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Chapter 4

Learning in OG Models

4.1 Perfect foresight versus learning

In Chapter 3 we analyzed a number of examples of perfect foresight cycles in overlapping
generations models. An important feature of these perfect foresight cycles is that they
are equilibrium phenomena: markets clear in every period, agents maximize their utility
given their perceived budget constraints and these perceptions are correct in the sense
that agents’ expectations with regard to prices equal the realized values of these prices.
Especially the assumption of perfect foresight may not be so innocuous as it seems at first
sight. It implies that agents have a correctly specified model of the economy and are able
to compute correct expectations using this model. To see that it really requires unbounded
rationality note that an agent with perfect foresight has to know, among other things,
the expectations held by all other agents. Recently the shortcomings of the perfect fore-
sight or rational expectations approach have led an increasing number of people to study
models of learning (for nice reviews on bounded rationality see Sargent (1993,1998)). The
overlapping generations model with two generations has played a prominent role in this
recent literature. There seem to be two reasons for this. First, the overlapping genera-
tions model provides a tractable dynamic general equilibrium model in which all agents
are utility maximizers (or, given their perceptions, believe they are) and markets clear
in every period. Therefore it has become a modelling tool often utilized by proponents
of the rational expectations approach, especially when it comes to problems in the field
of monetary economics. Secondly, under rational expectations or perfect foresight the
overlapping generations model features indeterminacy: there is a continuum of perfect
foresight orbits, of which all but one have the unsatisfactory characteristic that they con-
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verge to the autarkic steady state in which money has no value.! Indeed, some of the
first models of learning in overlapping generations models were developed to provide a
selection device in picking the “most likely” of the different perfect foresight paths.

In this chapter we will study a number of learning models in a standard version of the
overlapping generations model. Our main focus is not on learning as a selection device
but on the dynamics of different learning models itself. We belief the analysis of learning
dynamics is an important subject since it may provide us with a better description of
human behaviour than the rational expectations hypothesis does and it may account
for some of the dynamical phenomena observed in reality. The actual dynamics of our
model are given by a complicated nonlinear map. It is assumed that the agents do not
know this complicated map but that they believe that the dynamics evolves according to
some simple linear relationship. They estimate this relationship by using a least squares
algorithm. The estimated model then provides agents’ expectations about some variable,
for example inflation rates. Since the actual realizations of this variable depend upon this
expectation, the learning feeds back into the actual dynamics. These realizations of the
variable again lead to an update of the estimated relationship. In this way a closed model
of actual dynamics and learning dynamics arises. An important aspect of this model, in
which it differs from most of the existing literature on learning in economic models, is the
structural misperception of agents. The model they have of the economy is mis-specified.
We believe that this is the most sensible approach to learning in economic models. The
perceptions of an agent have to be much simpler than the unknown economic model itself
which, among other things, depends upon the perception of this agent and the perceptions
of all other agents in the economy and therefore will be very complicated. Agents will in
general use simple “rules of thumb” to make predictions.

We investigate some different types of perceived laws of motion in this chapter. We
find that different types of beliefs may lead to different stability properties of the actual
dynamics and in fact various dynamical phenomena, such as the existence of periodic
cycles, quasi periodic orbits and strange attractors, might occur. Furthermore it is im-
portant whether the perceived law of motion is put in terms of price levels or in terms
of inflation rates, in particular when there is a positive net inflation rate in equilibrium.
Clearly the number of possible perceived laws of motion is unbounded. We hope to pro-

'This is true, provided that we are in the Samuelson case. For the classical case almost all perfect
foresight paths tend to the monetary steady state. This classical monetary steady state, however, cannot
be supported by money and therefore is seen as less important in macroeconomic analysis. Notice that
these results refer to the overlapping generations model with two generations and one commodity per
period. For an analysis of indeterminacy in more general overlapping generations model see Kehoe and
Levine (1985).
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vide more insight into this “wilderness of bounded rationality” by studying which of these

perceived laws of motion are, in some sense, reasonable.

Our work is related to that of Hommes and Serger (1998). They introduce the notion
of consistent expectations equilibria. In their model agents use simple linear expectation
rules in a nonlinear environment. A consistent expectations equilibrium then emerges
when there are no structural errors in the forecasts agents make given their expectations
function and the actual dynamics implied by this expectations function (that is, sample
averages and sample autocorrelations are equal for the perceived and the actual models).
In such an equilibrium agents cannot improve upon their forecasts in a linear statistical
sense. Other related work can be found in the literature on learning in temporal equi-
librium dynamics (Bshm and Wenzelburger (1999), Chatterji (1995), Duffy (1994) and
Lettau and Van Zandt (1995)) and in the literature on least squares learning in macroeco-
nomic models (Bray (1982), Bray and Savin (1986) and Marcet and Sargent (1989a,b)). A
number of contributions has focused on the possibility of nonconvergence of least squares
learning or other learning algorithms in temporal equilibrium dynamics (Benassy and
Blad (1989), Bullard (1994), Grandmont and Laroque (1991) and Schénhofer (1996)).
Our approach falls within this strand of the literature. Although a popular way to model
learning, the least squares learning approach is not the only learning model. For example,
there has been a growing interest in the genetic algorithm as a learning model. Applica-
tions of the genetic algorithm to overlapping generation models can be found in Arifovic
(1995,1996) and Bullard and Duffy (1998,1999).

This chapter is organized as follows. Section 4.2 introduces the overlapping gener-
ations model we study in this chapter and briefly discusses stability properties of the
perfect foresight paths. This model is taken from Bullard (1994) (and is also studied by
Schonhofer (1996)). In Section 4.3 several forms of expectation formation are discussed.
These are static in the sense that they are invariant over time and are not updated as
new information becomes available. In Section 4.4 we study the least squares learning
algorithm as put forth by Bullard (1994) and give a critical assessment of his results. We
also present a learning algorithm on inflation rates, closely related to his, with signifi-
cantly different stability properties. In Section 4.5 and 4.6 we present learning algorithm
on perceived laws of motions that only involve inflation rates and not price levels. We
show, mainly by numerical investigation, that complicated dynamical phenomena might
occur, although the learning dynamics converges. Section 4.7 summarizes.
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4.2 The overlapping generations model

