Stress and memory in health and disease

Impact on Alzheimer’s disease and memory mechanisms

Lesuis, S.L.

Publication date
2019

Document Version
Other version

License
Other

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
Positive and negative early life experiences differentially modulate long term survival and amyloid protein levels.
English summary

Exposure to stressful experiences, either early or later in life, can have a strong impact on learning and memory in adult and ageing individuals. Early life experiences in particular have been implicated in determining the vulnerability and resilience for cognitive decline, for instance when the brain is already vulnerable, such as seen in Alzheimer’s disease (AD). The first aim of this thesis was to study the effects of experiences early in life (albeit positive or negative) on aging- or AD-related cognitive decline, and to better understand the underlying mechanisms. I particularly focused on the role of the hypothalamus-pituitary-adrenal (HPA)-axis, and on the expression and functionality of glutamate receptors in this process. The second aim of this thesis was to investigate why stressful memories are retained so well. Recent studies suggest that only a subset of neurons is required for any memory trace (‘engram cells’). Using novel genetic and molecular approaches, these engram cells were visualised, characterised and manipulated, to unveil effects of glucocorticoids on memory formation.

In Chapter 1, I reviewed the effects of early life experiences on later behaviour and functional plasticity of the brain. I discussed the evidence that early life experiences long-lastingly alter HPA axis (re-)activity, thereby shaping behaviour and brain function during adult life and aging. Finally, I reviewed data supporting the hypothesis that early life experiences, either positive or negative, can alter the vulnerability to develop AD, and I investigated elements of that hypothesis in chapters 2, 3, 4, 5 and 6.

In Chapter 2, I showed that manipulating the amount of maternal care that pups receive can have profound effects on the lifespan and pathological markers in mice with transgenic overexpression of APP and tau (biAT mice), the main neuropathological features of AD. Increased levels of maternal care (“early handling”) was induced by separating the dam and her pups for fifteen minutes per day during the first week after birth (postnatal day 2-9). Upon reuniting the dam and her pups, the dam intensifies licking and grooming behaviour towards the pups, which results in an ‘enriched environment’ for the pups. Remarkably, early handling resulted in a longer lifespan and lower β-amyloid (Aβ) levels later in life. On the other hand, reduced levels of maternal care (“early life stress”), induced by placing the litter under impoverished housing conditions, shortened the lifespan and increased Aβ levels later in life (i.e., all at an early stage of the disease).

Using a different genetic mouse model for amyloid-β-associated neuropathology (APPswe/PS1dE9 mice), I validated in Chapter 3 in more detail
the early handling mouse model that resulted in enhanced levels of maternal care. Early handling reduced hippocampal plaque pathology, while plaque load in the amygdala remained unaffected. Importantly, when adult APPswe/PS1dE9 mice were tested in spatial, hippocampus-dependent cognitive tasks, early handling prevented the APPswe/PS1dE9-induced cognitive impairments. This was not the case in amygdala-dependent memory tests.

In Chapter 4, I investigated the role of the HPA axis in the effects of early life adversity on AD-related changes. Early life stress increased Aβ neuropathology from adult age (6 months) onwards, ultimately resulting in cognitive impairments at older age (12 months), in particular in the domain of cognitive flexibility. HPA-axis responsiveness was increased in these mice, which negatively correlated with cognitive performance. Interestingly, a brief, 3-day treatment with mifepristone (which targets glucocorticoid receptors), at an age at which cognitive impairments were already present, was found to reverse the early life stress-induced impairments in cognitive flexibility and Aβ neuropathology. This highlights the important role of glucocorticoid hormones in the development of AD neuropathology and symptomatology.

While declarative memory is often impaired in AD, emotionality is frequently enhanced in AD patients. In Chapter 5, I report that APPswe/PS1dE9 mice exposed to early life stress show an enhanced responsiveness to fearful cues, but also to non-fearful cues. I next investigated whether this was associated with alterations in hippocampal synaptic plasticity, i.e. the cellular substrate of learning and memory, in one year old mice. I found that APPswe/PS1dE9 mice exposed to early life stress also showed an atypical, enhanced form of synaptic plasticity, that coincided with a reduced sensitivity to a GluN2B receptor antagonist. These findings may point to a central role for the NMDA receptor in mediating effects of early life stress on adult plasticity.

