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Abstract. We extend our study of the tidal evolution of elliptic binary systems to the case of a system consisting
of two 10 M � uniformly rotating main sequence stars. Previous work showed that in a system consisting of a
1:4 M � compact object in orbit about a 10 M � main sequence star stellar oscillation modes were prone to be
excited nearly resonantly for prolonged periods of time. This resonance locking was shown to constitute an e�ective
mechanism for orbital decay in moderately eccentric orbits. In this work we investigate in what ways the locking
mechanism is altered if also the companion is tidally perturbed, also inducing orbital changes and potentially
also being locked in resonance. We show that simultaneous locking can intensify the tidal excitations, and that
resonance locking is a common phenomenon during the tidal evolution of eccentric double main sequence binary
systems which speeds up the secular evolution signi�cantly.
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1. Introduction

A study on the eccentricity of orbits in a sample of � 200
early type binaries by Giuricin et al. (1984) led them to the
conclusion that the observed distribution of nearly circular
orbits was \substantially compatible" with the asymptotic
theory of radiatively damped dynamical tides proposed
by Zahn (1977). There is, however, a signi�cant fraction
of almost circularized early type binaries with periods up
to about 10 days which cannot be explained by Zahn's
theory and which are unlikely to be primordial e ' 0 bi-
naries. However, at higher eccentricities binary stars are
subject to higher (harmonic) forcing frequencies for which
Zahn's asymptotic low frequency approximation is inade-
quate and predicts far too long tidal evolution timescales
(Savonije & Papaloizou 1983).

We consider the tidal evolution of binary stars in ec-
centric orbit by decomposing the perturbing tidal poten-
tial into its harmonic components, and by calculating the
torque on the two stars as the linear superposition of the
torques induced by these forcing harmonics (see Witte &
Savonije 1999b, Paper II). The non-adiabatic stellar re-
sponse to each harmonic is calculated numerically (Witte
& Savonije 1999a, Paper I) using a 2D implicit hydrody-
namic code developed by Savonije & Papaloizou (1997),
which takes Coriolis forces due to the stellar rotation fully
into account. Nonradial (g- and r-) modes of the stars
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may be resonantly excited, strongly enhancing the tidal
exchange of energy and angular momentum between the
two stars. It is often argued that such (nearly) resonant
tidal interaction can be neglected because once at reso-
nance the strongly enhanced tidal dissipation will rapidly
change the stellar spin and the orbit, so that the narrow
resonance condition is almost immediately lost and only
limited exchange of energy and angular momentum and
energy can take place. However, in Paper II we showed
that { when stellar rotation is taken into account { one
of the orbital harmonics in eccentric binaries may become
locked on a resonance. During such locking the nearly res-
onant interaction can be sustained for a prolonged period
of time even though the orbit and stellar spin change sig-
ni�cantly. Such phases of rapid orbital evolution will last
until the orbital eccentricity has decayed so much that the
power re-distribution in the orbital harmonics becomes
too large or until some other orbital frequency approaches
a resonance, tilting the balance and pushing the locked
harmonic through or back out of resonance.

Besides providing e�cient orbital evolution, resonance
locking may be of interest to those trying to interpret
observed oscillations of binary components (see Smith
1985a,b; Harmanec et al. 1997; Willems et al. 1997; De Cat
et al. 2000), because during a period of resonance lock-
ing a certain harmonic of the orbital frequency will be
almost equal to one of the eigenfrequencies in the stel-
lar eigenspectrum. A preferred coincidence of orbital har-
monic frequencies with stellar oscillation frequencies could
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be a great bene�t in the asteroseismological research
of binary components. Observation of enhanced tidal
interaction yields the approximate eigenfrequency (but in
the inertial frame, not in the stellar frame) of a damped
oscillation mode which without tidal forcing would not
self-excite and could therefore not be studied.

In Paper II we concentrated on the evolution of bina-
ries consisting of a pointmass-like (neutron star) compan-
ion orbiting a heavy (10 M � ) main sequence (MS) star.
In this paper we describe the orbital evolution of a binary
system consisting of two 10M � MS stars. In such case the
angular momentum distribution in the system at a given
binary period is di�erent, because the larger companion
mass implies that the orbital moment of inertia is larger.
Now the second MS star also has a large moment of inertia
and it also takes part in the tidal dissipation. Inclusion of
a second spectrum of stellar oscillation modes adds to the
complexity of the system and may in
uence the delicate
process of resonance locking. We will now �rst summarise
the formulae that describe orbital evolution and resonance
locking in double MS binaries.

2. Basic equations

We consider a binary system consisting of twoM i =
10 M � MS stars in an eccentric orbit with eccentricity
e and orbital period Porb . The energy and angular mo-
mentum (magnitude) of the eccentric orbit is given by

Eorb = �
GM 1M 2

2a
and Horb =

M 1M 2

M 1 + M 2
a2!

p
1 � e2

wherea is the semi-major axis and! = 2 �=P orb the mean
angular velocity of the stars in their elliptic orbit. For
simplicity we assume the stellar spin angular momentum
vectorsH 1 and H 2 to be aligned with the orbital angular
momentum vector. As in Paper II, we will only consider
secular tidal changes in the magnitude of the orbital en-
ergy and angular momentum, and ignore changes in the
con�guration of the orbit as given by the advance of pe-
riastron (apsidal motion). We brie
y summarise what re-
lations were established in Paper II, and indicate how the
relations for resonance locking are altered when both stars
contribute to the tidal dissipation.