In this section we follow Bullard (1994) and consider a standard two period overlapping
generations model where in each period a generation is born that lives for two periods.
Of course this is a very simple model and it can only serve as a first approximation to
more complicated models with more generations, different agents and more commodities
per period. We believe, however, that this simplified model is sufficiently rich to illustrate
the main features of learning in more general models. The generation born in period ¢

solves the following problem
maxU (co,1)  subject to pico +piic1 < peto + Piyywn,
el

where U : IR2 — IR is a strictly monotone, strictly quasi concave utility function, co
and ¢; are consumption in the first and second period of the agent’s life, wy and w; are
endowments in the first and second period of the agent’s life, p, is the price in period ¢ and
P, is the expected price in period ¢ 4+ 1. This optimization results in a savings function
S (%) = wpy — ¢y (%) for the young consumer. We assume that the only means of
saving is money and, at least for the price paths we will study, the savings function will

always be nonnegative.”? The demand for money in period ¢ then is

Mg (thn),
Dt Pt

The government has a series of exogenous expenditures, possibly negative®, which it fi-
nances by seignorage (this corresponds to a tax (or subsidy) on old agents). This results
in the following rule for the growth of the money stock

Mg = th_]_‘
Equilibrium on the money market then is given by

S (@) p =68 ( L )pt—h (4.1)
Dt Pi—1

or in terms of gross inflation rates m; = %‘l’—‘,

TS (%) = 68 (n2_,) . (4.2)

2We are therefore focusing on the Samuelson case, where agents save when young and dissave when

old.
3Negative government expenditures in this case implies that the government has a certain endowment

of the commodity, which it trades for money on the market for this commodity.
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From this last expression it can be seen that this system can have two different types of
steady state equilibria: the monetary steady state TT* = 6 and, if it exists, the autarkic
steady state TT* = 7/°, where ir®is such that S (ir®) = 0. If endowments in both periods are
positive the autarkic steady state exists and if preferences are smooth and strictly convex,
the autarkic steady state is unique. We will occasionally make the following assumptions
on the savings function S (.

Assumptions

1) S is twice differentiableand S () < 0,

2) S(fl)>0.

Assumption 1 states that savings are a decreasing function of the inflation rate. This
implies that CQ and C\ are gross substitutes. Assumption 2 states that we are in the
Samuelson case where in the monetary steady state savings are positive and people transfer
income from the present to the future. Assumptions 1and 2 together imply that 7° > 6.
For convenience we introduce the following variable

an = —Tré m

a(TT) isthe (negative of the) inflation elasticity of savings and plays an important role
in the dynamical behaviour of the overlapping generations model. Under assumptions 1
and 2 we have a (6) > 0.

In order to do some numerical investigations we have to specify the savings function.
Following Bullard (1994) we consider the following two typical examples. The first one
derives from the well-known CES utility function U (CQ, Cx) = (eg+ ¢j) ' with endowments
Wo = land W\ = Oand \ < p < 1 The savings function then becomes

SW= -/:-
1 +n'~f
Notice that it satisfies assumptions 1 and 2. Furthermore, since W\ = 0 the autarkic
steady state does not exist in this case. The inflation elasticity of savings for this savings
function is

1
MWV 1. pr+TTP!

We will adso consider a more complicated example of a savings function to illustrate
some complicated phenomena that might occur in our model. The savings function is
an aggregate excess demand function and therefore by the Sonnenschein-Debreu-Mantel
results (see Debreu (1974), Mantel (1974,1976) and Sonnenschein (1973)) it can take on
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-Zh

Figure 4.1: Savings functions. Upper diagra®@ES savings function, lower diagram:
complicated non-monotonic savings function

almost any form. We therefore also consider the following non-monotonic transforma
of the CESsavings function

10
1+ 7TP-

S(T) = exp

Figure 4.1 shows these two savings functions for p = |.

Before we turn to the study of different modes of learning and expectation formal
in this overlapping generations model, we briefly consider the case of perfect fores
Under perfect foresight agents know exactly which inflation rates will obtain in the futu
Therefore7if,; = -Ki+\- The overlapping generations model (4.2) then reduces to

S (7T

S(n) =e 4.3)

Under the assumption that savings decrease as the inflation rate rises, the ten
equilibrium map, implicitly defined by (4.3) is upward sloping. Therefore no complicat

TTt-1
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perfect foresight mapping

Tt_1

Figure 4.2: The perfect foresight mapping. The lower equilibrium corresponds to th
monetary steady state 9 and the higer equilibrium corresponds to the autarkic stee
state 71

perfect foresight dynamics, such as cycles and chaos can occur (as we saw in Chapter
the savings function is non-monotonic, cycles and even chaotic perfect foresight paths
occur). Figure 4.2 shows this temporal equilibrium map. From this figure the following
well known result immediately follows.

Proposition 4.1 Under assumptions 1 and 2 the overlapping generations model wit
perfect foresight (4.3) has an unstable monetary steady state 9 and, if it exists, a loc
stable autarkic steady state®.n

Proof. Linearizing (4.3) around a steady stéf& gives

S'A)d*t o Q*&A:/AA-

(7™

For IT* = 9 we have

diit 1 s(0)~ ditt-i 1+ d-Kt-i

" 9S9)_ a(0)
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Since a(9) > 0 the monetary steady state is unstable. If an autarkic steady state ex
we have for 7= 7r°

d-Kt = —diTt-i,
™

and since 7r> 9, the autarkic steady state is locally stable. -

All orbits starting from the right of the monetary steady state converge to the autar
steady stafeand all orbits starting from the left of the monetary steady state becor
infeasible in finite time, that is the inflation rates keep falling until for a certatmere
is no inflation rate 7r, such that the money market clears.

In the macroeconomic literature the dynamical behaviour of the overlapping gen
ations model under perfect foresight has been perceived as disturbing for the follow
reason. The perfect foresight equilibrium paths are indeterminate, that is, there is
infinity of perfect foresight equilibrium paths, none of which is locally unique (for a dis
cussion see Farmer (1993)). Only one of these perfect foresight paths gives the mon
steady state 9, all other perfect foresight paths converge to a steady state where mone
no value. A number of contributions have focused on the multiplicity of perfect foresig
paths and argued that by introducing some kind of adaptive expectations or learning
"most likely" perfect foresight path can be singled out. Lucas (1986) shows in a stand
version of the overlapping generations model that if agents predict the (inverse of t
price level by using a sample average of previous observations of the (inverse of the)
level, there will be convergence to the monetary steady state. Marcet and Sargent (19
study the dynamical behaviour of an overlapping generations model of hyperinflation s
ilar to ours, where agents use a least squares regression on past prices to predict
prices. They show, for their model, that there can only be convergence to the mone
steady state. They however also point out that the least squares learning algorithm
lead to instability.

It is important to note that all these results refer to the Samuelson case, where inc
is transferred from the young to the old. All stability results are reversed when we cons
the classical case, where young agents consume more than their endowment and the
"dissave" (that is, saving of the young is negative). Old agents then pay back the
they incurred when they were young.

