Large Scale Lattice-Boltzmann Simulations: Computational Methods and Applications
Kandhai, B.D.

Citation for published version (APA):
Kandhai, B. D. (1999). Large Scale Lattice-Boltzmann Simulations: Computational Methods and Applications
Amsterdam: Universiteit van Amsterdam

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
Contents

I Introduction

1 Computer simulations in fluid dynamics .. 3
1.1 Fluid dynamics ... 3
1.2 Computational fluid dynamics .. 5
1.3 Lattice Gas hydrodynamics ... 7
1.4 Research motivation and outline .. 10

II Theoretical background

2.1 Lattice-Boltzmann models .. 13
2.2 The general Lattice Boltzmann equation 14
2.3 The Lattice-BGK model ... 18
 2.3.1 Single time relaxation approximation 18
 2.3.2 The first-order distribution function 19
 2.3.3 Lattice symmetries .. 19
2.4 The Navier-Stokes equations ... 20
2.5 Regularly used LBGK models ... 21
2.6 Taxonomy of LGA and LBM .. 22

II Computational Methods

3 Boundary Conditions and checkerboard effects in Lattice-BGK models 29
3.1 Introduction ... 29
3.2 The bounce-back boundary condition 30
3.3 Comparison between body force and pressure boundaries 35
3.4 Checkerboard effect in the \(D_3Q_{14} \) and \(D_3Q_{15} \) models 38
3.5 Conclusions .. 43

4 Iterative Momentum Relaxation for Fast Lattice-Boltzmann Simulations 45
4.1 Introduction ... 45
4.2 The Iterative Momentum Relaxation (IMR) technique 46
4.3 Simulation results ... 47
4.4 Conclusions .. 50
A.4 Nested grids ... 125
 A.4.1 Algorithm ... 125
 A.4.2 Grid coupling ... 126
A.5 Preliminary results ... 127
A.6 Conclusion and Future Work ... 130

Bibliography ... 131
Summary ... 141
Samenvatting ... 145
Nawoord ... 149
Publications .. 153