2.1. Equations of tidal evolution

For each star its companion's tidal potential can be ex-
pressed as

� T (r; #; '; t ) = �
1X

l =2

lX

m =0

r l Pm
l (cos#)

1X

n = �1

clm
n cos(n!t � m' ); (1)

where (r; #; ' ) are spherical polar coordinates with the ori-
gin at the centre of mass of one of the stars and whereby

Pm
l (cos#) are the associated Legendre functions. The co-

e�cients

clm
n =

�
GM other

al +1

�
� m

(l � m)!
(l + m)!

Pm
l

�
cos

�
2

�
h( l +1) ;m

n (2)

are given in terms of the Hansen coe�cients

h( l +1) ;m
n =

1
2�

Z �

� �

� a
r 0

� l +1
ei( m' 0� kM ) dM;

where M = !t is the mean anomaly and primed coordi-
nates give the location of the companion in its orbit. In
the following we only consider the dominant l = 2 contri-
bution.

The response to the forcing by each potential term
in summation (1) is assumed to have reached a steady
state oscillation, i.e. its (harmonic) time dependence is
known. The steady state approximation requires that the
tidal evolution timescale remains much longer than the
damping time � d of the excited modes, and with typically
� d . 102 yr this poses in general no problem. The steady
state response to the forcing, in particular the density per-
turbation � 0

i = � 0
i (r; # )ei( n!t � m' ) , is evaluated numerically

with the 2D oscillation code. For any given forcing fre-
quency one can thus evaluate the tidal interaction between
the two stars in the form of a torque integral in terms of
the density perturbation over each star (i = 1 ; 2):

T lm
in = � �c lm

n

Z R i

0

Z �

0
Im ( � 0

i (r; # )) �

Pm
l (cos#) r l +2 sin# d# dr (3)

where Im stands for imaginary part. Note that the torque
integral can be either positive (excitation of prograde os-
cillation modes for �� n = n! � m
 i > 0) or negative (ret-
rograde modes excited by the lower orbital harmonics),
where �� n is the forcing frequency in the stellar frame. The
torque integral is evaluated numerically over the tidal re-
sponse on the 2D (r; # ) grid. The work done per unit time
by the partial tide ( n; l; m ) on star i and the associated
rate of change of the stellar spin momentum follows re-
spectively as

_E lm
in = n! T lm

in and _H lm
in = mT lm

in (4)

where againi = 1 ; 2 for the two stars.
The induced changes of orbital energy and angular mo-

mentum are then calculated by merely adding all the har-
monic contributions of both stars together:

_Eorb = �
X

i

X

m

X

n

_E lm
in = �

X

i

_Ei (5)

_Horb = �
X

i

X

m

X

n

_H lm
in = �

X

i

_Hi ; (6)

with _Ei =
P

m

P
n

_E lm
in and _Hi =

P
m

P
n

_H lm
in the rates

of change of rotational energy and (spin) angular momen-
tum for each of the stars i . The rates of change of the
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orbital eccentricity and the semi-major axis follow as

de2

dt
=

�
GM 1M 2

2a

� � 1h
(1� e2) _Eorb � !

p
1 � e2 _Horb

i
(7)

1
a

da
dt

=
�

GM 1M 2

2a

� � 1
_Eorb ; (8)

while the spin rate of star i changes as

d
 i

dt
=

1
I i

_H i �
H i

I 2
i

_I i : (9)

Here, I i is the moment of inertia of star i , and _I i the
rate at which this moment of inertia increases as the star
expands during core hydrogen burning.

2.2. Evaluation of torque integrals

The steady state oscillation amplitude forced by a har-
monic term in the tidal potential at a given frequency
strongly depends on the spectrum of stellar oscillation
modes. The value of the torque integralT is the largest
when the forcing frequency is close to a stellar eigenfre-
quency. Near an eigenfrequency the torque integral over
the volume of star i due to harmonic forcing frequency
� n = n! can be represented by the resonance curve of a
harmonic oscillator:

T lm
in = Qn T lm

0;ik (10)

with

Qn =
1

�
�� 2

n � �� 2
0 ;ik

�� n �� � ik

� 2
+ 1

� (11)

Here, �� 0;ik (l; m) is the resonance frequency of the stellar
oscillation mode with symmetry (l; m) and k radial nodes,
�� � ik (l; m) the peak width (FWHM) of the corresponding
resonance curve andT lm

0;ik the value of the torque integral
at full resonance. Tables of resonance frequencies �� 0;ik ,
peak widths �� � ik and peak heightsT lm

0;ik for l = 2 and m =
0; 2 for a 10 M � MS star at di�erent rotation rates and
di�erent stages of stellar evolution are given in Papers I
and II. Interpolations within these tables are performed to
calculate the stellar oscillation spectraT lm

in at each time
step during the orbital evolution.

Going from high to low pro- or retrograde forcing fre-
quencies in the stellar frame the wavelength of the stel-
lar g-mode response decreases, increasing the number of
radial nodes in the oscillation cavity between the convec-
tive core and the stellar surface. The frequency spacing
between adjacent eigenfrequencies of stellar g-modes de-
creases, while the low frequency gravity waves can pen-
etrate deeper towards the stellar surface where radiative
damping is strong. As a result of the severe damping in
the surface layers the low frequency g-mode resonance
peaks become wider and lower. Eventually the stellar res-
onances become smeared out to form a relatively feature-
less torque level which varies only slowly with frequency,
on top of which the narrow bunch of torque peaks due

to (quasi-toroidal) r-mode resonances are superposed for
slightly negative frequencies. For the orbital calculations
the heavily damped g-modes with more than twenty ra-
dial nodes are not represented individually, and the torque
distribution between prograde g20 and retrograde g� 20 is
approximated by a constant torque levelTlow (except near
corotation).