“If an autarkic steady state does not exist (as in our exampleG&shutility functions) all orbits
starting from the right of the monetary steady state then diverge to infinity.
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4.3 Static expectations

In the previous section we have discussed the dynamics of the overlapping generatio
model under perfect foresight. Clearly, the assumption of perfect foresight is a demandir
one, since it requires that agents exactly know the market equilibrium equations and at
able to use these to compute the market clearing prices for the next periods. From nc
on we will consider less divine agents, who use observations on past prices or inflatic
rates to make predictions about future inflation rates. In this section we will conside
simple forms of backward looking expectations. First we have to be clear about th
information agents posses at the moment they have to make predictions. Agents ba
in period t + 1 know all prices up to time t, and therefore the last inflation rate they
have observed isi = -?'- The savings decision of these newborn only depends upon
the ratio of price levels between periods t + 1 and t + 2. The expectatian of this
price ratio is one of the determinants of the price Ipvgl in period t + 1. We make

the assumption that agents have already made their savings decision at the moment t
enter the money market and that the prices they observe at this market therefore can
effect this decision anymore. Hence, the expectafibpand the savings decision is based
upon information on inflation rates up till time—+ 1. An alternative would be to let the
expectation formation of agents foR6.,; also depend upon the value of Trettau and
Van Zandt (1995) show that these differences in information structure lead to significant
differences in the dynamical behaviour of the overlapping generations model.

We will first consider naive expectations. Under naive expectations agents believ
that the inflation rate in the next period will be the same as in this period. Due to th
information structure discussed above we then obtain the following expectations schermnr
TTtH = 7+ The overlapping generations model (4.2) now becomes

A local stability analysis of the monetary steady state then reveals the following.

Proposition 4.2 Assume that a' (9) » 0. Under assumptions 1 and 2 the overlapping
generations model with naive expectations (4-4) genetically undeagdepf bifurcation
at the monetary steady state whef6p= 1. For a(9) < 1 the monetary steady state is
stable and for §9) > 1 the monetary steady state is unstable. (6)a< O generically

SOur approach is more common in the literature. One of the reasons for this is that it would complicat
the analysis considerably, if we would assume that the expectation would depend upon current inflatic

rates. This would imply that we have to solve for an equilibrium in each period and a closed form
expression for the inflation dynamics would then not be available.
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a period-doublingbifurcation occurs at the monetary steady state for that value of O
which a(6) = -\. Then if -\ < g9) < 1 the monetary steady state is locally stable a
if a (6) < —i the monetary steady state is unstable.

Proof. The overlapping generations model can be written as a system of two
order difference equations

T+l - 9
S(n)
It+i = Kt

Linearizing this system around its steady stgtet,y) = (0,9) gives

fdig \ = | a(6)-a0) \@*\
ViHcHd \ 1 0 )\dy)'

The eigenvalues of the Jacobian matrix are

M2 = \a (0) + ~>/(a(0)-4)a(0).

These eigenvalues are complex fof9aG (0,4). The eigenvalues cross the unit circle
when

MIM2 = a (0) = 1

Thereforea Hopf bifurcation occurs when a (0) = 1. If a (0) < 0 the eigenvalues are re
It can be easily checked that the positive root is always smaller than +1. The neg
root equals—L when a (0) = —|. =

The Hopf bifurcation referred to in the proposition may be subcritical or supercritic:
For a subcriticaHopf bifurcation a repelling invariant closed curve around the monetal
steady state exists for a (0) close to but smaller than 1. This closed curve coalesces
the monetary steady state at a (0) = 1. It implies that,(3sagproaches 1, the basin of
attraction of the monetary steady state shrinks and finally disappears. For a supercr
Hopf bifurcation an attracting closed curve exists for a (0) close to and larger than 1.
the invariant closed curve created in thapf bifurcation the dynamics are quasi periodic.
Simulations suggest that for our overlapping generations modeGE8utility functions
the Hopf bifurcation is supercritical. The bifurcation valuedafan be explicitly calculated

as

* = (T — - 2<P<1. 45)
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Figure 4.3: Attractors for the OG model with naive expectations, a) Invariant circle
created throughopf bifurcation for OG withCESsavings function, p = | and 9 = 0.85.

b) Period two cycle created through flip bifurcation for the complicated savings function
p=| and 9 = 0.36. c¢) and d) Strange attractors for OG with complicated saving
function, p = | and 9= 0.7926 and 9 = 2.14, respectively.

Figure 4.3.a) shows an example of the attracting closed curve created through this sug
critical Hopf bifurcation, for the model wittCES utility functions and p =1, 9= 0.85 >

a | = 9*° The other pictures in Figure 4.3 are attractors for the overlapping generatior
model with the more complicated savings function. As can be seen from Figure 4.1.b) tl
slope of this savings function becomes positive at a certain time and theré®rbea
comes negative. For p=| and 9 « 0.353®)& -\ and a period doubling bifurcation
occurs resulting in a period two orbit. This attracting period two orbit is shown in Figure
4.3b), for 9 = 0.36. For this complicated savings function, also some strange attracto

This corresponds to a situation of deflation where the government also supplies the commodity an
extracts a certain amount of money from the economy. For other specifications @EBeutility
functions (in particular for p < |) periodic behaviour only occurs if 9 > 1 and there is positive inflation.
The qualitative results remain the same however.
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might emerge. As can be seen from Figure 4.1.b) as 9 increases S' (9) becomes nega
hence a (6) increases again and becomes positive. In fact, for 9 « 0.7890, the inflat
elasticity of savings equals 1 amdHopf bifurcation occurs. Thisdopf bifurcation results

in an invariant circle. This invariant circle undergoes a bifurcation route to a strang
attractor as 9 increases even more. This strange attractor is shown for 9 = 0.7926
Figure 4.3.c). It coexists with the period two orbit created in the primary bifurcation
The strange attractor soon becomes unstable however, and then almost all orbits conv
to the period two cycle again. As 9 increases the monetary steady state becomes st
again and loses stability through a period doubling bifurcation again (compare Figu
4.1.b)). Figure 4.3.d) shows another strange attractor, for 9 = 2.14. This attractor
created through a cascade of period doubling bifurcations. As 9 increases even more
period two orbit becomes the unique attractor once again. It disappears through a fi
period doubling (or period halving) bifurcation after which the monetary steady state
stable again. That this will happen can also be seen from Figure 4.1.b).

Under naive expectations agents believe that the inflation rate in the current peri
will be the same as in the inflation rate in the previous period. Clearly for the attractors
Figure 4.3 the agents make forecast errors. If there is no structure in these forecast er
and they look like white noise, the agents might attribute them to some stochastic no
in the economy, although in reality they might be generated by a deterministic nonline
system. For the attractors in Figure 4.3, however, there appears to be some structur
the forecast errors.

