UvA-DARE (Digital Academic Repository)

Large Scale Lattice-Boltzmann Simulations: Computational Methods and Applications

Kandhai, B.D.

Publication date
1999

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
# Contents

## I Introduction

1 Computer simulations in fluid dynamics  
1.1 Fluid dynamics ..................................... 3  
1.2 Computational fluid dynamics .......................... 5  
1.3 Lattice Gas hydrodynamics ............................. 7  
1.4 Research motivation and outline ..................... 10

## II Theoretical background

2 Theoretical background ................................ 13  
2.1 Lattice-Boltzmann models .............................. 13  
2.2 The general Lattice Boltzmann equation ............... 14  
2.3 The Lattice-BGK model ................................ 18  
  2.3.1 Single time relaxation approximation ............. 18  
  2.3.2 The first-order distribution function ............ 19  
  2.3.3 Lattice symmetries ................................ 19  
2.4 The Navier-Stokes equations ............................ 20  
2.5 Regularly used LBGK models ............................ 21  
2.6 Taxonomy of LGA and LBM .............................. 22

## II Computational Methods

3 Boundary Conditions and checkerboard effects in Lattice-BGK models  
3.1 Introduction ......................................... 29  
3.2 The bounce-back boundary condition .................... 30  
3.3 Comparison between body force and pressure boundaries ........................................ 35  
3.4 Checkerboard effect in the $D_3Q_{14}$ and $D_3Q_{15}$ models ........................................ 38  
3.5 Conclusions ............................................ 43

4 Iterative Momentum Relaxation for Fast Lattice-Boltzmann Simulations  
4.1 Introduction ............................................ 45  
4.2 The Iterative Momentum Relaxation (IMR) technique ........................................ 46  
4.3 Simulation results ...................................... 47  
4.4 Conclusions ............................................ 50
## Contents

5 Load Balancing in Lattice-Boltzmann Simulations 53

5.1 Introduction .................................................. 53
5.2 Parallel computing in complex flow simulations ............ 54
5.3 Load balancing in a homogeneous workload distribution .... 55
  5.3.1 Slice and box decomposition .......................... 55
  5.3.2 Performance model and results ....................... 56
5.4 Load balancing in a heterogeneous workload distribution .... 58
  5.4.1 Domain decomposition .................................. 59
  5.4.2 Processor dependencies and performance results ....... 60
5.5 Conclusions .................................................. 62

III Validation and Applications 65

6 Lattice-Boltzmann and Finite-Element Simulations of Fluid Flow
  in a SMRX Mixer .............................................. 67
  6.1 Introduction ............................................... 67
  6.2 The Static Mixer Reactor .................................. 68
  6.3 The Galerkin Finite-Element method ....................... 70
  6.4 Simulation results ......................................... 73
  6.5 Methodological Comparison ............................... 81
  6.6 Conclusions ................................................ 84

7 Hydraulic Permeability of Fibrous Media 87
  7.1 Introduction ............................................... 87
  7.2 Permeability of (dis)ordered fibrous media ............... 88
    7.2.1 Background ........................................... 88
    7.2.2 Description of the fibrous media .................... 90
    7.2.3 Hydraulic Permeability as a function of the fiber volume
          fraction ............................................. 93
  7.3 The connection between the hydraulic permeability and the
       geometry of the media ................................... 102
    7.3.1 The role of the fiber-fiber distance ................. 103
    7.3.2 The fiber-fiber distance ............................. 106
    7.3.3 Results ............................................. 108
  7.4 The permeability of bounded fibrous media ................. 110
    7.4.1 A bi-periodic array of cylinders .................... 111
    7.4.2 Disordered media .................................... 113
  7.5 Conclusions ................................................ 115

8 General discussion ............................................. 119

A Finite-Difference Lattice-BGK Methods on Nested Grids 121
  A.1 Introduction ............................................... 121
  A.2 Background ............................................... 122
  A.3 Numerical Discretization of the Boltzmann Equation ...... 123
Contents

Validation and Applications

6 Lattice-Boltzmann and Finite-Element Simulations of Fluid Flow in a MEMS Mixer

4.1 Introduction

4.2 The Test Case: 10, 9, 8

4.3 Lattice Boltzmann Method

4.4 Multiscale and upscaling

4.5 Results

6.1 Basic Hypothesis and Lattice Models

6.2 Numerical Methodology as a Function of the Fiber Diameter

6.3 The relationship between the hydraulic permeability and the glass

6.4.1 The role of the fiber fiber distance

6.4.2 The fiber fiber distance

6.5 Results

7.4 The permeability of bounded porous media

7.4.1 Vortex periodic array of cylinders

7.4.2 Unconfined results

7.5 Conclusions

9 General Discussion

A Piola-Differential Lattice-BGS Methods on Nested Grids

A.1 Introduction

A.2 Results