Large Scale Lattice-Boltzmann Simulations: Computational Methods and Applications
Kandhai, B.D.

Citation for published version (APA):
Kandhai, B. D. (1999). Large Scale Lattice-Boltzmann Simulations: Computational Methods and Applications
Amsterdam: Universiteit van Amsterdam

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
Contents

I Introduction

1 Computer simulations in fluid dynamics
 1.1 Fluid dynamics ... 3
 1.2 Computational fluid dynamics 5
 1.3 Lattice Gas hydrodynamics 7
 1.4 Research motivation and outline 10

II Theoretical background

2 Theoretical background
 2.1 Lattice-Boltzmann models 13
 2.2 The general Lattice Boltzmann equation 14
 2.3 The Lattice-BGK model 18
 2.3.1 Single time relaxation approximation 18
 2.3.2 The first-order distribution function 19
 2.3.3 Lattice symmetries 19
 2.4 The Navier-Stokes equations 20
 2.5 Regularly used LBGK models 21
 2.6 Taxonomy of LGA and LBM 22

II Computational Methods

3 Boundary Conditions and checkerboard effects in Lattice-BGK models
 3.1 Introduction ... 29
 3.2 The bounce-back boundary condition 30
 3.3 Comparison between body force and pressure boundaries 35
 3.4 Checkerboard effect in the D_3Q_{14} and D_3Q_{15} models 38
 3.5 Conclusions ... 43

4 Iterative Momentum Relaxation for Fast Lattice-Boltzmann Simulations
 4.1 Introduction ... 45
 4.2 The Iterative Momentum Relaxation (IMR) technique 46
 4.3 Simulation results .. 47
 4.4 Conclusions ... 50
5 Load Balancing in Lattice-Boltzmann Simulations
 5.1 Introduction .. 53
 5.2 Parallel computing in complex flow simulations 54
 5.3 Load balancing in a homogeneous workload distribution 55
 5.3.1 Slice and box decomposition 55
 5.3.2 Performance model and results 56
 5.4 Load balancing in a heterogeneous workload distribution ... 58
 5.4.1 Domain decomposition .. 59
 5.4.2 Processor dependencies and performance results 60
 5.5 Conclusions .. 62

III Validation and Applications

6 Lattice-Boltzmann and Finite-Element Simulations of Fluid Flow in a SMRX Mixer
 6.1 Introduction .. 67
 6.2 The Static Mixer Reactor .. 68
 6.3 The Galerkin Finite-Element method 70
 6.4 Simulation results .. 73
 6.5 Methodological Comparison 81
 6.6 Conclusions .. 84

7 Hydraulic Permeability of Fibrous Media
 7.1 Introduction .. 87
 7.2 Permeability of (dis)ordered fibrous media 88
 7.2.1 Background ... 88
 7.2.2 Description of the fibrous media 90
 7.2.3 Hydraulic Permeability as a function of the fiber volume fraction ... 93
 7.3 The connection between the hydraulic permeability and the geometry of the media .. 102
 7.3.1 The role of the fiber-fiber distance 103
 7.3.2 The fiber-fiber distance 106
 7.3.3 Results ... 108
 7.4 The permeability of bounded fibrous media 110
 7.4.1 A bi-periodic array of cylinders 111
 7.4.2 Disordered media .. 113
 7.5 Conclusions .. 115

8 General discussion ... 119

A Finite-Difference Lattice-BGK Methods on Nested Grids
 A.1 Introduction .. 121
 A.2 Background .. 122
 A.3 Numerical Discretization of the Boltzmann Equation 123
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>A.4 Nested grids</td>
<td>125</td>
</tr>
<tr>
<td>A.4.1 Algorithm</td>
<td>125</td>
</tr>
<tr>
<td>A.4.2 Grid coupling</td>
<td>126</td>
</tr>
<tr>
<td>A.5 Preliminary results</td>
<td>127</td>
</tr>
<tr>
<td>A.6 Conclusion and Future Work</td>
<td>130</td>
</tr>
<tr>
<td>Bibliography</td>
<td>131</td>
</tr>
<tr>
<td>Summary</td>
<td>141</td>
</tr>
<tr>
<td>Samenvatting</td>
<td>145</td>
</tr>
<tr>
<td>Nawoord</td>
<td>149</td>
</tr>
<tr>
<td>Publications</td>
<td>153</td>
</tr>
</tbody>
</table>