Another form of static expectations are given by so-called adaptive expectations. The
are of the following form

2f, = Q7!+ (1- a)<, O<a<1l (4.6)

This can also be written as

<+i = K +a (TTJl - <),

which shows the adaptive character of this type of expectations formation: expectatio
are updated as new information becomes available. The parameter a gives the img
tance that the agents attach to new observations. As is well-known we can, by repea

"Notice that due to theinformation structurein the overlappinggenerationsnodel, it could be argued
that thereis no forecastingerror undernaive expectationsf the dynamicalsystemconvergego a period
two orbit. In fact, if agentswould expecta periodtwo cyclethey would makethe sameforecastsaswhen
they havenaive expectationsput they would alwaysbe correct.
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substitution, write the adaptive expectations scheme as

t
NPer = Y2 (1- <*Y~'*t-i + (1- af TTF

3=1
Therefore expectations depend upon all previous realizations albeit with decreasing weigt
It is also clear that the influence of the initial expectation, -n\, decreases as time goes t
The adaptive expectations scheme is a typical example of a so-called constant gains leal
ing algorithm, each new observation is as important as previous observations were (tf
gain of each new observation is the same as the gain from previous observations). Tt
implies that observations in the past becoming increasingly less important as the abo\
formula shows.

We can again write the overlapping generations model (4.2) with adaptive expectation

(4.6) as a system of two first order difference equations in the following way

<41 = (l-aK +a*|M @
TtH o= <
Linearizing (4.7) around the monetary steady state gives the following Jacobian matrix

( (-a)+aa(e) -aa(8)\
Jadap- | | o (4.8)

The eigenvalues of this matrix are complex if 1 +a2"a <aa(9) <1+ a+2/S. A

Hopf bifurcation then generically occurs when the determinant of the Jacobian matrix
equals 1, that is, when g8) = 1. In all other case we have real eigenvalues and a period
doubling bifurcation occurs when(&) = | — K The local dynamics around the steady
state therefore are qualitatively equivalent with those of (4.4), except that the longe
memory, represented by a > 0, stabilizes the dynamics.

The dynamical phenomena that were encountered in the study of the overlappin
generations model with naive expectations, such as periodic orbits, aperiodic orbits an
strange attractors can also be found in model (4.7). Since this is not our main concern
this point we will not pursue this issue any further here.

4.4 A regression on price levels

In the previous section we saw that when agents employ static expectations in order f
make their forecasts for future inflation rates may result in a stable equilibrium, periodic
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behaviour, quasi periodic behaviour and even strange and erratic fluctuations. In
section we will describe and discuss a learning model for the overlapping generati
model from the previous sections, which was developed by Bullard (1994). He assul
that agents believe that prices evolve according to the following perceived law of moti

Pt = Rpt- (4.9)

Notice that this implies that they believe that the inflation rate is constant and equal
B. However, B is unknown to the agents and it is estimated by a regression of the pr
level on lagged values of the price level. That sjs estimated by an ordinary least

squares regression, using information up to time t—1, which gives
ti
E s=ips I1ps
3t (4.10)
2-is=\Ps-\
as the estimate of agents born in period t. Their forecast of the inflation rate then beco
nf = . Given this, the price dynamics of the overlapping generations model become:

>%(A-i).
t S\ pt-i-
p S l&) p
Clearly (4.10) and (4.11) together form an expectations feedback system. Realized p

(4.11)

influence perceptions agents have about economic reality and these perceptions feed
into the actual dynamics and determine which prices will be realized. We can mak
distinction between two types of dynamics: the learning dynamics (4.10) which determ
how agents beliefs about the economy are adapted as they receive information about
price levels and the dynamics of price levels or inflation rates (4.11) that determine t
the actual price levels evolve given the beliefs of the agents.

We can write the complete system (4.10-4.11) as a recursive dynamical system

wl

introducing the variable,g= p%x [ELIPLI] + Using (4.11) the least squares estimate

at time t + 1 can be written as

HTJiPs-iPst Pt-iPt _ Rt (Eti P~i - Pt-i) + Pt-iPt
t

&+i ES:iPZ E IBZ_I
o PRI(Er-fE) JHRt-i)
= Rt +- = iK-zi = Rt+9t s i) -3

Furthermore we have

Ot+\ pi Pi
ELIPLI+P? P&-iot' +P%

Pt-i ot +1 ,S(A-i)!

Pt S(3)

9t +1
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The whole model can then be written athree-dimensional systewffirst order difference
equationsasfollows

Gtvi = Bt+at s(B) 3
7t+i T Pu (4.12)
Ot+i ot Y i

! s(By)

Notice that the dynamics of the belief§) coincides with the dynamics of the inflation
rates,implying that if the least squares estimaprconverges then so do inflation rates.
The system (4.12) has steady stf&[*,9%*) = (M. 1- 0.

Proposition 4.3 (Bullard (1994)) Assume assumptions 1 and 2 are satisfied and tha
6 > 1. Then the monetary steady state genetically undeeyblepf bifurcation at that
value9* of 9, for which

(-9-Ma@@) =1,
for 9 < 6* the monetary steady state is stable and for & # is unstable.

Proof. The Jacobian matrix of (4.12) evaluated at the equilibrium (9,9,1% 9~
equals

( 9%+ (1-99Ha@ - (1-9Hap o0

1 0 0 (4.13)
2
n 573 9~

One of the eigenvaluess equalto 9 % and hence stable for 9 > 1. The eigenvalues of the
upper 2x2 matrix are complex and lie on the unit circle whea-©~") a(9) —1. »

For our CESexample with p = | we haw¥ = \ +\\R « 1.3660. Two attractors for
the CESsavings function are shown in the upper pictures in Figure 4.4. The first picture
shows the attracting invariant closed curve created inHibhy@ bifurcation, the second
picture shows a strange attractor that is created from this invariant closed curve. Tt
lower pictures in Figure 4.4 show strange attractors that emerge from system (4.12) wi
the complicated savings function. For this complicated savings function (or in fact for any
savings function with &) < 0) it can be shown that (4.12) undergoes a period doubling
bifurcation at the monetary steady state at that value of 9 for which &ffa -|.
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A-3/+. 0-1.41

L4 e eccee,

i<e\ ..

Figure 4.4: Attractors for the OG model with least squares learning on price levels,
CESsavings function, p = | and 6 = 1.40. BESsavings function, p = | and 6 = 1.41.
c) Complicated savings function, p = | a@d= 15. d) Complicated savings function,
p=\ and 0= 18.

