Mechanistic studies on the diiron center in bovine spleen purple acid phosphatase
Merkx, M.

Citation for published version (APA):
Purple acid phosphatases (PAP's) employ a dinuclear $\text{Fe}^{3+}\text{Fe}^{2+}$ or $\text{Fe}^{3+}\text{Zn}^{2+}$ center to catalyze the hydrolysis of phosphate monoesters. The interaction of fluoride with bovine spleen purple acid phosphatase (BSPAP) has been studied using a combination of steady-state kinetics and spectroscopic methods. For FeZn-BSPAP the nature of the inhibition changes from noncompetitive at pH 6.5 ($K_{i(\text{comp})} = K_{i(\text{uncomp})} = 2 \text{ mM}$) to uncompetitive at pH 5.0 ($K_{i(\text{uncomp})} = 0.2 \text{ mM}$). The inhibition constant for AlZn-BSPAP at pH 5.0 ($K_i = 3 \text{ M}$) is 50-70 fold lower than that observed for both FeZn-BSAP and GaZn-BSPAP, suggesting that fluoride binds to the trivalent metal. Fluoride binding to the enzyme-substrate complex was found to be remarkably slow, hence; the kinetics of fluoride binding were studied in some detail for FeZn-, AlZn-, and FeFe-BSPAP at pH 5.0, and for FeZn-BSPAP at pH 6.5. As the enzyme kinetics studies indicated the formation of a ternary enzyme-substrate-fluoride complex, the binding of fluoride to FeZn-BSPAP was studied using optical and EPR spectroscopies, both in the presence and absence of phosphate. The characteristic optical and EPR spectra of FeZn-BSPAP-F and FeZn-BSPAP-PO_4F^{-} are similar at pH 5.0 and pH 6.5, indicating the formation of similar fluoride complexes at both pH's. A structural model for the ternary enzyme-substrate/phosphate-fluoride complexes is proposed that can explain the results from both the spectroscopic and the enzyme kinetics experiments. In this model fluoride binds to the trivalent metal replacing the water/hydroxide ligand that is essential for the hydrolysis reaction to take place, while phosphate or the phosphate ester coordinates to the divalent metal ion.
Introduction

Purple acid phosphatases (PAP’s) belong to the growing group of metalloenzymes that employ a di- or trinuclear metal center to catalyze hydrolysis reactions [1, 2]. All mammalian PAP’s contain a diiron center, which is catalytically active in the mixed-valent Fe(III)-Fe(II) oxidation state [3]. Two of those have been the subject of various spectroscopic and enzyme kinetics studies, uteroferrin (isolated from the uterine fluids of pregnant pigs; Uf) and bovine spleen purple acid phosphatase (BSPAP). The plant PAP isolated from red kidney beans (KBPAP) is the only PAP for which an X-ray structure has been determined [4, 5]. This PAP contains an Fe(III)Zn(II) metal center but shows kinetic and spectroscopic properties similar to those of the mammalian enzymes. All amino acids found to coordinate the metals in KBPAP are strictly conserved among all PAP sequences, even those from microorganisms such as Aspergillus ficum [3, 6]. Moreover, a sequence motif that incorporates most of these amino acids is found in a much larger group of phosphohydrolases, among which are exonucleases, 5’-nucleotidases, diadenosinetetraphosphatases and Ser/Thr specific protein phosphatases [5, 7, 8]. X-ray structure determinations of two Ser/Thr specific protein phosphatases, PP1 and PP2B (calcineurin) have revealed a dinuclear metal center resembling that of the PAP’s, except for the tyrosinate ligand to the Fe$_3^{3+}$ that gives the PAP’s their characteristic purple color. The PAP’s have a number of properties that permit the molecular details by which these dinuclear metal centers participate in the hydrolysis of phosphate esters to be studied: (1) they have favorable spectroscopic properties (intense charge-transfer band, characteristic EPR signals in the active Fe(III)Fe(II) and Fe(III)Zn(II) oxidation states, Mössbauer active metal ions) that provide probes to follow processes taking place in the coordination environment of the metal center; (2) unlike the PP’s, the PAP’s are relatively stable enzymes whose activity is not regulated via complicated activation mechanisms; (3) each of the two metals can be specifically substituted by other metal ions. This latter property has been used recently to study the specific chemical requirements for the trivalent metal ion [9]. Moreover, the Fe(III)Zn(II)-PAP may be used to study the effect of inhibitors such as phosphate on each of the two metal ions separately, by, e.g., EXAFS and EPR spectroscopic studies [10-13].