To further explore the underlying mechanisms of altered synaptic plasticity and cognitive deficits, in Chapter 6, I treated APPswe/PS1dE9 mice with the glutamate modulator riluzole throughout their life. While riluzole prevented the impairments in synaptic plasticity from an early age onwards, it even improved cognitive performance in older APPswe/PS1dE9 mice that were exposed to early life stress. The effects of early life stress, aging and AD, and the rescue by riluzole, were accompanied by changes in the expression of the excitatory amino acid transporter 2, which is important for the synaptic reuptake of glutamate. These findings point towards an important role for glutamatergic signalling in early life stress-induced cognitive impairments in AD.
In order to better understand how early life stress determines learning and memory processes in aging and AD, I addressed in Chapter 7 how early life stress affects short-term and long-term synaptic plasticity in wild type mice. I found that early life stress impaired both these forms of synaptic plasticity. In addition, early life stress reduced the expression of the NMDA receptor subunit 2B in the hippocampus. Blocking the NMDA receptor subunit 2B had no effect on either memory performance, or on synaptic plasticity in mice exposed to early life stress, while this subunit was critically important for these processes in control mice, suggesting that the effects of early life stress may be mediated, in part, by the NMDA receptor subunit 2B.

In the final part of this thesis, I investigated how acute exposure to stress hormones affects learning and memory. In Chapter 8, I showed that the administration of corticosterone immediately after auditory fear conditioning enhanced memory consolidation. Using different auditory fear conditioning paradigms, application of corticosterone was found to have opposite effects on conditioned fear memories in male and female mice. Whereas corticosterone increased memory in male mice, the hormone reduced conditioned fear memory in female mice. Interestingly, corticosterone increased extinction learning in both male and female mice. Together, this indicates that fear memory retention is differently affected by corticosterone in male and female mice.

These findings are expanded on in Chapter 9 where I investigated the effects of a brief corticosterone treatment on memory memory specificity in male mice. Corticosterone decreases the accuracy of the memory of the event, since these mice displayed generalised fear when they were placed in a safe environment. Using transgenic reporter mice that allow the investigation of cells expressing the immediate-early-gene Arc, it was possible to molecularly and electrophysiologically characterise subpopulations of neurons in the hippocampal dentate gyrus in relation to a memory trace. Corticosterone administration to trained animals increased the number of Arc-positive neurons in the dentate gyrus, and these cells are also activated following the retrieval of the memory. Arc-positive neurons are more active than Arc-negative neurons, yet corticosterone specifically changes the activity in Arc-negative neurons. When we subsequently inhibited these dentate neurons specifically using DREADD technology, this prevented the generalisation of fear induced by corticosterone, while memory for the tone was left unaffected. This illustrates that the training-induced recruitment of a subset of dentate gyrus neurons underlies the generalisation of fear by corticosterone.
In Chapter 10, I summarise the main outcomes of this thesis, and discussed them in a broader perspective. First, I discussed how early life experiences can program brain (or neuronal) structure and function in a lasting manner, and how this may impact cognition and neuropathology in an AD background. I speculate that besides a direct modulation of AD neuropathology by the HPA axis, early life experiences may also shape the brain or cognitive 'reserve' early on, thereby rendering some individuals more resilient or vulnerable to AD-associated impairments than others. Secondly, I discussed how glucocorticoid hormones influence memory strength and memory specificity, and in particular address the role of memory engram cells. Finally, I formulated some remaining outstanding questions that may help move the field of (early life) stress and memory formation ahead.
Positive and negative early life experiences differentially modulate long term survival and amyloid protein levels
Nederlandse samenvatting

Blootstelling aan stress kan een sterke invloed hebben op leer- en geheugenprocessen. Dit is reeds bekend in volwassen en oudere individuen, maar met name stressvolle gebeurtenissen in het vroege leven blijken ook een belangrijke rol te spelen bij (het versnellen van) cognitieve achteruitgang. Dit is met name relevant als het brein al extra kwetsbaar is, zoals het geval is bij de ziekte van Alzheimer.

Het eerste doel van dit proefschrift was om te bestuderen hoe vroege levenservaringen (positief dan wel negatief) veroudering en Alzheimer-gerelateerde veranderingen beïnvloeden, wat ik in hoofdstuk 2, 3 en 4 in muismodellen voor deze ziekte onderzoek.