Previous work on least squares learning in economic models mainly deals with es
lishing convergence of the beliefs to some finite limit. We now want to develop an intuiti
why this does not happen in the current model. Ordinary least squares algorithms
so-called decreasinggains algorithms. Different observations receive the same weights
the regression which implies that, as time goes by, the impact of new observations (
is the gain of new observations) becomes smaller. In (4.12) this gain is represente
the variable g= p\ ,j *s=iPs-i- N°" ~ price levels are bounded then, maybe except fc
some very special time paths,wgll converge to 0. This would result in convergence of
the inflation rate. In the model at hand, however, price levels are not bounded an
fact, in equilibrium they grow at a constant rate 6 > 1. This implies that the weight
does not converge to O but to a positive humber A, provided the monetary steady
state is stable. Therefore, even for very large t new observations may lead to a signif
change in the beliefs of the agents. In factyafput in the equilibrium value for.,g(4.12)
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reduces to

B = iR+ 1-iJeqymy (4-14)

7<+i = Rt

which is just the overlapping generations model under adaptive expectations, where t
weight a equals % -k. The stability condition for (4.12) is exactly the same as the
stability condition for the adaptive case with a =1. This follows from the fact that

the upper 2x2 matrix of (4.13) (which is the relevant part) is equal to the Jacobian c
the overlapping generations model with adaptive expectations (4.8). Therefore the loc
stability properties of (4.12) are equivalent with those of (4.7). This explains why it car
be possible that the learning and inflation dynamics do not conteNggice that the
belief parameters in this case keep fluctuating.

Due to the nonstationarity of the time series of the price level an alternative approac
and a more sensible one from an econometrician's viewpoint, would be to forecast inflatic
rates by using the average of previous inflation rates. The agents in the previous moc
believe that the inflation rate is constant, and they estimate this constant by the ordina
least squares estimate of a regression of the price leviededhh The following question
now arises: why don't agents estimate the inflation rate by computing the average of pe
inflation rates? This estimate would then be

1 *12
s=0

which is also the least squares estimate one obtains when regressing the inflation rate
a constant.}, can be written recursively as

. 2 1
A-N 2 mrTT2 . By + T2
-r -i

.3=0

The dynamical system becomes

R.>»i=i b 1 £¥-, (4-15)

8The above results only hold if there is a positive amount of money creation, 9 > 1. If 6 < 1, the
learning dynamics breaks down. The equilibrium valuegfthen becomes negative, wherepis a ratio
of strictly positive quantities, so clearly this equilibrium cannot be stable. Simulations show that in this
caseg approaches 0 very fast and this implies that beliefs are updated at a very low level and will nc
reach their equilibrium level. Inflation rates, on the other hand, do converge.
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Now compare this with system (4.14).isimmediately clear thathestability properties
of this systemaredifferent. Taking averages corresporidsadecreasing gains algorithm
ascan beseenby rewriting (4.15)as

A=A+ IA-A]=A +77-A).

It is clear from this formulation thatastime goesto infinity, the contribution of new
observations will decreas® 0. Thereforeit seems reasonabl® assume that inflation
rates andbeliefs will convergeto themonetary steady state. Simulations support thi
conjecture, though convergence midtgrather slow (whichis alsodue to thedecreasing
gains characteof (4.15)). It is however well known that time averages needconverge.
Situations might arise where belieddinflation rates keemn changing, albeitat an
increasingly slower rate. This might also happernhis case.Forexample, whers (n)
gets arbitrarily closé¢o O for some valuef 7r, there mightbe noconvergenceat all,
althoughit looks likeit due to thefact thatthe magnitudeof the adjustment becomes
negligible. In the next sectionwe will encounteran example withthe same property.
Other example®f nonconvergencef time averagesan befound in Shapley (1964and
GaunersdorfeandHofbauer (1995).

To summarizejt seems thatheway in which theperceivedlaw of motionis put is an
important determinanof thestability of theinflation dynamics.In order to make fore-
casts about future inflation rateseasonable alternative consideringhe nonstationary
seriesof old prices seem$o be toconsiderold inflation rates.

4.5 A regressionon inflation rates- part |

Above we sawthat regressing pricesn past prices might induce fluctuating inflation
ratesand fluctuating beliefsif the money growth ratés high enough.An intuition was
provided for this resultand it wasargued thatthe same belief could alsbelearnedin

a different waythat would almost always ledd convergenceof beliefs. In this section
andin Section4.6we considera different kindof learning dynamics, namely et agents
regress inflation rateen past inflation ratesin Section4.6 weconsidera perceivedaw
of motion of theform n, = a +Ritt-i, whereasin the present sectiome assume that
agents belief that inflation rates evolve accordinghefollowing relationship

n =MRn-i- (4.16)

Given the estimateof (4., of the generation borrin periodt + 1, their forecastof the
inflation rate becomef.; = O\,-K{-\- Theestimatel}., is obtainedby aleast squares
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regression on inflation rates, which is
Et-i
Pt+l - vt-1 2

Again it is important to be clear about the timing of the process. Agents born in th
beginning of period t+1 do not knogy, yet, so the last inflation rate they have observed
is 7¢_i = -j*-. They therefore make their estimates on the basis of all inflation rates u
to 7T .

The estimat&.; can be written recursively again. First deflRg = [X"=p i7-i]
We then have
-l

Rei = XX-1+712-1 = [fiet+ 2]} (4.17)

using this we can write
ti
Bt+i = Rt 2 Tss = R 2MTg [TTs+71 277 i
Rt [RR7\ + 7r 7T q] = R [R (R™ - 7T2 + **-2%_j]
= B+ fiirr 2 [T - B7T ]

Therefore the learning dynamics can be written recursively as

[3t+i
Rt+i

Bt + RIXt-2 [n-i - Bt’t-2] (4.18)
[R7" + T2-i]

Giving these learning dynamics the actual inflation rates evolve according to

S ($Kt-2
> yRt+-Kt-i)

Tt =

Given the values d®, R, ir-i and ir-2 new valued3,;, Rt+i and 7rare determined
according to the following four dimensional system of first order difference equations.

S(3H-)
SY  +Ra x [iri-Bt-i}?*t--i)
It = Kb (4.20)
Bt+l = Rt+ Rt [Tel - RHit-]]

Ri = [RT"+ nuJ-t

Notice that the difference of timing of the learning varialleand R and the inflation
variables 7r and 7 stems from the fact that expectations for people born in period t +
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depend upon information about inflation rates up to time-tl. Of course we could
formulate the model in terms of new variabfs= , and Rl = Rt+i, but this would
obscure the interpretation Bf; as the belief of the generation born in period t+1.

