Parallel complex systems simulation

Schoneveld, A.

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
Contents

1 **Introduction** .. 1
 1.1 Complex Systems simulation 1
 1.2 Computation in Dynamic Complex Systems 5
 1.2.1 Universal Computing 5
 1.2.2 Cellular Automata 6
 1.2.3 Computing and Simulation 11
 1.3 Intractability and undecidability in some Physical Systems ... 15
 1.3.1 Optical Beam Tracing 16
 1.3.2 N-body Simulation 17
 1.3.3 Non Equilibrium Growth Processes 18
 1.4 Speculation: Computing at The Edge of Chaos 22
 1.4.1 Phase transition in CA 23
 1.5 Conclusions .. 26
 1.6 Outline of this thesis 27

2 **P-CAM: A Framework For Parallel Complex Systems Simulations** 29
 2.1 Introduction .. 29
 2.2 A Parallel Complex Systems Simulation Environment 31
 2.2.1 Decoupling decompositions, virtual particles and execution models ... 31
 2.2.2 Task interaction graphs and update functions 32
 2.2.3 Decomposing task graphs 34
 2.2.4 Data structure .. 34
 2.2.5 Cell migration .. 37
 2.2.6 Cell annihilation/creation 37
 2.3 Dynamic Load Balancing 37
 2.3.1 Load Balancing .. 39
 2.3.2 Cell Selection: Prerequisites 43
 2.3.3 Graph Based Selection Methods 45
 2.3.4 Center Of Mass Based Selection Methods 47
 2.3.5 Edge Smoothing .. 48
 2.3.6 Cell Migration .. 49
 2.3.7 When to Balance? 49
 2.4 Conclusions .. 50