Een tweede doel was om een beter beeld te krijgen van de onderliggende mechanismen die ten grondslag liggen aan de effecten van stress tijdens het vroege leven op zowel de latere cognitie, veroudering als de ziekte van Alzheimer.

Ten derde bestudeer ik hoe acute blootstelling aan stress hormonen de vorming van geheugen direct kunnen beïnvloeden, en welke mechanismen daaraan ten grondslag kunnen liggen.

In Hoofdstuk 1 geef ik een overzicht van de effecten van vroege levenservaringen op later gedrag en plasticiteit in het brein. Ik bediscussieer de evidentie in de literatuur dat vroege levenservaringen de activiteit van de stress- of HPA as permanent kunnen veranderen, en blijvende gevolgen kan hebben voor gedrag en hersenfunctie tijdens het volwassen leven en bij veroudering. Ten slotte geef ik een overzicht van de data die de hypothese ondersteunt dat vroege levenservaringen (positief dan wel negatief) de kwetsbaarheid voor de ziekte van Alzheimer kan beïnvloeden, waarvan ik bepaalde factoren verder onderzoek in de hoofdstukken 2, 3, 4, 5 en 6.

In Hoofdstuk 2 laat ik zien dat de hoeveelheid zorg die een moedermuis aan haar pups besteed, hun latere leven kan beïnvloeden. Door die zorg bijvoorbeeld te veranderen, bleken er sterke gevolgen zijn voor de levensverwachting en pathologische veranderingen in de hersenen van zgn. transgene ‘Alzheimer muizen’ met een overproductie van amyloid-β (Aβ) en tau (biAT muizen), de belangrijkste neuropathologische kenmerken van de ziekte van Alzheimer, in hun hersenen. Verbeterde moederzorg (“early handling”) ontstaat als de moeder en haar pups tijdens de eerste week na de geboorte (postnatale dag 2-9) dagelijks voor 15 minuten van elkaar worden gescheiden. Bij de hereniging
van de moeder en haar pups, laat de moeder dan veel intensievere zorg zien, wat ertoe leidt dat de pups verder in een “verrijkte omgeving” opgroeien. Opmerkelijk genoeg resulteerde deze vroege verrijking er ook toe dat de pups langer bleven leven en minder β in hun brein hadden. Daarnaast heb ik ook verminderde moederzorg geïnduceerd (“vroege levensstress”) door de moeder en haar pups te huisvesten onder verarmde omstandigheden met een klein nest en geen zaagsel in de kooi bv, wat ertoe leidde dat deze muizen een lagere levensverwachting en meer β in het brein hadden.

Door gebruik te maken van een ander klassiek Alzheimer muismodel, de APPswe/PS1dE9 muis die β-pathologie in het brein ontwikkelt, heb ik in Hoofdstuk 3 verder onderzoek gedaan naar de effecten van early handling op Alzheimer-gerelateerde factoren. Early handling zorgde voor vermindere plaque pathologie in de hippocampus, terwijl de plaque pathologie in een ander hersengebied, de amygdala, niet beïnvloed werd op volwassen leeftijd. Toen deze muizen vervolgens getest werden in ruimtelijke, hippocampus-afhankelijke cognitieve taken, bleek door early handling, de cognitieve achteruitgang volledig voorkomen te kunnen worden. Dit was niet het geval bij geheugentaken die afhankelijk waren van de amygdala.

In Hoofdstuk 4 heb ik onderzocht wat de rol is van de HPA as bij de effecten van vroege stress op Alzheimer-gerelateerde achteruitgang. Vroege levensstress zorgt voor verhoogde β neuropathologie, wat al zichtbaar op volwassen leeftijd (6 maanden), en dit leidt ook tot een versterkte cognitieve achteruitgang, met name cognitieve flexibiliteit, op oudere leeftijd (12 maanden), met name cognitieve flexibiliteit. De HPA as activiteit was verhoogd in deze muizen, en negatief gecorreleerd met hun cognitieve prestaties. Vervolgens hebben we laten zien dat al een korte, 3-daagse behandeling met de stof mifepristone (wat de stresshormoon receptor GR blokkeert), de cognitieve problemen en verhoogde β neuropathologie in deze muis, geheel kan tegengaan. Dit benadrukt de belangrijke rol die stress hormonen zoals glucocorticoid mogelijk spelen bij de ontwikkeling van Alzheimer neuropathologie en symptomen.