In contrast to the learning model studied in the previous section in the present mo
convergence of beliefs does not imply convergence of the inflation rate. It could be the ¢
that learning parameters converge but that the corresponding inflation dynamics (4.
is unstable and generates erratic inflation dynamics. Consider the possible equilibric
(4.20). Clearly, at an equilibrium we must haile= 7 = 9 andR = 1. At these values
of 71,7 andR the value of R does not matter, but from (4.17) it follows thamBst
then approach 0. Notice however that at R = 0 the system (4.20) is not defined.
get some insights into the dynamics of (4.20) we can look at the Jacobian evaluatec
(M, 7,8,R) ={9,9,1, R). This Jacobian is

f [I+2R6%a(9) - [1 +2R6}a{9) 0[l-9R]a{9) 0 \

1 0 0 0

Jn = RO ‘RO I-92R 0
{ -29 [R* +9%~2 0 0 [1+RH? )

First of all notice that this matrix has an eigenvalue equal to [I% R®vhich, for
all positive R, lies strictly between 0 and 1. Now taking the limit of this matrix as |
approaches 0 gives

/ a9 -a{9) 9a(9) 0\
Jo =1lm Jr = 1o o 0 (4.21)
0 0 10

\ 0 0 0 1

The Jacobian matrixo.has two eigenvalues equal to +1. These eigenvalues correspond
the learning dynamics and it is easy to see why they equal +1. At a poirfTwitly = 9
and3 = 1, we saw that there is no value of R disrupting this equilibrium. Furthermor
if the weight R would be equal to 0, and abstracting from the nonexistence problem
Rt+i, there would be no updating & and therefore anf8 would be neutrally stable.

It is important to observe that both eigenvalues are strictly between 0 and 1 for R sn
but positive’

It might be instructive to consider a model where the weight is updated as follows

Rt.,= [Re+er'+Tr?]",

wheree > 0 is small. In this case the equilibrium weight would ke R i./i? + 4£ ‘e > 0 and
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The othertwo eigenvaluesof (4.21) correspondo theinflation dynamicsof (4.20),
and theyare

Mi,2 IZa{Q),iy(a(e)?-4a(9)).

Notice that thesareexactly the same eigenvalueas for thecaseof naive expectations
(they correspondo theupper2x2 matrix of (4.21)). Thisisintuitively clear sinceif the
learning dynamics convergés /3= 1,agentsin fact have naive expectations. Therefore,
the local stability conditionsfthe more sophisticated learning process (4e28)thesame
as thatof thesimplest learning procegg.4) westudied sofar, namely—\ <a(8) <1.

We areinterestedin thedynamical behaviouof (4.20),in particular whenthemone-
tary steady state under naive expectatimnsnstable.We canmakea clear distinction
between learning dynamicand inflation dynamics here.Due to thedecreasing gains
characterof theleast squares learning algoritittneestimatef3 will change very slowhas
time goes by. Thereanhoweverbelarge changes inflation rates from periodo period.
Thereforeit might be worthwhile to study the short-run dynamicsf theinflation rates
for a given, fixed valueof 3, e.g.3°. Theshort-run dynamics thearegivenby

s(>")Vi)
s

From Section 4.3 we know that these short-run dynacacexhibit all kinds of dynamical
phenomena. In particular, the inflation rates might convergeo the monetary steady
state,to aperiodic orbit,to aninvariant closed curver evento astrange attractoMNow
suppose thatheshort-run dynamics (4.22) indeed convergsome attracto”o C IR?,.
What would then happen witthe long run dynamics (4.20)?Let {TTt}* be anorbit
generatedby (4.22) andlying on SRO.Then a least squares regressiocan beperformed
on these inflation rateandthis will revealanestimatefor /2,e.g.R". In general®' / R°.
Therefore we expedhelearning dynamicso move from3°to R'. But,given/3", theshort
run dynamics willin generalnot convergeto theattractor 5°0. Thereforethe estimateof
R will change againln this way we can irfact constructanimplicit map ofbeliefs

Bk+ - 1 (R,

wherethemappingT (.) givesthe ordinary least squares estimddor the relationship
7 = Birt-i, given thattheinflation ratesaregeneratedoy theshort-run dynamics (4.22)

no problems would arisat theequilibrium (8,6,1, R;). Wethen getresults similaras theonesin the
chapter. Of course,in this casetheestimatefy, will not coincide withtheleast squares estimates 3.
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with fixed 0. This artificial beliefs map can help us understand the dynamics of t
long run dynamics (4.20). Our main concern are the equilibria of T (.), since at suct
equilibrium O* agents believe that B O*n-i and running a regression on inflation rates
indeed does not give them reason to change their beliefs. So, although agents belie
mis-specified, new observations on inflation rates are consistent with these beliefs in
sense that these new observations do not modify these beliefs. This equilibrium beli
the best one in the class of beliefs that is considered by the agents. This leads us tc
loosely, the following general definition of lzeliefs-equilibrium.

Definition 4.1 LetG be a class operceivedaws of motion. An elemegtof G has the
following generalform

"141 = 9 (I"t-1, 7T( 2, ... , ) = g (i*I-1) ,

where the functional specification@fand the number dagsl is prescribed by the class
G. Consider the dynamical system

o n(9{t-2) *
> TT,

(4.23)
S{g(n-1))
whereg £ G. Then wecall g* G G a Beliefs-Equilibrium (BE) if it is th@erceivedlaw of
motion inG that fits the time series of inflation rates generated by (4-23)gtithetter”
than all other elements of G.

In the present section the claGscorresponds to all perceived laws of motion of
the form ir = 0-K-\." One example of a beliefs-equilibrium is the situation, discusse
above, where the overlapping generations model with naive expectations has a s
monetary steady state. In that case 0* = 1 and indeed one has (for t high eno
irg = [3*7T_i = n-i- More interesting is a BE where inflation rates do not converge to ti
monetary steady state. An example is shown in Figure 4.5.a). Here we have consic
the overlapping generations model with learning on inflation rates (4.20) av@iES
savings function with p = | and-6-1. From Section 4.3 we know that for these value
the monetary steady state is unstable under naive expectations. For our model (
the beliefs then converge to 0* « 0.97346 and the inflation dynamics converge to

10-Better" clearly is a rather subjective notion. In this chapter, where we only consider linear percei
laws of motion, one belief is "better" than another belief if its unweighted sum of squared forecast er

is smaller. This, of course, is consistent with using the (recursive) least squares algorithm as a lea
model.

Wwe already encountered another general dlasgere we considered perceived laws of motion of the
type 7T¢ = RB. Clearly for this class the unique BE is given by, nE 6.
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p=2/A. #=D.H

10 7A

Figure 4.5: Attractors of (4.20) and examples of beliefs-equilibra. a) BEE& savings
function with p=\ and 6 = 0.85. b) BE from a) with small noise, c) and d) Nonexistenc
of BE for complicated savings function with p = | and p = |, respectively and 0=1.

attracting invariant closed curve. It can easily be checked numerically tha¥here
indeed an equilibrium of T (.). Figure 4.5.a) shows the attractor of the inflation rate
(the closed curve) and the beliefs of the agents (the straight line through the origin w
slope /3*). One might argue that, when the agents observe this picture they might rea
that their belief is mis-specified and try to learn something different. Figure 4.5.b) shov
the results for the same model, only with a small noise on the parameter of the mor
growth. In fact, we assume € 9 + e where e are 11D disturbances that have a normal
distribution with mean 0 and standard deviation 0.02. If agents see this diagram it mic
indeed be sensible to run a regression on past inflation rates.