An average level ofTlow = 3 1037 cgs represents the
results of our numerical calculations for theX c = 0 :4 stel-
lar model best. In Paper II we used a detailed �t to the
numerical result obtained in Paper I (down to the lowest
frequencies) but here we use this simple prescription for
the low frequency forcing which gives similar results. Note
that near corotation the torque appears still rather large
and it is only in a narrow region j �� j < 0:01
 i that the
torque rapidly falls o� to zero (see Papaloizou & Savonije
1997, and Paper I) and changes sign at �� = 0. In Sect. 3.4
we discuss how the orbital evolution calculations depend
on the value of Tlow .

2.3. Resonance locking in double MS binaries

By applying Eqs. (3){(9) the rate of change of the mean
orbital frequency due to the tidal dissipation induced by
the nearly resonant forcing of a certain orbital harmonic
(n; l; m ) can be expressed as

_! =
3n
I orb

T lm
in (12)

where the orbital moment of inertia I orb = �a 2 with � =
M 1 M 2

M 1 + M 2
. Note that in the inertial frame both stars are

forced with the same harmonic frequenciesn! . Therefore,
in a double MS star binary the rate at which the forcing
frequency in the stellar frame (symbolised by a bar) �� n =
n! � m
 i of harmonic n drifts relative to the resonance
frequency �� 0;ik of a certain oscillation modek of star i can
be written as

d
dt

(�� n � �� 0;ik ) = n
X

i 0;m 0;j

3j
I orb

T lm 0

i 0j

�
X

m 0;j

m
I i

�
m +

@�� 0;ik

@
 i

�
T lm 0

ij

+
�


 i

I i

�
m +

@�� 0;ik

@
 i

�
dI i

dX i
�

@�� 0;ik

@Xi

�
_X i : (13)

Here, the �rst term on the right yields the shifting rate
of the orbital harmonics caused by the tidal dissipation
in both stars, therefore this summation is over i 0 = 1 ; 2.
The second term re
ects shifting due to tidal spin-up or
spin-down of star i , including the rotational e�ect on the
oscillation frequency spectrum of star i . The third term
sums the shifting rate due to intrinsic spin-down of the
star as a result of its increasing moment of inertia, and due
to intrinsic changes in the stellar eigen frequency spectrum
which occur as the star restructures during core hydrogen
burning. This last term contains no torque, but is merely
proportional to the rate _X i of hydrogen depletion in the
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core of star i . Following the notations adopted in Paper II
we introduce

� inj �
�

3nj
I orb

�
m
I i

�
m +

@�� 0;ik

@
 i

��
(14)

for the dynamical factors which appear in Eq. (13) and

� i �
�


 i

I i

�
m +

@�� 0;ik

@
 i

�
dI i

dX i
�

@�� 0;ik

@Xi

�
(15)

for the stellar evolution factors. Note that for a harmonic
of su�ciently large j the sign of � inj becomes positive but
that for the strongest harmonics � inj is negative, so that
for some harmonic j� inj j can be small. To facilitate fu-
ture references to the di�erent terms which are present in
Eq. (13), we will further introduce the following shorthand
notations:

@t;n (�� n � �� 0;ik ) � � inn T lm
in (16)

for the relative shift rate induced by the nearly resonant
harmonic n itself by the change of the orbital period and
the spin-up/down of star i it induces;

@t; 6n (�� n � �� 0;ik ) �
X

m 0;j

� inj T lm 0

ij � � inn T lm
in (17)

for the rate of shifting due to all tidally excited modes in
star i , except the aforementioned (nearly resonant) exci-
tation by harmonic n;

@t; 6i (�� n � �� 0;ik ) �
X

m 0;j

3nj
I orb

T lm 0

i 2 j (18)

for the rate of shifting of harmonic frequencyn relative to
the eigenfrequency of modek in star i due to changes in
the orbital period caused by dissipation in the companion
star i � 1;

@t; _X (�� n � �� 0;ik ) � � i _X i (19)

for the rate of shifting due to stellar evolution, i.e. due to
the stellar restructuring in response to hydrogen burning
in the interior of star i . The total rate of frequency shifting
relative to the resonance with harmonicn (Eq. (13)) can
thus be written as

dt (�� n � �� 0;ik ) =
h
@t;n + @t; 6n + @t; 6i + @t; _X

i
(�� n � �� 0;ik ): (20)

Resonance locking occurs when for a prolonged period of
time the right side of Eq. (20) remains almost zero by
near cancellation of the �rst three shift terms ( @t;n , @t; 6n

and @t; 6i ); the last term proportional to _X is usually much
smaller in absolute value than the �rst three terms. Near
the end of core hydrogen burning however, the last term
may become important, a situation we have not yet ex-
plored.

