = 1/B-1/BC. We have explicitly verified the validity of equation 5.8. This result is 
important since it fundamentally reflects the electron-hole symmetry in the problem. Our data 
do not follow the statement of 'duality'19,40 which says that pxx(Av)=l/pxx(-Av) and pxy 

remains quantised through the PI transition. Instead we observe that the critical conductivity 
c*xx develops a maximum around 1.5K. This is related with the divergence of the Hall 
resistance for the PI transition. But also for the PP transition a similar temperature dependence 
of rj* xx was observed5. The critical conductivity has clearly not the 'universal' value of e2/2h 
as predicted by Kivelson et al.19. 

5.6.3. A different approach to the PI transition 

It is interesting to note that the critical behaviour can be obtained from the resistivity alone as 
well, i.e. without involving the calculation of the conductivities. This can be demonstrated by 
plotting the resistivity on a log scale as function of the difference Av. Such a procedure was 
recently followed by Shahar et al.25 for the PI transition measured on different GaAs and 
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InGaAs samples. In figure 5.8 we show pxx versus Av plotted in this way for our InGaAs/InP 

sample. The resistivity is described by the following equation: 

Pxx(.v,T)=pxxex 
•Av^l 

v0(T)) 
(5.9) 

The slope (Vo) of the straight lines around zero can be accurately determined at each 

temperature. In figure 5.9 l/vo is plotted versus temperature on a log-log scale. The data nicely 

follow a power law behaviour l/Vo~TK with K'=0.55±0.05. This value differs from the 

expected value K=0.42 by more than the experimental error. The data can not be described 

with a linear law Vo=ocT+ß as proposed by Shahar et al.25. This linear dependence on 

temperature does not describe the asymptotics of the quantum phase transition at zero Kelvin. 

Instead it is semiclassical in nature and typically observed at finite temperature for samples 

with predominantly slowly varying potential fluctuations . It is connected with the classical 

-0.005 0.000 0.005 

1/B-1/BC(1/T) 

0.010 

Figure 5.8: p„ data on a logarithmic scale versus inverse magnetic field. The labels 

and temperatures are the same as in figure 5.4. 
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regime, where the temperature dependence of the Fermi-Dirac distribution governs the 
physics. Below 1.5K, the PI transition in our sample does certainly not take place in this 
classical regime, as shown in figure 5.6. The linear temperature law is observed in samples, 
which will reach the scaling regime at very low temperatures and thus a regime which is 
experimentally very difficult to access. 

The 2—>1 PP transition can be transformed into a 1—>0 PI transition in order to show 

that the value K'=0.55 is not a specific property of the PI transition. The following 

transformation steps are performed: pxx,pxy ,,(Gxy-e /h) P xx.P : 
33 , 

This 

scheme was also used in Ref. 41 and is closely akin to that used by McEuen et al. to separate 
different edge-state contributions to the resistivity. The conductivity of the N=o4- Landau level 
only, responsible for the 2—>1 PP transition, is obtained by subtracting the contribution of the 
lowest full Landau level. This procedure is valid under the assumption that the only 
contribution of the lowest Landau level to the Hall conductivity is e2/h. In figure 5.10 this 
procedure is shown for two different temperatures. A remarkable resemblance between the 
measured PI transition and the transformed 2—>1 transition is observed. It is especially 
noteworthy that p'xy diverges in a similar way as pxy at the PI transition. The pxx data after 
transformation are described by the exponential expression (equation 5.9) leading to a value of 
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Figure 5.10: pxx and pxy vs. B for the 2-M transition at T=130mK and 1.04K.This 

2-M transition is transformed into the l->0 transition, which is labelled with p'xx 

and p'xy. There is a clear resemblance between this transformed PI transition and the 

directly measured PI transition plotted in figure 5.4. 

K'=0.5 1+0.05. Transformations like this generally lead to less quality data. Nevertheless the 
results in figure 5.9 indicate that different exponents can be extracted from the same 
experimental data. 