Figure 4.6 shows the time series forand (%, corresponding to Figure 4.5.a). It is
clear that the latter converges and the former keeps on fluctuating (notice that the ti
scales are different for these two time series).

There can also be nonexistence of an equilibrium of these learning dynamics. Exa
ples of this nonexistence can be found for the overlapping generations model with t
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j-3/4. 4-0.»

A=3/4. +=<LB5

Figure 4.6: Time series of;iand (3 for (4.20) with CESsavings function and p and
O = 0.85.

complicated savings function. The corresponding pictures are the lower ones in Figt
4.5. Here no equilibriumi3* of the map T(.) exists. To explain what happens consider
the time series for the case with p = § and 9 = 1, depicted in Figure 4.7.

Suppose that initial beliefs are such tHats rather small and the corresponding
short-run dynamics (4.22) are stable. In that case inflation rates converge to 6 = 1 8
the estimate d® will increase. At a certain time thiswill be so high that the short-run
dynamics become unstable and a period two orbit emerges. This hapffers0ef930.
ThenR decreases agdfnand this stabilizes the short-run dynamics (4.22). This repeat:
over and over. Notice that the inflation rate is stable for a long time which implies the

2In fact, we can explicitly compute the valueftorresponding to a period two orbit {7ir,). Since
we know that for a period two orbit of the overlapping generations model one musTHae= 9% the
least squares regression estimBteonverges to

,  Et «t*t-i 38\

£¥*?-| wrT®

which is always smaller than 1foi ~ O.
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0-3/4. tl-1

if»

Figure 4.7: Time series of,7nd [} for (4.20) with complicated savings function and
p=| and 9= 1

agents will start believing more and more that it will be the same as in the previous
period (which seems to be a plausible expectation) and this leads the inflation to becom
unstable. As discussed in the previous section we here have a situation where the lea
squares algorithm does not converge, though it moves slower and slower as time goes b

4.6 A regression on inflation rates part Il

In the previous section we saw that regressing inflation rates on past inflation rates ma
lead to a situation where the belief parameters, which are "slow" variables, converge
whereas inflation rates keep on fluctuating. It can be argued that the class of perceive
laws of motion we considered there is too simple. Urfless1, agents believe that the
inflation rate will converge to zero or diverge to infinity, which clearly is not the case.
In particular, sample averages are inconsistent with the perceived law of motion. In this
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section we want to consider a more general class of perceived laws of motion, namely
n =a+R(TTl - a). (4.24)

Notice that a = 0 corresponds to the perceived law of motion from the previous sect
and /3=1 corresponds to naive expectations. For general a and /3, an agent be
that the long run equilibrium equals a and he beliefs the inflation rate will converc
to this long run equilibrium at a rafe (provided that\R\ < 1). If B < 0 he expects
some overshooting, B > 0 he expectsnonotonieconvergence. The two periods ahead
prediction with (4.24) becomes

<tiza+R (TTH - a)
and given these expectations the overlapping generations model (4.2) becomes
S{a+ R* {ir,.,-a))
S(a+R - a))

In the previous section we saw that if expectations would be correct in equilibriun
which seems to be a minimal consistency condition to be imposed on the expectati
scheme, one needs /3 = 1. For expectations schemes of the form (4.24) to be consiste

equilibrium we need
*t=a+3(0-a) =09.

In this case the equilibrium belief parameters a and /3 are unidentified. That is, there
a lot of values of a and /3 that satisfy the above consistency condition. In particular,
pairs with a =9 and all pairs witB = 1 satisfy it. This multiplicity of beliefs equilibria
becomes important when we introduce learning. In particular, we know that the inflatic
dynamics depend upon the parameters alisalthere are always consistent expectations
schemes for which the monetary steady state is locally stable.

31t can easily be calculated that, for a monotone decreasing savings furectiopf bifurcation occurs
at that value oB* for which we have

which at an equilibrium where agent have consistent expectations becomes
Ra(9%)=.1.

Clearly, there are then always valuesidior which the inflation dynamics are stable.
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The expectations scheme (4.24) also admits the possibility of perfect prediction whe
the inflation rates move in a period two cycle. Let {TT\,TT2) be such a two-cycle of the
dynamics. Then correct prediction requires a 8o satisfy

m=a+RB({Ti—a) andTT\= a +B(TT2—a),

or equivalently, the two periods ahead prediction, given that at this time the inflation
rate isIT\, must be

ITi=a+ R (ni- a)

given thatTT\ =£ TT2 " a this requires tha* = — 1. a then has to equal {TT\+TT2y Of
course this situation only occurs when the inflation dynamics given these vahrearut
B* indeed has a period two-cycle. That is

.5 {a* + {B*f fa-x - a»)) _S(7T 1)

T g+ (R%? fa - a%) S(77

must have a period two cycle.

Thus expectations can be correct along the steady state and along a period two cyc
These expectations correspond to the so-called consistent expectations edGiirja
introduced byHommesand Sorger (1998). In their framework an expectations scheme is
a CEEIif agents make no structural forecast errors in a linear statistical sense. Beside
steady state and two-cycl@EE they also have chaoti€EE, where the dynamics of the
state variable moves over a chaotic attractor but there is no structure in the forecast erro
TheseCEE are related to the beliefs-equilibria we defined in the previous section. We
now turn to the analysis of the learning model where agents have expectations accordi
to (4.24) and the belief parameters a &dre learned trough a least squares regression
on inflation rates. We assume agents estimate the following perceived law of motion

Kt=103y + Bn-i,

which is equivalent to the perceived law of motion (4.24) up to the transform@tien
a (1- RB) andf3 = 3. Define

(1 no\ ( -1\
T2 _ _
X+ Lo > andx.i = ( 1 TTti)
\ %-i
V1 T2 )
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X1 is the set of regressors for the generation that is born in period t + 1. Recall, tl
the last observation on inflation rates of these agents\is The estimator b for (%, 3i)
at time t +1is

bt+i = {X'iX¢+i) XYl = RX'wYti

As before we can write this estimator recursiV&lgnd the learning dynamics then are
given by

bui = bt+ RX'wy [wti- xuiby,
Rt+l = [Rt + X2%2)

and the inflation dynamics are given by

12 . St +R\(FTE2- at)
"TUS (@dd + B\ (T - @)

In terms off}, and 3, the whole system becomes

bt+i = b+ RtX't+i [TT31 - xt+ih]
Riu = (R™X'uaXuzy (4.26)
a S{3(I+By)+Bl*-2)
n SBoti(l +  Riti)+BIt+in)

Notice that these dynamics constitute an 8-dimensional system, siec@ ®»x 1 vector,
R is a 2 x 2 matrix and the inflation rate in time t depends uponafrd 7¢ 2.