Hoewel het declaratieve geheugen vaak afneemt bij de ziekte van Alzheimer, wordt emotionaliteit versterkt. In Hoofdstuk 5 laat ik zien dat APPswe/PS1dE9 muizen die blootgesteld zijn aan vroege stress inderdaad een versterkte angstreactie laten zien bij cues die een angstige gebeurtenis aankondigen, maar ook in reactie op cues die niet verbonden zijn met een eerdere stressvolle gebeurtenis. Ik heb onderzocht of dit gerelateerd was aan veranderingen in synaptische plasticiteit, het cellulaire substraat voor leren en geheugen, in de hippocampus van muizen die 1 jaar oud zijn. Hier heb
ik laten zien dat APPswe/PS1dE9 muizen die waren blootgesteld aan vroege levensstress, een atypische en juist versterkte synaptische plasticiteit laten zien, terwijl de gevoeligheid voor een GluN2B receptor antagonist afneemt. Deze bevindingen suggererden een centrale rol van de NMDA-receptor bij de effecten van vroege levenservaringen op volwassen plasticiteit.

Om verder te onderzoeken wat de onderliggende mechanismen zijn van de veranderde synaptische plasticiteit en cognitieve achteruitgang, heb ik in Hoofdstuk 6, APPswe/PS1dE9 muizen gedurende hun hele leven behandeld met de glutamaat-modulator riluzole. Riluzole behandeling voorkwam de nadelige gevolgen op synaptische plasticiteit al vanaf een vroege leeftijd, en verbeterde zelfs de cognitieve vaardigheden van oude muizen die blootgesteld waren aan vroege levensstress. De effecten van vroege levensstress, veroudering en de ziekte van Alzheimer, en de verbeteringen van riluzole, gingen gepaard met een verandering in de expressie van de excitatory amino acid transporter 2, welke belangrijk is voor de heropname van glutamaat bij de synapse. Dit suggereert een belangrijke rol voor glutamaterge transmissie in de effecten van vroege levensstress op de ziekte van Alzheimer.

Om beter te begrijpen hoe vroege stress leren en geheugen beïnvloedt tijdens de veroudering en de ziekte van Alzheimer, heb ik in Hoofdstuk 7 onderzocht hoe vroege stress de korte- en lange-termijn synaptische plasticiteit (LTP) beïnvloedt in wild type dieren. Vroege stress bleek beide vormen van plasticiteit te verminderen. Daarnaast nam ook de expressie van de NMDA-receptor subunit 2B (GluN2B) in de hippocampus af. Het blokkeren van de GluN2B had echter geen effect op geheugen en synaptische plasticiteit in muizen die waren blootgesteld aan vroege levensstress, terwijl de GluN2B essentieel was voor deze processen in controle muizen. Dit wijst erop dat de GluN2B een belangrijke mediator kan zijn van de effecten van vroege levensstress tijdens het rest van het leven.

In het laatste gedeelte van deze thesis onderzocht ik hoe de acute blootstelling aan stresshormonen leren en geheugen kan beïnvloeden. In Hoofdstuk 8 toonden we aan dat corticosteron blootstelling direct na een angstvolle ervaring, het vastleggen van het geheugenspoor kan beïnvloeden. Door gebruik te maken van verschillende parameters voor dit zgn. conditioneringsexperiment, konden we laten zien dat corticosteron tegenovergestelde effecten heeft op het geheugen in mannelijke vergelijke met vrouwelijke muizen. Hoewel het stresshormoon de geheugenvorming in mannen versterkte, zorgde het hormoon in vrouwelijke muizen voor een verzwakking van het geheugen. Het was opvallend dat corticosteron de extinctie van het geheugen wel in beide geslachten versterkte. Dit onderzoek
laat daarmee zien dat geheugenvorming anders beïnvloed wordt door stresshormonen in mannelijke en vrouwelijke muizen.