In a binary system in which the stellar components and
the orbit have the same direction of rotation the strongest
low order orbital harmonics usually excite retrograde os-
cillation modes in the stars, spinning the stars down and

therefore causing a net positive relative shifting via the
term @t; 6n . In such a case, both factors� inj and T lm

ij are
negative for these low order harmonicsj . Orbital decay
due to dissipation of excited prograde modes in the com-
panion star increases the mean orbital frequency! and
therefore gives rise to a positive value for the term@t; 6i

of star i . If the self-shift factor � inn of a nearly resonant
higher order prograde harmonicn is negative (for n below
the value for which � changes sign, see Eq. (14)) then this
harmonic is driven into resonance by the combined e�ect
of the two positive terms @t; 6n and @t; 6i , whereby its self-
shift term @t;n becomes increasingly more negative since
its (positive) torque T lm

in becomes larger. Therefore the
net relative shifting rate d t (�� n � �� 0;ik ), which is the total
of all terms, decreases. This results in a longer duration of
the resonant excitation and therefore enhances the tidal
decay process of the orbit. If the nearly resonantly ex-
cited oscillation mode of the star has a su�ciently high
resonance peak and the Hansen coe�cient of the excit-
ing orbital harmonic n is su�ciently large the self-shift
term can counterbalance the rest of the terms in Eq. (20)
so that the relative shift rate will drop to zero before the
resonance is crossed. During the subsequent period of reso-
nance locking the frequency distance between orbital har-
monic n and the resonance usually decreases slowly as
the orbital eccentricity declines, because the distribution
of the Hansen coe�cients for the orbital harmonics will
change in favour of the low order harmonics. These excite
retrograde modes, requiring the weakening high frequency
harmonic n to approach the resonance more closely in or-
der to remain in balance with the other terms in Eq. (20).
Eventually, the nth orbital harmonic will cross the stellar
eigenfrequency, after which the decreasing torque can no
longer withstand the driving in
uence of the other two
terms and the locking phase is terminated.

Equilibrium and thus locking of a mode can only be
attained if the self-shift term counters the other terms, so
for prograde stars � inn (see Eq. (14)) must be negative.
Furthermore, the most e�ective locking with shortest or-
bital decay timescales occurs for large torque valuesT lm

in
and thus, for a given equilibrium value for the self-shift
term @t;n , for small values of j� inn j (see Eq. (16)). At the
same time, a long duration of locking is achieved when
locking is established already while the frequency di�er-
ence between the harmonic frequency and the eigenfre-
quency is still relatively large so that the fractional peak
height Qn at which the harmonic excites the oscillation
mode is only small. In that case a large torque fraction

1
Q n

can yet be gained by further approaching the reso-
nance, so the Hansen coe�cient of the exciting harmonic
can decrease by a relatively large factor before the locking
is terminated. In that case, locking will only end as the
eccentricity is signi�cantly decreased.

During locking a second harmonic approaching and
possibly crossing another stellar oscillation mode could
during a short interval enhance the positive term @t; 6n ,
increasing the resonance heightQn needed to keep the
locking balance (20) intact, thereby possibly pushing the
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locked harmonic through resonance and forcing an early
end to the equilibrium situation. This can happen when
a low order harmonic for which � < 0 excites a (retro-
grade) r-mode, or when a high order harmonic for which
� > 0 excites a prograde g-mode. On the other hand, ex-
citation of a prograde g-mode by another harmonicn2

for which � < 0 decreases the term@t; 6n , thereby decreas-
ing the resonance heightQn of the locked harmonic. If
the other harmonic n2 quickly crosses its resonance the
old locking equilibrium will soon be restored; if, on the
other hand, the harmonic n2 becomes locked before cross-
ing its resonance, the previously locked harmonicn can
be pushed out of resonance, while harmonicn2 takes its
place as locked harmonic. Likewise, resonance crossings
or resonance locking in star 2 will in
uence the term @t; 6i ,
thereby in
uencing the resonance locking mechanism in
star 1.

Obviously resonance locking depends on the ratio
I orb =Ii , in combination with the order n of the harmonic
which is locked. For two 10M � stars the orbital moment

of inertia is approximately I orb � 6 1057 P
4
3

orb g cm2 where
Porb is in days, while the stellar moment of inertia is ap-
proximately I i � 2 1056 g cm2. For orbits with periods of
a few days, therefore,I orb � I i . Compared to the case of a
10 M � MS star and a 1:4 M � compact companion, as was
considered in Paper II, the orbital moment of inertia I orb

at given Porb is larger by a factor 100
20 = 14

11:4

�
20

11:4

� 2
3 � 6.

Likewise, the torque generated by a certain harmonic at
a given orbital period (and for equal eccentricities, stel-
lar rotation rates and nuclear evolution stages, compared
to the low mass companion case) is larger by a factor
�

10
1:4

� 2 �
11:4
20

� 2
� 17 where the �rst factor comes from the

higher companion mass, and the second factor from the
longer semimajor axis for the heavier system.

This increase in torque strength does not change the
locking balance much, since the three dominant terms
@t;n , @t; 6n and @t; 6i in Eq. (20) are all increased by the
same factor. However, due to the current large value of
I orb =Ii the harmonic n ' m

p
I orb =(3I i ) (see Eq. (14)) for

which � inn changes sign is so large that it has too small
power to be signi�cant, so that, unlike the cases studied in
Paper II, no locking occurs for which� inn ' 0. Harmonics
up to a higher order will thus counterbalance the posi-
tive frequency shifting due to low order retrograde modes,
so more high order harmonics can potentially become in-
volved in resonance locking.