BSPAP has been shown to catalyze the hydrolysis of the chiral substrate S_p-2',3'-methoxymethylidene-ATP-γS18O$_{17}$O with overall inversion of the configuration of the phosphorus, which supports a mechanism in which the phosphate ester is directly attacked by water, without the existence of a phosphoenzyme intermediate [14]. The absence of burst kinetics has been explained by a model in which the attack of an activated water or hydroxide on the phosphate ester is the rate-limiting step in catalysis, rather than, e.g., release of phosphate from the enzyme [13]. The coordination of phosphate and other oxoanions that inhibit PAP has been studied in some detail using a variety of spectroscopic techniques, since these inhibitors were assumed to mimic the binding of the phosphate monoester substrate. In the preceding chapter we reported that the coordination mode of phosphate is pH dependent. At pH 5, phosphate binds to both the Fe$_3^{3+}$ and the divalent metal ion via a bridging coordination mode. At pH 6.5, however, hydroxide probably replaces the phosphate at the Fe$_3^{2+}$ site, and phosphate
Fluoride inhibition of purple acid phosphatase coordinates to only the divalent metal ion. This latter coordination mode corresponds to the active state of the enzyme-substrate complex, and rapid-mixing rapid-freezing experiments showed very similar EPR spectral properties for the phosphate and substrate complexes, both at pH 5 and pH 6.5 [13].

Fluoride has long been known to inhibit PAP catalysis [15-25], and spectroscopic reports indicate that fluoride binds directly at the metal center [23, 24, 26]. Fluoride stimulates bone cell proliferation and activity, and has therefore been used to treat patients with osteoporosis. Several pieces of evidence indicate that this effect of fluoride may be due to the inhibition of bone PAP [27]. An Fe\(^{3+}\)-bound hydroxide is assumed to play a critical role in catalysis, either directly as the nucleophile that attacks the substrate [5, 28], or as a general base that deprotonates a water in the second coordination sphere of the trivalent metal ion [9]. Since fluoride has chemical properties similar to hydroxide, studying fluoride inhibition may reveal the coordination chemistry of the other substrate of the hydrolysis reaction, i.e., water/hydroxide. For example, a study of fluoride inhibition of the dinuclear aminopeptidase from Aeromonas proteolytica recently resulted in the identification of a Zn(II)-bound water with a \(pK_a\) value of 7.0 in the enzyme-substrate complex [29].

We studied the nature of fluoride binding for Fe(III)Zn(II)-BSPAP at different pH's from 6.5 to 5.0 using steady-state kinetics methods. The availability of metal-substituted forms of BSPAP with different trivalent metal ions enabled us to examine the effect of the nature of the trivalent metal on the affinity for fluoride, and provided strong evidence for coordination of fluoride to the trivalent metal ion. The finding that fluoride binding to AlZn-BSPAP is surprisingly slow prompted us to study the kinetics of fluoride binding in more detail. Optical and EPR spectroscopy were used to study the binding of fluoride, both in the presence and in the absence of phosphate. A model is presented for the structure of the ternary enzyme-substrate/phosphate-fluoride complexes that explains the results from both the enzyme kinetics and the spectroscopic experiments.

Experimental Procedures

General

Bovine spleen purple acid phosphatase was isolated as previously described [30]. Preparations had \(A_{280nm}/A_{550nm}\) ratios of 14-15. FeZn-BSPAP, GaZn-BSPAP and AlZn-BSPAP were prepared as described previously [9, 30]. Protein concentrations of native BSPAP and FeZn-BSPAP were determined by measuring the absorption of the tyrosinate-to-Fe\(^{3+}\) charge-transfer band at ~530 nm (\(\varepsilon = 4080\ \text{M}^{-1}\cdot\text{cm}^{-1}\)). Optical spectra were measured on a Cary 50 spectrophotometer (Varian).