Deze bevindingen zijn verder uitgebreid in Hoofdstuk 9, waar ik de effecten van corticosteron blootstelling op geheugenspecificiteit in mannelijke muizen heb bestudeerd. Corticosteron zorgt ervoor dat de precisie van het geheugen afneemt, wat zorgt voor een gegeneraliseerde angstresponse, zelfs wanneer de muizen in een veilige omgeving geplaatst worden. Door gebruik te maken van transgene reportermuizen kunnen we cellen onderzoeken die de immediate-early-gene Arc tot expressie brengen. Hierdoor was het mogelijk om juist die cellen die verantwoordelijk zijn voor dit geheugenspoor, zowel moleculair als ook elektrofysiologisch te kunnen karakteriseren in de gyrus dentatus van de hippocampus. Corticosteron zorgt voor een verhoging van het aantal Arc-positieve cellen in de gyrus dentatus van getrainde dieren. Daarnaast zorgt corticosteron ervoor dat de Arc-negatieve cellen actiever worden, wat er mogelijk voor zorgt dat deze cellen sneller opgenomen worden in het geheugenspoor. Toen we vervolgens m.b.v. DREADD-technologie selectief alleen deze neuronen afremden, konden de effecten op door corticosteron veroorzaakte angst generalisatie voorkomen worden. De geheugenvorming werd verder niet beïnvloed. Dit toont aan dat de rekrutering van nieuwe cellen in de gyrus dentatus een essentiële rol spelen bij de generalisatie van angst door corticosteron.

In Hoofdstuk 10 vat ik de belangrijkste bevindingen van deze thesis samen, en bespreek ik ze in een bredere context. Ik bediscussieer hoe vroege levenservaringen het brein langdurig kunnen ‘programmeren’, en welke gevolgen dit heeft voor leren en geheugen en neuropathologie in modellen voor de ziekte van Alzheimer. Vervolgens speculeer ik dat, naast een directe rol van vroege levenservaringen via de HPA as, vroege levenservaringen ook cruciaal zijn in het ontstaan van een cognitieve reserve, een conceptueel begrip wat gebruikt wordt om te begrijpen waardoor sommige individuen meer weerstand hebben tegen de ziekte van Alzheimer dan anderen. Ten tweede bespreek ik hoe glucocorticoid hormonen geheugensterkte en –specificiteit beïnvloeden, met een speciale focus op de rol van de zgn. ‘Engram’ cellen. Ten slotte heb ik een aantal belangrijke, nog openstaande vragen geformuleerd, welke het veld van (vroege) stress en geheugen verder zouden kunnen helpen.
Positive and negative early life experiences differentially modulate long term survival and amyloid protein levels.
Samenvatting voor niet-ingewijden

In het dagelijks leven ervaren we regelmatig stress. Deze stress is vaak goed voor je; we hebben het nodig om adequaat te kunnen reageren op situaties die onze aandacht nodig hebben, om ons aan te passen aan onze omgeving, en om te overleven (“acute, adaptieve stress”). Als stress echter te heftig is, of te lang aanhoudt, kan deze goede stress omslaan in slechte stress (“schadelijke stress”). Langdurige stress ondermijnt het geheugen, het vermogen om te plannen en beslissingen te nemen en om onze emoties te controleren. Dit kan verregaande gevolgen hebben, waaronder een toegenomen risico op angststoornissen, posttraumatische stresssyndroom, burn-out, of depressie, en het kan zelfs de ziekte van Alzheimer verergeren.

Acute, adaptieve stress

Wat gebeurt er eigenlijk tijdens stress? Als er iets spannends, naars of inspannends plaatsvindt, stuurt je brein een signaal naar je bijnieren om de stresshormonen adrenaline en cortisol aan te maken. Hierdoor gaan je hartslag, bloeddruk en ademhaling omhoog, waardoor je alert wordt en je je beter kunt concentreren op je omgeving. Dit helpt om goed met de ontstane situatie om te gaan. Zo onthoud je beter wat er in die periode gebeurt, waardoor je er de volgende keer beter op voorbereid bent. Dit kan bijvoorbeeld handig zijn als je betrokken bent bij een (bijna) verkeersongeval, waarbij je de details rondom het ongeval vaak beter onthoudt dan van een willekeurig ander moment dat je deelnam aan het verkeer. Hierdoor herinner je je elke keer als je in dezelfde of een vergelijkbare situatie bent dat dit gevaarlijk is en er dus extra waakzaamheid geboden is. Hopelijk voorkomt dit dat je nogmaals in een vergelijkbare gevaarlijke situatie terecht komt. Na afloop van de stressvolle omstandigheden nemen de toegenomen stresshormonen weer af, waardoor de stressreactie beëindigd wordt.