In case the direction of the orbital motion of the com-
panion is counter to the direction of stellar rotation only
retrograde modes are excited. Hence, resonance locking
as a balance between prograde and retrograde harmonics
cannot occur. But for signi�cant orbital eccentricity tidal
forcing becomes signi�cant at a harmonicn for which the
magnitude of � inn is small and for which � inn changes
sign during the evolution. If this happens, e�cient orbital
decay may be the result, as was shown in Paper II for
the binary radio pulsar system PSR J0045-7319, which
was assumed to have signi�cant retrograde stellar rota-

tion 
 s � 0:3 
 c and which has high orbital eccentric-
ity ( e � 0:8). Since in this case all the torques for the
large number of harmonics contributing to Eq. (20) are
generated in the region of the strong g-mode resonance
peaks and thus 
uctuate rapidly in magnitude as evolu-
tion proceeds, the locking process is not as stable, and
the locked harmonic is seen to erratically move up and
down the resonance peak in stead of being driven steadily
through resonance. As retrograde rotation is not likely to
be encountered in double MS binary systems, we will not
consider such systems in this paper.

3. Results for dual MS binaries

We now present the results of calculations of the orbital
evolution of dual MS binaries for a number of di�erent
sets of orbital parameters, and check for the occurrence of
resonance locking. For simplicity the same torque spectra
are used for the two 10M � stars, which have identical
values for all other relevant parameters as well. A some-
what arti�cial situation would occur if both stars at some
stage during the orbital evolution would rotate at equal
rates. In such a case, the situation would have become
fully symmetric between the two stars, so that their evo-
lution would be identical from that point on. In order for
our model to resemble more closely the realistic situation
in which small di�erences in mass of the components leads
to di�erent evolution for both stars, we lifted the symme-
try by simply increasing the rate of stellar evolution of
one of the stars by a small amount. We start all our calcu-
lations when both stars have a core hydrogen abundance
(by mass) of X c ' 0:4.

3.1. Time integration for the secular tidal evolution

For each timestep the torques acting on the stars are cal-
culated by summing over the harmonic components of
the tidal potential, after which the orbital and stellar pa-
rameters are updated using a second order Runge-Kutta
scheme:

A (t i +1 ) = A (t i ) +
dA
dt

�
�
�
�
t i + 1

2

(t i +1 � t i )

with

dA
dt

�
�
�
�
t i + 1

2

=
d
dt

 

A (t i ) +
1
2

dA
dt

�
�
�
�
t i

(t i +1 � t i )

!

;

where subscript i counts the timesteps and vectorA =
(H1; H2; Eorb ; e2). Timesteps are limited by the condition
that the relative excitation height of each harmonic should
not change by too large a factor from timestep to timestep:

1
1:5

�
Qn (t i +1 )
Qn (t i )

� 1:5;

and also by the condition that the di�erence in excitation
height between two timesteps should not exceed 10% of
the total peak height:

jQn (t i +1 ) � Q n (t i )j � 0:1:
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Fig. 1. Short interval of orbital evolution for a system containing two 10 M � MS stars. At t = 0 the orbit has a period of
5 days (panel a) ) and eccentricity e = 0 :25 (panel b) ). Initially star 1 rotates at 0 :8 times the periastron frequency, star 2 starts
(pseudo) synchronously at 
 2 = ! per (panel d) ). Panel c) gives the tidal evolution timescale, along with partial timescales
for the locked harmonics; panel e) indicates the occurrence of resonance locking by giving the shifting rate of locked orbital
harmonic frequencies �� n relative to the locking eigenfrequencies �� 0;ik , divided by the sum of all terms contributing to this rate
excluding the contribution of harmonic n itself. During resonance locking this value is almost zero. Panel f ) shows the relative
excitation height Qn of the locked harmonics

Furthermore, to increase the stability of the integration
scheme during resonance locking timesteps are chosen
such that the second order term is for each timestep much
smaller than the �rst order term:

� j (O(2)) �
1

Aj (t i +1 )

�
Aj (t i ) +

dAj

dt

�
�
�
�
t i

(t i +1 � t i )

� Aj (t i +1 )
�

. 10� 7

for each componentj of the vector A .

3.2. Simultaneous resonance locking: a detailed
description

Figure 1 depicts a short interval of orbital evolution as an
example of resonance locking taking place in both stars si-
multaneously. The initial orbit has a period Porb = 5 days
and eccentricity e = 0 :25. For this moderate orbital ec-
centricity only orbital harmonics with n < 10 have to be
considered. Starting with star 1 rotating at 0:8 ! per and

star 2 rotating at periastron frequency (! per =
q

1+ e
(1 � e)3 ! ),

panels 1a and 1b show the evolution of orbital parame-
ters, while panel 1d gives the rotation rates of the stars.
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As the evolution progresses, we observe intervals during
which the orbit declines rapidly and the tidal timescale
(solid line in panel 1c) stays at a more or less constant
low level, reminiscent of the resonance locking described
in Paper II. In panel 1c partial timescales which can be
formed from the torques that separate harmonic compo-
nents n of the tidal potential exert on the stars i are also
given: � in = Porb

_Porb ;in
= 2

3
a

_ain
= � 2

3
E orb

_E orb ;in
where, accord-

ing to Eq. (4), _Eorb ;in = n! T lm
in . For the harmonics that

have the strongest torque contributions and therefore the
shortest partial orbital decay timescales panel 1e con�rms
resonance locking by showing that the rate dt (�� n � �� 0;ik )
at which these harmonic frequencies �� n drift in frequency
relative to their resonant stellar oscillation frequency �� 0;ik

almost vanishes due to the action of their self-shift term
@t;n (�� n � �� 0;ik ). The quantity plotted in panel 1e,
�

dt

dt � @t;n

�
(�� n � �� 0;ik ) �

"
@t;n + @t; 6n + @t; 6i + @t; _X

@t; 6n + @t; 6i + @t; _X

#

(�� n � �� 0;ik ); (21)

is close to unity when �� n is far from the resonance fre-
quency �� 0;ik so that @t;n (�� n � �� 0;ik ) = � inn T lm

in is small.
During resonance locking@t;n cancels@t; 6n + @t; 6i + @t; _X ,
so that the numerator in Eq. (21) vanishes and the corre-
sponding line in panel 1e falls o� to zero. Figure 3f gives
the fraction Qn of the total height of the resonance peak
at which the locked harmonics excite their resonant stellar
modes.