In the model of the previous section we saw that there was only one equilibrium of
dynamics (corresponding ®= 1) which implies that the stability of this equilibrium is
equivalent with the stability properties of the overlapping generations equilibrium unc
naive expectations. In the model studied in this section the situation is a little m
complicated. Since there is a continuum of beliefs equilibria consistent with the monet
steady state and the stability of this monetary steady state depends upon the |
parameters a and /3, there are always a number of stable equilibria and a numb
unstable equilibria. In particular, there exists a nuniber 0, such that all equilibria
with |/3*] < 3 are stable under the learning dynamics discussed above and all of

"We have R = (X'X¢+ X'uXe)~* = (JGN + Xlt+lxt+l)~| and

bt+i = RtX't1 Y1 = R [X'fYt + ad+iflt-i] = R [RNh + X' ir-i]
= Rt[(A(-" - X'waXeH) b+ X'pairei] =by + RX'wa [Ni - Xuiby.
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equilibria are not. The initial conditions on inflation rates and the initial beliefs therefore
seem to be quite important for the dynamics. It might be worth mentioning here that
the least squares learning algorithms we have been studying can have an interpretatio
as a Bayesian learning scheme. In particular, the above algorithm also specifies the cas
where agents have a normally distributed prior on a 8ndnd after each realization
update this prior according tBayes'rule (see Bray and Savin (1986) and Zelner (1971)).
The matrix Ro then corresponds to the precision of the initial beliefRQ I large, then
agents are not to sure about their initial beliefs (their prior distribution has a relatively
high variance) and if RQ is small they have a lot of confidence in their initial beliefs.
Therefore, if for example according to their prior the agents know for sure@hat O,

(that is, they attach probability 1 to this event) the updating scheme discussed above i
exactly equivalent to an updating scheme where agents forecast inflation rates by takin
the average of previous inflation rates, which converges almost always as we saw before

Simulations of the overlapping generations model with @S savings function sug-
gest that, for all parameter values, there will be convergence to the monetary steady stat
and to belief parameters a adfor which the steady state is stable and which correctly
predict this steady state. Which belief parameters that will be depends upon the initial
conditions. For the complicated savings function the situation is a little different. Figure
4.8 shows some typical examples of the learning and inflation dynamics for this case.

Initial beliefs appear to be very important. The first three pictures show the possible
dynamics of the overlapping generations model with p = § and 0 =1 . For all three
pictures, the initial belief on a equals 5, they only differ in the initial belief oRer
The initial inflation values are the same for each simulation and are chosen near the
period two orbit (which is the attractor for the overlapping generations model under naive
expectations). In the first pictur® = -\ and as can be seen the inflation dynamics
converges. The learning dynamics also converges to a situation with a = 6 = 1. As
discussed before the final value Bfis indeterminate and very much depends upon the
way in which the inflation rate converges to the monetary steady state 9. The secon
picture shows what happens when the initial valu® a§ a bit lower,}; = -\. In this
case the inflation dynamics seems to converge to a strange attractor. However, this is
case of nonexistence, similar to the one discussed in the previous section. Starting wit
a = 5andB = -\ the inflation dynamics converges to a two-cycle. This mdkesnverge
to - 1, however a8 becomes approximately -0.76 the period two cycle becomes unstable
and a strange attractor emerges. Across this strange attractor we have a regressi
coefficient B smaller than -0.76 which makes the system return to a stable period two
cycle again and the whole story repeats. A brief look at the time series would then revee
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Figure4.8: Attractorsof (4.26) and examples of beliefs-equilibria with complicated savings
function, a) BEcorrespondingto steady state, p=],0=1ga, = 5and} =-\. b)
Nonexistenceof BE, p=f,0 = |, & = 5andl} = -\. ¢)BE correspondingo period
two cycle,p=f, 0= 1, @ = 5and /3= -0.9.d) BE correspondindo four cycle,p = f,
0=15ao=5and/3; = -\.

the following. Theeconomy movesn anapproximate two-cycldor along period. As
agents start believing moeend morein this two-cycleit is disturbed and inflation rates
start fluctuating more and more causing the betiefsiovein the reverse direction which
leadstothe two-cycle again. The third picture shows the inflation and learning dynamic
when theinitial belief onf3 equals —0.9Theinflation rates convergéo aperiodtwo
orbit (7Ti, 7T) and the learning dynamics convergega,R) = ("% -1). Agents really
haveto believein aperiod two cycldan order for it to indeed emerge. The fourth picture
showsthedynamicsfor O = \\. We then find thaffor initial beliefsa =5 and3 = —|

the inflation rates convergm® aperiod four orbit.
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4.7 Summary

In this chapter we have considered a standard overlapping generations model and discuss
several ways in which agents might learn about the dynamics of inflation. We have see
that, dependent upon the specific learning procedure at hand and the specification of tf
overlapping generations model, the monetary steady state might be stable or unstab
and periodic, quasi periodic and strange behaviour might occur. An important aspec
of our models is that agents perceptions are mis-specified. It is clear that for any ager
it is impossible to understand the whole economy including the specific psychology anc
behaviour of all agents in it. Therefore, an agent always has some extremely simplifiec
model of the economy in his mind when he tries to make forecasts of some economi
variable. Therefore the use of mis-specified models of the economy is dominant in economi
life.

Some important lessons may be learned from the analysis conducted above. First of ¢
it is clear that convergence to a steady state depends very much upon the specific type
learning models people use. Secondly, erratic dynamics can not be dismissed by a high
degree of sophistication of the learning models. Thirdly, though the learning dynamics
might converge to a limit belief the corresponding inflation dynamics might be erratic.
These fluctuating inflation rates are then in some sense consistent with the limit belief o
the agents: in their class of models of the economy, the limit belief explains the inflation
rates the best. Of course models from other classes might perform better, however tt
class of learning models has to be taken exogenously.

A next step in the analysis would be to consider more general classes of perceive
laws of motion and investigate which of these laws of motion and corresponding beliefs.
equilibria are the most relevant for the model under study. In this way one might be abls
to restrict the wilderness of bounded rationality by ruling out laws of motion that make
structural forecast errors.

Of course the analysis in this paper has only been a starting point in a more definit
characterization of the dynamic properties of learning procedures. However we believi
that it carries in it all the phenomena that one would find in more realistic dynamic
economic models where agents can use more sophisticated learning algorithms.
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