Schadelijke stress

Wanneer de stressvolle gebeurtenissen elkaar snel opvolgen, of als de stressvolle gebeurtenis té intens is, kan het voorkomen dat je brein het niet lukt om die stresshormonen weer naar rustniveau terug te brengen, waardoor het stresssysteem ontspoort, het lichaam in een staat van paraatheid blijft en mensen gevoelig worden voor nieuwe stressvolle
gebeurtenissen ("chronische stress"). Dit kan bijvoorbeeld gebeuren bij militairen die uitgezonden worden en daarbij in aanraking komen met stressvolle situaties. Dit kan in sommige gevallen leiden tot een posttraumatische stress syndroom (PTSS), waarbij het geheugen niet adequaat/precies werkt. De herinnering aan de stressvolle gebeurtenis kan in zo’n geval ook opgeroepen worden in situaties die wel veilig zijn, zoals bijvoorbeeld een ballon die uit elkaar klappt op een feestje. Deze verminderde precisie van het geheugen – er wordt immers een herinnering opgeroepen die niet hoort bij de omgeving, of context, waarin men zich bevindt – kan vergaande gevolgen hebben voor hoe iemand kan functioneren.

Eén van de vragen die ik heb geprobeerd te beantwoorden in dit proefschrift, is wat er precies gebeurt met de cellen in het brein waardoor de sterkte van het geheugen toeneemt, maar de precisie van het geheugen afneemt bij stressvolle gebeurtenissen. Om dit te onderzoeken hebben we gebruik gemaakt van de nieuwste technieken en speciale muizen, die cellen in hun hersenen hebben die groen worden zodra ze actief betrokken worden bij het herinneren van een gebeurtenis. Als gevolg van stress zijn er meer groene cellen aanwezig in het brein van deze muizen. Mogelijk worden er als gevolg van stress téveel cellen betrokken bij een geheugen, waardoor de herinnering ook geactiveerd wordt in situaties die totaal afwijken van de stressvolle, gevaarlijke situatie.

Stress tijdens de kinderjaren

Hoewel iedereen weleens last heeft van stress, zijn sommige mensen gevoeliger voor de negatieve gevolgen van stress dan anderen. Naast erfelijke factoren, kan dit ook komen door ervaringen tijdens de kindertijd. De kindertijd is een hele gevoelige periode waarin de “blauwdruk” van het brein voor de rest van het leven gemaakt wordt. In deze periode ontwikkelt het brein zich heel snel, waardoor verstoringen tijdens deze periode verstrekende gevolgen kunnen hebben voor hoe het brein werkt op latere leeftijd. Zo zijn er onderzoeken gedaan naar geadopteerde kinderen die de eerste paar jaar van hun leven zijn opgegroeid in Roemeense kindertehuizen. Eten was meestal aanwezig, maar er was vaak sprake van verwaarlozing, zoals een gebrek aan troosten, knuffelen en andere aandacht bij de (zeer jonge) kinderen, waardoor ze onder veel stress zijn opgegroeid. Onderzoeken hebben laten zien dat deze kinderen vaak minder intelligent zijn dan leeftijdsgenoten, impulsierever zijn, aandachtsproblemen hebben, en sociale gedragsproblemen hebben. Dit gaat gepaard met veranderde
activiteit in het brein. Ook dichter bij huis komen dit soort problemen voor. Zo heeft Nederlands onderzoek onder pubers laten zien dat kinderen die voor hun vijfde verjaardag een of meerdere ingrijpende gebeurtenissen mee hadden gemaakt (zoals een scheiding, ongeluk of ziekenhuisopname), minder hersencellen (“grijze stof”) hadden dan pubers die zo iets niet hadden meegemaakt. Het gevolg is een minder flexibel brein, wat later sterker reageert op nieuwe stressvolle gebeurtenissen, en dat kan weer gevolgen hebben voor de mentale gezondheid.

De gevoeligheid van het brein tijdens de vroege kinderjaren werkt twee kanten op. Kinderen die in een hele veilige, stimulerende omgeving opgroeien, zijn over het algemeen beter bestand tegen stress op latere leeftijd, en zijn minder gevoelig voor stress-gerelateerde aandoeningen.

