Parallel complex systems simulation

Schoneveld, A.

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariaat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
3 On the Complexity of Task Allocation

3.1 Introduction .. 53
 3.1.1 Phase transitions in combinatorial optimization 54
3.2 The Task Allocation Problem 55
 3.2.1 Random task graphs ... 56
 3.2.2 TAP Hamiltonian ... 56
 3.2.3 Simulated Annealing .. 57
3.3 TAP phase space structure ... 60
 3.3.1 Configuration space .. 61
 3.3.2 Random walk relaxation 62
 3.3.3 Auto correlation function 62
 3.3.4 Discussion .. 66
3.4 Phase transition in Simulated Annealing 66
 3.4.1 Information theoretic measures 67
 3.4.2 Experimental results ... 69
3.5 TAP phase transition ... 71
 3.5.1 TAP extremes .. 71
 3.5.2 Locating the transition 72
 3.5.3 Critical slowing down .. 73
 3.5.4 Finite size scaling .. 73
 3.5.5 Spatial mutual information 74
3.6 Experimental results ... 74
 3.6.1 Correlation length and statistical quantities 74
 3.6.2 TAP phase transition ... 76
 3.6.3 Fully connected task graphs 83
3.7 Experimental validation of the TAP phase transition 85
 3.7.1 Meta modeling with P-CAM 86
 3.7.2 “Physical” optimization 86
 3.7.3 Experimental results ... 87
 3.7.4 Discussion .. 88
3.8 Conclusions .. 90

4 Task Allocation by Parallel Evolutionary Computing 93

4.1 Introduction .. 93
4.2 Genetic Algorithms .. 94
 4.2.1 Selection .. 96
 4.2.2 Recombination .. 96
 4.2.3 Convergence .. 97
4.3 Parallel Evolutionary Algorithms 97
 4.3.1 An Abstract Cellular Genetic Algorithm 98
 4.3.2 ACGA instances .. 98
 4.3.3 An ACGA implementation: Parallel MAP 101
 4.3.4 Locality in CGA .. 101
 4.3.5 Allocating a Finite Element grid 102
 4.3.6 Time complexity ... 104
4.4 The Task Allocation Problem 105
5 Dynamic load balancing using P-CAM

5.1 Introduction

5.2 Dynamic Load Balancing in an Aggregation Process
 5.2.1 A Particle Approach to Fluid Flow
 5.2.2 Aggregation
 5.2.3 Generating task graphs and decompositions
 5.2.4 Experimental setup and results
 5.2.5 Discussion

5.3 Parallel Finite Element Simulation
 5.3.1 Cube based partitioning
 5.3.2 Finite Element Simulation of an Underwater Explosion
 5.3.3 Results
 5.3.4 Discussion

5.4 Conclusions

6 Asynchronous Cellular Automata

6.1 Introduction

6.2 Cellular Automata Update Schemes

6.3 Parallel Update Schemes for Asynchronous CA Models
 6.3.1 Conservative Parallel Discrete Event Simulation
 6.3.2 Optimistic Parallel Discrete Event Simulation

6.4 Self Organized Criticality

6.5 SOC in PDES dynamics: experimental results
 6.5.1 A first indication of Self Organized Criticality in Time Warp
 6.5.2 Influence of lattice size
 6.5.3 Varying the number of processors
 6.5.4 Different virtual time window sizes

6.6 Conclusions

7 Discussion

Bibliography

Summary/Samenvatting

Nawoord

Publications