5.6.4. Origin of the different exponents 

In this section we address the origin of the difference in exponents derived for the InGaAs/InP 
sample. From the width of the conductivity and the first derivative of the Hall conductivity 
K=0.44 was derived. From the temperature dependence of the slope v0 a critical exponent 
K=0.55 was found. In this section we will show that inhomogeneity effects are responsible for 
the difference. 

The transport data of the PI transition can be accurately described by equation 5.9, 

where p* denotes the critical resistance. It can be written as p*=a*xx/((o~*xx) +Vi) where o*xx 

is the critical conductivity, as defined in figure 5.4. Both quantities are weakly dependent on 
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Figure 5.11 l/v0 versus temperature for the PI transition (full squares, K'=0.55). Upper 

inset: (7^ + j versus temperature. The slope of the straight line equals 0.15. Lower inset: 

(daxy/dB)min versus temperature, the slope of the straight line equals 0.43. 

temperature and this temperature dependence is not simply irrelevant as thought previously. 
Irrelevant in this respect means, no influence on the scaling properties of the transition. The 
temperature dependence of a*xx turned out to be marginal and it accounts for the difference in 
the observed exponents. 

Following equation 5.8 pxx(Av) can be related to pxx(-Av), such that the ratio can be 

written as pxx(Av)/pxx(-Av)=exp(-2TKAv). As a good check upon the validity of this result the 

exponential on the right hand side is fitted to the experimental data inserted in the left hand 

side. The same numerical value K'=0.55 was obtained indicating once more that equation 5.8 

represents the fundamental symmetry of the problem. From the ratio pxx(Av)/pxx(-Av) the 

following renormalisation group equation for small 6=Gxy-'/2 can be obtained: 
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- -K0 ; K = K . (5.10) 
d\nT dlnT 

Equation 5.10 shows how a relatively weak temperature dependence in GXX*  can lead to 

different exponents extracted from different quantities. In figure 5.11 1/vo versus temperature 

is replotted on a log-log scale. The solid line gives K'=0.55. In the upper inset the low 

temperature data for \n((Gxx*)
2+V4) versus In T are shown and a slope of 0.1510.03 is 

obtained. According to equation 5.11 a value of K of 0.40 results, which should be compared 

to the value K=0.43 derived from the low temperature dependence of (daxy/dB)min. (see lower 

inset figure 5.11) 

One can conclude from the marginal dependence of GXX*  on temperature that the 

electron gas has not yet fully developed criticality. This would mean that a much lower 

temperature is necessary before the critical fixed point is truly reached. However it is 

important to stress that the small changes in GXX*  observed at low temperatures are most likely 

the result of macroscopic inhomogeneities in the sample. One way of showing this is by 

writing equation 5.9 as 

&v-Sve(T) 

Pxx=e v°m (5.11) 

The shift in the critical filling fraction (Svc) and the critical resistivity(p*) are related through 

p*(T)=exp(Svc/Vo). This shift is next to be compared to the difference (Svc) as it is obtained 

from the definitions Gxy='/2 and daxx/dB=0. These two definitions give a small difference in 

critical magnetic fields which can be transformed into values for 6vc. In figure 5.12 5BC/BC 

(equal to vc/5vc) with varying T for both cases are plotted. Both effects are comparable. 

Notice that the uncertainty 5vc/vc in the definition of vc clearly shows the effect of 

macroscopic inhomogeneities (in electron density) which causes vc to be slightly different in 

the different regions of the sample where pxx and pxy are being probed. The inset of figure 5.7 

therefore indicates that the weak or marginal temperature dependence of GXX*  is, in fact, an 

inhomogeneity effect. This lack of universality in oxx* also shows up in the different data sets 

taken at different experimental runs. After heating up the system to room temperature and 

then cooling down again one usually finds that Bc has-shifted along with a shift in GXX*. The 

shift in Bc indicates a change in electron density, whereas the shift in oxx* indicates a change 

in inhomogeneity profile of the density. 