Figure 2 shows the position of the stellar eigenfrequen-
cies � 0;ik (solid lines) relative to the harmonics of the or-
bital frequency � n (dashed lines) in the inertial frame;
panel 2a for star 1 and panel 2b for star 2. The posi-
tions of the stellar eigenfrequencies have thus been cor-
rected for the stellar spin frequency:� 0;ik = �� 0;ik + m
 i .
The frequencies have been normalised by the mean or-
bital frequency ! which itself changes (and increases most
of the time) during the evolution (see Fig. 1a). In this way
the orbital harmonics � n =! = n are located at the natu-
ral numbers and show up as horizontal (dashed) lines in
the graph. The relative magnitude of the harmonic poten-
tial terms is indicated by the greyscale which re
ects the
strength of the Hansen coe�cients hn . The long dashed
line gives the dimensionless frequency for which �� = 0,
so harmonics which are located above this line excite pro-
grade modes in the star, while harmonics below this line
are retrograde. The thick line segments indicate resonance
locking for those harmonicsn which meet with the con-
dition that the drift of the harmonic relative to the reso-
nance frequency almost cancels:
�
�
�
�

�
dt

dt � @t;n

�
(�� n � �� 0;ik )

�
�
�
� � 0:05; (22)

and which have a fractional excitation height of at least
1%:

Qn � 0:01; (23)

so only resonance locking which may signi�cantly enhance
the orbital decay will show up. In Fig. 2 the prograde g-
modes g210 and g2

20 are labelled, while the range in which
the retrograde r-modes are located is labelledrk .

Figure 3 shows for the locking which occurs in the two
stars the separate terms of the locking balance Eq. (20).
Locking of harmonic n = 7 on the stellar mode g2

13 of
star 1 is shown in panel 3a, while in panel 3b locking of
harmonic n = 9 onto mode g2

10 of star 2 is followed by the
combined locking of n = 7 and 8 locking respectively on
the modes g214 and g2

11 of star 2. Here, thick lines are used
to distinguish the n = 8 locking from the locking of n = 7.
The solid lines which give the net shifting rates dt (�� n �
�� 0;ik ) drop to zero during resonance locking due to the
fact that the level of the dashed lines which give the self-
shifting rates @t;n (�� n � �� 0;ik ) cancels the combined action
of the dash-dotted and dotted lines, which stand for the
terms @t; 6n (�� n � �� 0;ik ) and @t; 6i (�� n � �� 0;ik ), respectively. The
stellar evolution term @t; _X (�� n � �� 0;ik ) is fairly small and
almost constant, and therefore not shown as a separate
line in the plots. Note that resonance locking in one star
can only couple to the other star through its shrinking or
expansion e�ect on the orbit, which is given by the dotted
lines in Fig. 3.

The dominant orbital harmonic with frequency �� 2 ex-
cites retrograde modes in both stars. However, the second
strongest harmonic frequency �� 3 is prograde in star 1 and
retrograde in star 2, see Fig. 2. As a consequence, the
dash-dotted lines in Fig. 3 which are constructed from the
sum of all non-locked harmonics correspond to more posi-
tive values for star 2 (panel 3b) than for star 1 (panel 3a).
At t = 0 the level of the dash-dotted line in star 1 is
even almost zero due to the action of prograde harmonic
n = 10 which slowly approaches the g27 resonance peak
of star 1, and which crosses the peak of the resonance
near t = 0 :044 Myr. Soon after the evolution started, �� 9

encounters g210 of star 2, and as it approaches the reso-
nance (panel 1f), its self-shift term becomes strongly neg-
ative, causing its net shift rate to slow down (respectively
dashed and solid lines in panel 3b). When its net shift rate
(solid line) reaches zero, resonance locking is established
and from that moment on its approach of the resonance
frequency �� 0;2 10 (see dotted line panel 1f) happens on the
timescale at which signi�cant eccentricity decrease occurs
(see panel 1b). When the eccentricity declines the strength
of the Hansen coe�cient h9 is reduced and, to maintain
the locking equilibrium, this has to be compensated by
a closer approach of the resonance. This can be seen in
panel 1f which shows the evolution of the relative reso-
nance heightQ9.