Dieronderzoek

Toch blijft het erg moeilijk om dit soort processen tot in detail te bestuderen in mensen. Hoewel je door gebruik te maken van een MRI-scanner kan kijken naar de grootte en vorm van verschillende hersengebieden, is het niet mogelijk om afzonderlijke cellen te bestuderen in mensen, laat staan dat we een beeld kunnen krijgen van de stoffen in die cellen die een belangrijke bijdrage leveren aan het functioneren van afzonderlijke cellen en hersengebieden. Daarnaast zou dit soort onderzoek in mensen erg lang duren, omdat er bijvoorbeeld wel 40 jaar kan zitten tussen de kindertijd en het moment dat stress-gerelateerde aandoeningen zich openbaren. Daarom wordt er voor dit soort onderzoek veel gebruik gemaakt van dieren. Dieronderzoek heeft bijvoorbeeld laten zien dat muizenbaby’s die opgroeien in een kale omgeving met minder moederzorg, op latere leeftijd meer stresshormonen produceren en meer problemen hebben met hun geheugen. De uitlopers van hersencellen in bepaalde hersengebieden die belangrijk zijn voor geheugen worden korter. Hersencellen kunnen hierdoor minder goed contact maken met elkaar, waardoor de hersenen minder goed werken. Deze gevolgen kunnen het gehele leven merkbaar blijven. In mensen hadden we dit niet kunnen onderzoeken.

Ziekte van Alzheimer

Een voorbeeld van een ziekte waarbij stress een rol kan spelen is de ziekte van Alzheimer. We weten al dat mensen die veel stress ervaren op middelbare leeftijd een grotere kans hebben om later Alzheimer te krijgen. Het zou dan ook kunnen dat stress tijdens de kinderjaren de veranderingen in de
hersen en gedrag in relatie tot de ziekte van Alzheimer kan verergeren. Dit hebben wij onder andere onderzocht in andere speciale muizen, die verschijnselen van de ziekte van Alzheimer vertonen op latere leeftijd. Deze muizen maken het eiwit amyloid-bêta aan, wat klonten vormt in het brein, daardoor het functioneren van de hersenen bemoeilijkt en onder andere voor geheugenverlies zorgt, vergelijkbaar met wat er gebeurt in het brein van patiënten met de ziekte van Alzheimer. Stress op jonge leeftijd heeft dit proces bij deze muizen verergerd. Vervolgens hebben we muizen behandeld met een stofje dat de werking van stresshormonen verminderde, wat er verrassend genoeg voor zorgde dat de klontering van het amyloid-bêta eiwit en de geheugenproblemen voorkonden worden. Door deze speciale muizenbaby’s op te laten groeien in een “warm nest” met extra veel moederzorg, was het juist mogelijk het geheugenverlies in deze muizen tegen te gaan.

Geheugenverlies bij de ziekte van Alzheimer wordt onder andere veroorzaakt doordat cellen minder goed met elkaar kunnen communiceren of zelfs doodgaan. Een van de stoffen die zorgt voor deze communicatie, glutamaat, is zowel bij de ziekte van Alzheimer alsook bij muizen die veel hebben stress ervaren verstoord. Door de glutamaathuishouding weer te herstellen, kunnen zowel de effecten van stress vroeg in het leven, alsook de nadelige gevolgen van de ziekte van Alzheimer worden tegengegaan. Als gevolg hiervan verbetert de communicatie tussen cellen en wordt het geheugen beter.

Kort samengevat heb ik in dit proefschrift laten zien dat stress hele verschillende effecten kan hebben. Adaptieve stress zorgt ervoor dat je gebeurtenissen beter onthoudt, maar wanneer dit te lang duurt of te heftig wordt dan kan dit veranderen in schadelijke stress. Het geheugen wordt dan minder precies, waardoor bijvoorbeeld veilige situaties niet meer goed herkend worden. Ook kan langdurige stress, zeker als het gebeurt tijdens de kwetsbare periode na de geboorte, de gevolgen van de ziekte van Alzheimer verergeren, terwijl opgroeien in een “warm nest” er juist voor zorgt dat je minder gevoelig bent voor deze ziekte. Ik heb een aantal aanknopingspunten gevonden die mogelijk de effecten van stress op de ziekte van Alzheimer kunnen voorkomen of verminderen, hoewel dit nog wel uitgebreid onderzocht moet worden in mensen.