The effect of the temperature dependence in GXX*  is strongly related with the Hall 
resistance. As shown in the inset of figure 5.4 the Hall resistance diverges at low 
temperatures. Hilke et al.39 showed for p-SiGe samples that the Hall resistance remains 
quantised far into the insulating phase. However, the as-measured experimental data show a 
not quantised Hall resistance, which is claimed to be due to misalignment of the Hall contacts. 
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Figure 5.12: 5BC/BC versus T. The squares are the data derived from 

p*, Eqs. 5.9 and 5.11, the circles are the data obtained from the 

different definitions of Bc (see text). 

By reversing the magnetic field and averaging out the resistance contribution a quantised Hall 
plateau was recovered at low temperatures. We do not think misalignment of contacts can 
cause the observed diverging Hall resistance for the PI transition in the InGaAs/InP 
heterostructure. The effect of misalignment can be described by p'xy=pxy+c*pxx, where the 
parameter c gives the coupling of the resistivity into the Hall resistance. In our case this would 
mean that the parameter c is strongly field and temperature dependent and at low temperatures 
almost one. The divergence of pxy is already present when pxx is still below h/e . 

This misalignment can not be reconciled with the symmetric flow diagram shown in 
figure 5.6. From the flow diagram we conclude that the divergence is a sample property, 
important for the PI transition. Also for the transformed 2—>1 transition the qualitative same 
behaviour for pxy is observed as for the 1—>0 transition as shown in figure 5.8. Misalignment 
can not play a role for the 2—>1 transition because pxx is sufficiently small for this transition. 
The diverging pxy is due to different critical fields Bc, related to inhomogeneities in the 
sample. The inhomogeneities, although small in our sample but always present, make it 
impossible to observe a quantised Hall insulator. Most theories26,27 that predict the quantised 
Hall insulator make the assumption of a homogenous sample, which is not valid for real 
samples. 

The marginal temperature dependence in cxx* is common to both the PP and PI 
transition in our sample. This was previously also observed in Ref. 5. The universality of aM* 
for both transitions is difficult to prove convincingly by experiment, due to inhomogeneities 
present in the samples. It is important to note that equation 5.10, upon modification, is 
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applicable to the PP transitions as well. For example, for the 2—>1 transition equation 5.11 is 

modified according to K1 -K = — . By inserting the Gxx*  data we find in this case 
d\nT 

K'-K<0.01 which is well within the experimental error. The constant 9/4 instead of 1/4 in the 

equation results in different values K'-K between the 1—»0 transition and the 2—»1 transition. 

The value of o2xy at the transition defines this constant. The 2—>1 PP transition occurs at 

Gxy=3/2, while the PI transition occurs at 0"xy=l/2. This result explains why a single exponent 

K=K'=0.42±0.04 was previously extracted for the 2—»1 transition as well as from the higher 

Landau levels over a wide range in temperature. 

5.7. Crossover from classical to quantum transport 

The temperature dependence of the integer quantum Hall transition can be interpreted by 
identifying two regimes, the classical and quantum transport regime. In the classical regime 
the temperature dependence of the transitions are characterised by the linear temperature 
dependence reported by Shahar et al.25. The quantum transport regime is described 
consistently with the scaling theory. In this section the crossover between the two regimes is 
investigated. The different crossover temperatures in different samples are discussed. The 
nature of the potential fluctuations plays an important role in this discussion. 

The PI transition and the transformed 2^1 transition in the InGaAs/InP sample, 
discussed in section 5.6, show a clear power law temperature dependence and not the linear 
temperature dependence reported by Shahar et al25. Two types of samples, InGaAs/InP and 
GaAs/AlGaAs, were investigated by Shahar et al25 and no scaling was observed in the 
measured temperature range. The low electron density (BC~2.6T) in the InGaAs/InP 
heterostructure measured by these authors is responsible for the different results compared to 
ours obtained on the InGaAs/InP heterostructure (BC~16T). The long-ranged potential 
scattering mechanism is responsible for the absence of scaling in the GaAs/AlGaAs 
heterostructures. 