Due to the n = 9 resonance locking in star 2 and
the resulting orbital shrinking, the rate at which �� 7 ap-
proaches g213 in star 1 increases (dotted and solid lines
in panel 3a). As the relative height Q7 in the peak of
g2

13 of star 1 increases (dashed line panel 1f), its coun-
teracting self-shift term becomes more strongly negative
(dashed line panel 3a) and after approximately 0:03 Myr
harmonic n = 7 becomes locked as well. The above
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Fig. 2. The curves show, for the orbital evolution pictured in Fig. 1, the stellar eigenfrequencies in the inertial frame � 0;ik of
star 1 (panel a) ) and star 2 (panel b) ) normalised on the varying mean orbital frequency ! . A resonance occurs when a curve
coincides with one of the horizontal dashed lines (which correspond to the orbital harmonics n = � n =! ). The boundary between
pro- and retrograde frequencies (�� = 0) is given by the long fat dashes, and the relative strength of the di�erent orbital harmonic
components given by the Hansen coe�cients hn is coded in greyscale. Thick line segments on the curves mark resonance locking.
The r-modes occupy a narrow frequency region indicated by r k
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Fig. 3. The resonance locking balance of star 1 (panela) ) and star 2 (panel b) ) during the orbital evolution depicted in Fig. 1.
The shifting rate of each locked harmonic relative to the eigenfrequency of the mode it is locked to and the separate terms
which contribute to this rate are plotted, see Eq. (20). Not shown is @t; _X (�� n � �� 0;ik ), which is small and almost constant. To
prevent over-plotting a vertical o�set has been applied for the case n = 8 k = 11 (thick lines)

mentioned resonance crossing of �� 10 through g2
7 of star 1

which quickly follows causes the dash-dotted line in
panel 3a to temporarily take on a negative value and, as
a reaction, the resonance heightQ7 in star 1 decreases for
a while (panel 1f).

Next, just before t = 0 :05 Myr, orbital harmonic n = 3
passes twice through the weakest r-mode that is included
in the spectrum of star 2, �rst downwards and upwards
quickly after that. The strong r-mode resonances spin the

star down and widen the orbit, inducing a positive fre-
quency shift in the locking balance. Primarily these r-
mode crossings in star 2 feed into the dash-dotted line
in panel 3b, driving the n = 9 harmonic deeper into
resonance. Thereby the self-shift term@t; 9(�� 9 � �� 0;2 10)
(dashed line in 3b) has to become more negative in order
to keep the locking equilibrium intact. The orbital expan-
sion shows up as a rising of the dotted line in 3a, and this
in turn drives the n = 7 locking balance in star 1 deeper
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into resonance (dashed lines panels 1f and 3a). A little
later at t ' 0:05 Myr, during the second r-mode crossing
in star 2, the n = 9 locking in star 2 terminates when this
harmonic is driven over the peak of the resonance.

Using the orbital evolution described up to this point
a few remarks can be made about the way resonance lock-
ings and resonance crossings in the two stars can in
u-
ence each other. As already mentioned, resonance locking
in one star can indeed through orbital changes cause res-
onance locking in the other star to become more intense.
Note the enhanced positive levels of the dotted lines in
Fig. 3 which must be countered by the negative self-shift
terms, so the levels of the dashed lines must become more
negative by raising the fractional resonance heightsQn of
the locked harmonics. When locking in star 2 commences,
the rate at which harmonic n = 7 approaches resonance
with the g2

13 mode of star 1 it will become locked on in-
creases strongly. Resonance locking in star 1 would there-
fore not have occurred as quickly if no resonance locking
in star 2 had occurred. At the beginning of resonance lock-
ing in star 1, the shrinking of the orbit due to locking in
star 2, shown by the dotted line in panel 3a, is even the
strongest positive term against which then = 7 harmonic
becomes locked in star 1. De�nitely, no locking would have
occurred here without the locking in star 2.

A resonance crossing of an r-mode in star 2 terminates
the locking in star 2, because the resonance peak on which
the n = 9 harmonic had been locked could not provide
su�ciently large a torque to keep the resonance locking
balance (20) in star 2 near zero. The r-modes' indirect in-

uence (via stellar spin down and orbital expansion) on
the resonance locking in star 1 is also large; the required
fractional peak height of �� 7 in star 1 (dashed line panel 1f)
increases to more than 10%. A stronger locked mode in
star 2 could have prevented locking in star 2 to terminate,
but it could also have caused the locking in star 1 to end if
the resonant torque required to maintain locking in star 1
would have increased above the maximum of the locked
mode in star 1. Instead, locking in star 1 continues after
the locking in star 2 has ended aroundt = 0 :05 Myr. As
�� 10, which crossed through g27 of star 1, drifts further away
from resonance its in
uence on the level of the dash-dotted
line in panel 3a subsides, and the level of this line rises due
to the retrograde excitation of �� 2 to become the largest
positive term in the resonance locking balance of star 1.
Meanwhile, the lack of resonant prograde forcing in star 2
to counter the retrograde torques due to the leading har-
monic terms n = 2 and n = 3 causes this star to rapidly
spin down after t ' 0:05 Myr (dashed line panel 1d) to
near pseudo-synchronisation. As a consequence, spin en-
ergy is transferred from star 2 into the orbit while simul-
taneously, due to the continuing locking in star 1, energy
is being lost from the orbit at a higher rate. During the
time interval in which no locking in star 2 occurs, the par-
tial tidal timescale associated with harmonicn = 7 acting
on star 1 is shorter than the total tidal timescale for the
system (dashed and solid lines in panel 1c). The rapid spin
down of star 2 induces a quick drift of its oscillation fre-

quencies relative to the harmonic frequencies of the orbit,
see panel 2b.

