Quantum Algorithms and Quantum Entanglement
Terhal, B.M.

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
Contents

1 Quantum Information and Computation .. 1
 1.1 The Emergence of a New Field ... 1
 1.2 Applications of Quantum Tools ... 2
 1.2.1 Quantum Key Distribution .. 2
 1.2.2 Classical Communication over Quantum Channels 4
 1.2.3 Quantum Communication and Teleportation 6
 1.3 Decoherence and Physical Implementations 8

2 Quantum Algorithms .. 13
 2.1 Introduction .. 13
 2.1.1 The Factoring Algorithm .. 13
 2.2 Generalized Quantum Searching and Counting 15
 2.2.1 An Application: Mean Estimation ... 17
 2.3 Single Query Information Retrieval ... 19
 2.3.1 Coin Weighing ... 21
 2.4 Limits to Quantum Computation ... 22

3 Simulating Quantum Operations with Mixed Environments 25
 3.1 Introduction .. 25
 3.2 Quantum Operations and Measurements .. 26
 3.3 Generalized Depolarizing Channels ... 30
 3.3.1 Two-Pauli Channel .. 31
 3.3.2 Qutrit Solution ... 33
 3.4 Discussion .. 33
 3.A Proof of Coincidence of Volumes .. 34

4 On the Problem of Equilibration and the Computation of Correlation Func­
tions on a Quantum Computer ... 37
 4.1 The Limits of Classical Computation ... 37
 4.2 Equilibration ... 42
4.2.1 Introduction .. 42
4.2.2 The Algorithm .. 43
4.2.3 Some Useful Properties of TCP Maps 47
4.2.4 Perturbation Theory .. 51
4.2.5 Calculation of Expressions 54
4.2.6 The Inverse Quantum Zeno Effect 59
4.2.7 Specifications of the Numerical Simulation 60
4.2.8 Numerical Results for Equilibration 65

4.3 Equilibration II .. 68

4.4 (Time-dependent) Observables 72

4.5 Conclusion .. 73

4.A Gibbs State is the Equilibrium State 74
4.B Implementing a Local Hamiltonian Evolution 75
4.C Eigenvalue Estimation .. 76
4.D Norms .. 77
4.E Preparation of the Bath .. 78

5 Product Bases, Local Distinguishability and Bound Entanglement 81
 5.1 Introduction .. 81
 5.2 Quantum Entanglement .. 81
 5.2.1 Quantification of Entanglement 83
 5.2.2 Distillation of Quantum Entanglement 84
 5.2.3 Positive Linear Maps .. 86
 5.3 Bell Inequalities and the Separability Criterion 87
 5.4 Product Bases, Local Distinguishability and Bound Entanglement ... 93
 5.4.1 Nonlocality without Entanglement 93
 5.4.2 Unextendible Product Bases 94
 5.4.3 Bound Entanglement .. 96
 5.4.4 Global versus Local Rank 103
 5.4.5 Local Distinguishability and Uncompletable Product Bases ... 104
 5.4.6 Local Extensions and Deficits of Product States 110
 5.4.7 Rank and the Optimal Decomposition of a Density Matrix ... 111
 5.4.8 Restrictions .. 112
 5.4.9 Transfer of Indistinguishable Product States 115
 5.4.10 The Use of Separable Superoperators 116
 5.5 A Family of Indecomposable Positive Linear Maps 118
 5.5.1 Introduction .. 118
1.1 The Emergence of a New Field

The central issue in the emerging field of quantum computation and quantum information theory is the separation of quantum effects from the domain of computation and information processing. Interest in the field has primarily been created by the idea that at the present rate of advancement of our technology, quantum and related technologies will reach their limits around the year 2010. Any information technology that allows the manipulation of quantum bits is expected to outperform classical computers. The field of quantum computation is gaining increasing interest, but the experimental realization of a quantum computer is still some time away. Research is being carried out on a variety of technologies, both practical and theoretical, to make the transition toward a quantum computer. In this field, experimental results are important but theoretical innovations are even more critical. A special technique in quantum computation is the use of quantum information for the manipulation of quantum states, which is the subject of this book. It is important to consider the relationship between these two approaches, for they are complementary.

For example, if a quantum computer is made up of a large number of qubits, it can easily perform operations that are intractable for classical computers, such as factoring large numbers. This is because a quantum computer can manipulate all possible states of a system simultaneously, a phenomenon known as superposition. The field of quantum computation is rapidly expanding, and there is much interest in building a quantum computer. The challenge is to find a way to build a quantum computer that can perform operations on quantum states efficiently, and this is known as the problem of quantum error correction.

In this book, we will discuss the fundamentals of quantum computation, including the basic operations and algorithms that are used to manipulate quantum states. We will also explore the current state of the art in building a quantum computer and discuss the challenges that must be overcome to make this technology a reality.
CONTENTS

4.1.3 Some Useful Properties of TCP Maps
4.2.4 Perturbation Theory
4.2.5 Calculation of Expressions
4.2.6 The Inverse Quantum Zeno Effect
4.2.7 Specifications of the Numerical Simulation
4.2.8 Numerical Results for Equilibration

4.3 Collaboration II
4.4 (Time-dependent) Observables
4.5 Conclusion

4.4.2 Collisions of Quantum States
4.4.3 Implementing a Local Hamiltonian Evolution
4.4.4 Experimental Extensions
4.4.5 Notes

5.1 Preparation of the Basis
5.2 Product Basis, Local Distinguishability and Bound Entanglement

5.2.1 Introduction
5.2.2 Quantum Operations
5.2.3 Schmidt Triangles of Quantum Channels
5.2.4 Positive Local Maps

5.6 A Family of Interconvertible Positive-Unitary Maps