However, short-ranged potential scattering alone is not a sufficient condition for 
genuine scaling over a wide temperature range. For an InGaAs/AlGaAs heterostructure we 
measured the 2—>l PP transition in the range T=70mK-2.4K. For this sample the electron 
density is 2.7x10" cm"2 and the transport mobility, u.t, is 34000 cm2/Vs. The PP transition was 
transformed to a PI transition in a similar way as described above. In figure 5.13 the slope Vo, 
of the log(pxx) versus Av curves, is shown versus T on a linear-linear scale and on a log-log 
scale. For T>0.4K the results can be described by a linear temperature dependence of v0. At 
low temperature (T<0.4K) a clear deviation from this linear dependence is found. The log-log 
plot shows that below 400mK the temperature dependence is given by a power law. The 
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Figure 5.13: The slope v0(T) determined from a plot of pxx as function 

of Av for an InGaAs/AlGaAs sample on a linear-linear scale (a) and on a 

log-log scale (b). 

parameters a and ß describing the linear law v0=aT+ß are 0.033K"1 and 0.096, respectively, 
while the ratio ß/a=2.9K. The ratio ß/cc defines a temperature that was reported to be 
characteristic of the material system. Values for ß/a reported in Ref. 25 are 0.5K and 50-
lOOmK for InGaAs/InP and GaAs/AlGaAs heterostructures, respectively. The critical 
exponent derived from a power law fit amounts to K=0.46 for T<400mK. This critical 
exponent is equal to the value obtained for our InGaAs/InP sample. The relevant parameters 
of the samples discussed in this section are listed in Table I. 

The nature of the potential fluctuations is the same for the investigated InGaAs/InP and 
InGaAs/AlGaAs heterostructures. The ratio of the transport mobility and the quantum 
mobility uVM-q gives an indication for the range of the potential fluctuations42'43. The quantum 
mobility depends on the quantum lifetime xq that characterises the Landau level width. The 
quantum lifetime is defined as the mean time between two successive scattering events and 
every scattering event is equally important. The transport mobility is determined by the 
momentum transfer in the direction of the electric field and therefore depends on the 
scattering angle. This transport mobility contains a small contribution of small angle 
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scattering, as these scattering events have a very l imited effect on the electron drift velocity. 

The ratio \ij\i.q depends on the momentum weighing ( l -cos8) due to the angle dependence of 

the transport mobil i ty. The ratio is ~1 if the dominant scattering process is short ranged. This 

should be the case for alloy scattering, which is a short-ranged potential scattering process. If 

long-ranged potential scattering processes l ike ionised impuri ty scattering are important the 

ratio is much higher42, typically between 20 and a few hundred. 

For our InGaAs/ InP heterostructure the ratio (J.tr/u.q equals 2.7, whi le for the 

InGaAs/A lGaAs heterostructure p.t r/ii q=3.4. This indicates that the range of the potential 

f luctuations is almost the same. The sample used by Wei et al . for the first scaling 

exper iments had a ratio \x.J\xq~l. This sample shows scaling with the highest characteristic 

temperature Tsc. Recently, scaling experiments were performed on a p-SiGe sample with 

|!tr/(V=l 44- This sample shows possibly an onset of scaling at 150mK. Therefore only the 

assumption of a short-ranged potential is not sufficient to explain the appearance of scaling in 

an experimental ly accessible temperature range. It is not the width of the Landau level, which 

is important, but the bandwidth of the extended states in the Landau level. 