Around t = 0 :075 Myr �� 7 runs into and becomes locked
on g2

14 of star 2, so that the orbital decay is enhanced.
This causes the dotted line in panel 3 to rise and forces
the resonance locking in star 1 to readjust, whereby the
fractional resonance height of the (n = 7) locked mode in
star 1 increases somewhat (dashed line panel 1f). In turn
this rises the level of the dotted line in panel 3b somewhat
and causes the locking in star 2 to intensify, but this ef-
fect is only small. During locking the harmonic frequency
�� 7 approaches the eigenfrequency �� 0;2 14 and its fractional
excitation height rises. However the relative peak height of
�� 8 which approaches �� 0;2 11 increasesfaster, see the dou-
ble dotted and dash-dotted lines in panel 1f. As the rela-
tive peak height of �� 8 increases its self-shift term becomes
more negative (thick dashed line in panel 3b), thereby de-
creasing the term@t; 6n (�� 7 � �� 0;2 14) (thin dash-dotted line
in panel 3b) of which it is a part along with the terms
due to the strong low order orbital harmonics. In reac-
tion the self-shift term of the n = 7 locking in star 2
must become less negative (thin dashed line in panel 3b),
so the harmonic excitation frequency �� 7 drifts away from
the resonance frequency, thus lowering the fractional ex-
citation height (double dots in panel 1f). Locking of the
n = 8 harmonic on g2

11 then takes the place of then = 7
locking on g2

14 in star 2. This n = 8 locking ends when
Q8 reaches 1 (dash-dotted line in panel 1f) and the res-
onance is crossed, but not before the same happens for
�� 7 in star 1. When �� 8 crosses the resonance in star 2 its
diminishing e�ect on the term @t; 6n (�� 7 � �� 0;2 14) abruptly
ends, and as a consequence �� 7 rapidly approaches �� 0;2 14

again. In principle its resonance locking could be reestab-
lished at that point, however the decreasing eccentricity
caused the Hansen coe�cient h7 to become weaker, and
the resonant torque needed to balance the locking Eq. (20)
for the n = 7 harmonic cannot be reached by thek = 14
resonance. Soon after, �� 7 also crosses resonance.

From the above detailed description of a short evolu-
tion timespan it is clear that resonance locking in one of
the early type stars in double MS binaries can establish
and/or intensify the locking process in the other compo-
nent. However, locking in each of the components as well
as non-locked resonance crossings can in fact also shorten
the period of locking in the other component. The e�ec-
tiveness of resonance locking as a mechanism for tidal evo-
lution then depends on what the chances are of quickly
running into the next stage of locking. To gain some in-
sight in this matter, we will now consider somewhat wider
systems and follow their evolution during longer times-
pans.

3.3. Occurrence of resonance locking in wider orbits

For a few increasingly wider initial orbits we follow the or-
bital evolution and show how resonance locking in
uences
the orbital evolution. In this way we acquire a feeling for
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Fig. 4. At t = 0 the orbit has a period Porb = 10 days (panel a) ) and eccentricity e = 0 :5 (panel b) ). The stars rotate initially
at 80% and 100% of periastron frequency (panel d) ). Resonance locking causes many periods of rapid orbital decay (square
dips in panel c) ), during which the locked star(s) spins up

the importance of the resonance locking mechanism for a
range of di�erent orbital parameters.

3.3.1. Orbit with Porb = 10 days

First we evolve a somewhat wider orbit (Porb = 10 d),
starting from eccentricity e = 0 :5 and follow it for some
2 Myr (see Fig. 4). The stellar rotation rates (panel 4d)
at t = 0 are again 80% and 100% of periastron frequency.
The timescale for orbital decay (panel 4c) shows many
periods during which the orbit decays quite rapidly for
tens of thousands of years. During these periods one or
both stars have their rotation rate increased. Often the
resonance locking occurring during these phases increases
the rate of orbital decay by a large fraction, as can be seen
from the jumps in the timescale as these resonance locking
phases commence or end.

Resonance locking occurs in both stars throughout the
evolution calculated here, see Fig. 5. The dotted line in
this �gure gives the dimensionless frequency for which the
self-shift term would exactly vanish:

� inn = 0 ) n =

s
I orb

I i

m
3

�
m +

@�� 0;ik

@
 i

�
:

As the term @�� 0;ik

@
 i
is di�erent for the di�erent oscil-

lation modes, a slight jump in the dotted line is seen
each time locking on another stellar g-mode commences.
Harmonics of order n lower than this but with n > n 0

(where n0 de�nes the boundary between prograde and

retrograde modes) have negative self-shift and may there-
fore be locked. The conditions for resonance locking are
most favourable in a frequency strip aroundn � 15 at
�rst, decreasing towards n � 9 as the orbital period and
eccentricity diminish and the high order Hansen coe�-
cients become much weaker than the Hansen coe�cients
of the low order retrograde harmonics. During the later
stages, signi�cant resonance locking only occurs with the
g2

14 modes of the stars, which can generate a signi�cantly
higher torque value at the top of the resonance peak than
the g2

15 modes or those with still higher radial orders. At
higher frequencies the orbital harmonics are too weak to
excite the (weakly damped) modes su�ciently to establish
locking, while towards the lower frequencies the stellar g-
modes are too heavily damped and generate too small
intrinsic torques.

Some of the square dips in the timescale in panel 4c
end in a sharp dip. Similar to what was seen in Sect. 3.2,
resonance crossing of a low order harmonic through an
r-mode is in these cases responsible for disturbing the
resonance locking. The dimensionless r-mode frequencies
� 0;ik = �� 0;ik + m
 i (in the inertial frame) are increased by
the locking of prograde high order harmonics (by which
the star is spun up), which during the �rst Myr causes
the r-modes to approach their nearest harmonic frequen-
cies (n = 5 in star 1 and n = 6 in star 2) many times
(see Fig. 5). However, every time the r-mode excitation
terminates the locking responsible for the stellar spin-
up by pushing the locked high order harmonic through
resonance, preventing resonance crossing of the strong


