The Landau level width V can be related to the quantum mobi l i ty in the Born 

approximat ion for 5-scatterers: 

r  = 
he \2B 

(5.12) 

Material 

m2/Vs 

^ q 

m2/Vs 

iVHq T25% 

K 
TCTXX 

K 

a 

K-1 

ß ß/a 
K 

InGaAs/ InPa 1.6 0.6 2.7 1.5 1.5 

InGaAs/A lGaAsa 3.4 1.0 3.4 0.4 # 0.033 0.096 2.9 

p-SiGeb 1.3 1.5 0.9 0.065 # 0.08 

InGaAs/ InPc 3.6 0.5 7.3 4.2 4.2 

GaAs/A lGaAsd 1.8 0.24 0.014 0.06 

InGaAs/ InPd 3.0 0.088 0.054 0.60 
a: this work 

b: Ref. 44 

c: Ref. 5 

d: Ref. 25 

#: no maximum in rj*„ observable 

Table I: The transport mobility u„ the quantum mobility \xq, the ratio |J.t/uq, the 

temperature where -25% of the Landau level states are extended (see text), the 

temperature where 0XX has a maximum, the parameters in the linear law 

v0(T)=aT+ß and the ratio ß/a, for different materials. 
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The width at half maximum of the conductivity peak, W0, gives an indication for the width of 
the extended states energy band in the Landau level. The width of the extended states energy 
band (W0) can now be compared with the Landau level width (T). In the InGaAs/InP 
heterostructure r/W0~4 at T=1.5K, which implies that 25% of all states is extended at this 
temperature. The scaling regime starts at T-1.5K, as concluded from figure 5.6. The 
identification of the maximum value of a*xx as the starting point of scaling was noted in the 
first results published on localisation and scaling30. For the InGaAs/AlGaAs sample this 25% 
is reached at T=400mK, which relates nicely to the temperature where the power law 
temperature dependence of v0 starts (see figure 5.13). For this InGaAs/AlGaAs sample no 
maximum value of G*xx can be identified, because G*xx is constant below 800mK. For the p-
SiGe sample in Ref. 44 only at T=65mK this value of 25% is reached. For these 
measurements o*xx increases up to the lowest temperatures (T=65mK). 

At these low temperatures the width of the Fermi function (-8f/3E) is about 10% of the 
width of band of extended states. The important condition is not the width of the Landau level 
but the width of the extended states, which should be narrow enough around the Landau band 
centre to obtain scaling. For the samples discussed this seems to be around 25% of the Landau 
level width. Of course the extended states bandwidth should be large compared to the width of 
the Fermi function (around 10% in the investigated samples). 

The samples mentioned in the above paragraph could be compared because in all these 
samples short-ranged potential scattering is important. However, if long-ranged potential 
fluctuations become important an effective bandwidth is introduced, where also the inelastic 
scattering time plays a role . Inelastic scattering processes, like electron-electron interactions, 
affect in the long-ranged potential case the extended states energy width W0. In principle one 
can assume an effective bandwidth Weff, where the inelastic scattering time xin is 
included :Wlff =W0 +r~'. Due to the broadening of the bandwidth lower temperatures are 
needed to observe scaling. 

5.8. Conclusions 

In summary we can say that the PP and PI transitions show the same scaling behaviour, with 
the same critical exponent. This is in complete agreement with the predictions of the 
renormalisation theory6. We have shown that the critical conductance Gxx*  as well as the 
exponent of the PI transition are weakly affected by the (weak) macroscopic inhomogeneities 
in the sample. Our data retain fundamental aspects such as the electron-hole symmetry in the 
Gxx-Gxy diagram. It is important that this symmetry is not confused with the statement of 
duality19, which is in fact not verified by our experiments. 
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The difference in exponents determined with the two different analyses can be 

explained by the temperature dependence in the critical conductivity GXX*. By combining the 

results for the PP and PI transitions we conclude that K=0.42 stands for the universal critical 

exponent of the quantum phase transition. The numerical value K'=0.55 on the other hand is 

the result of macroscopic inhomogeneities. Following equation 5.10 it represents an effective 

exponent. 
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