Steady-state enzyme kinetics

Enzyme assays using \(p\)-NPP as a substrate (pH 5.5 - 6.5) were performed as previously described [30]. At pH 5.0, phosphatase activity was assayed by monitoring the formation of
phenol from the hydrolysis of phenylphosphate at 278 nm ($\varepsilon = 870 \text{ M}^{-1}\text{cm}^{-1}$). FeFe-BSPAP was assayed in 100 mM Na-MES, 185 mM KCl, 15 mM Na-ascorbate, 0.2 mM Fe(NH$_4$)$_2$(SO$_4$)$_2$, pH 6.5. At pH 6.0 - 6.5, the activity of FeZn-BSPAP was measured in 100 mM Na-MES and 200 mM KCl. Assays at pH 5.5 - 5.0 were performed in 100 mM NaOAc and 200 mM KCl. All assays were done at 22 °C. Fluoride inhibition was studied by measuring phosphatase activities for nine substrate concentrations at 4 - 5 different fluoride concentrations. Values of $K_{i(\text{comp})}$ and $K_{i(\text{uncomp})}$ were obtained by fitting the entire data set to the Michaelis-Menten equation for mixed-competitive inhibition using the program MacCurveFit 1.4 (Kevin Raner Software). For AlZn-BSPAP, the rate of phosphate hydrolysis was determined after this rate had become constant (appr. 30 - 60 seconds after the start of the reaction).

Kinetics of slow fluoride binding

The kinetics of fluoride binding were studied by rapidly mixing enzyme with substrate and fluoride using a RX1000 hand-stopped flow device (Applied Photophysics) attached to a Cary 50 spectrophotometer (Varian). One syringe contained enzyme, while the other syringe contained substrate and fluoride. Reactions at pH 6.5 were done in 100 mM Na-MES, 200 mM KCl, pH 6.5 with 50 mM β-NPP as the substrate. Reactions at pH 5.0 were done in 100 mM NaOAc, 200 mM KCl, pH 5.0 with 25 mM phenylphosphate as the substrate. Values of k_{obs} were obtained by fitting the progress curves to equation (2) using the nonlinear fit procedure of the program IGOR 3.1 (WaveMetrics).

EPR spectroscopy

X-band EPR spectra (9.4 GHz) were obtained on a Bruker ECS106 EPR spectrometer, equipped with an Oxford Instruments ESR900 helium-flow cryostat with an ITC4 temperature controller. The magnetic field was calibrated with an AEG Magnetic Field Meter. The frequency was measured with an HP 5350B Microwave Frequency Counter.

Fluoride titrations of FeZn-BSPAP were performed by repeated addition of small aliquots of concentrated KF stock solutions of the appropriate pH to a single sample of FeZn-BSPAP or FeZn-BSPAP PO$_4$ in 100 mM buffer (NaOAc/pH 5 or Na-MES/pH 6.5) and 200 mM KCl. Spectral amplitudes and anion concentrations were corrected for the subsequent dilutions taking place. K_d values were determined as previously described [31].

Time-resolved spectroscopy of FeZn-BSPAP PO$_4$ F complex formation

The formation of FeZn-BSPAP PO$_4$ F was followed by both optical and EPR spectroscopy. FeZn-BSPAP (~ 20 μM) in 100 mM NaOAc, 200 mM KCl, pH 5.0 was rapidly mixed with 1 mM KF and 25 mM KH$_2$PO$_4$ (final concentrations) using a RX1000 hand-stopped flow device attached to an HP8452A diode array spectrometer and spectra were collected every second. As background spectrum, the spectrum of FeZn-BSPAP PO$_4$ F complex at equilibrium was used. For EPR, 15 μM FeZn-BSPAP in 100 mM NaOAc, 200 mM KCl, pH 5.0 was rapidly mixed with 1 mM KF and 50 mM KH$_2$PO$_4$ (final concentrations)
using a home built rapid-mixing freeze-quench apparatus [32] and injected into EPR tubes. At several times after mixing, the samples in the EPR tubes were rapidly frozen in a bath of liquid isopentane (~140 K).

Results

\[\frac{1}{k_{\text{apparent}}} \] and \[\frac{1}{V_{\text{max}}(\text{apparent})} \] (not shown) are linear for FeZn-BSPAP at pH 5.0, showing that fluoride is a pure uncompetitive inhibitor [33]. At pH 6.5, the lines of the Lineweaver-Burke plot intersect at a single point close to the 1/S axis, which is characteristic of noncompetitive inhibition, so \(K_{i(\text{comp})} \approx K_{i(\text{uncomp})} \).
Scheme 6.1 shows a kinetic scheme which includes both competitive and uncompetitive inhibition, while equation 1 is the Michaelis-Menten equation for this kinetic scheme.

Scheme 6.1

\[
\text{E} + \text{S} \xrightleftharpoons{K_s} \text{ES} \xrightarrow{k_{\text{cat}}} \text{E} + \text{P}
\]

\[v = \frac{V_{\text{max}}[S]}{(K_s(1 + [I]/K_{i(\text{comp})}) + [S])(1 + [I]/K_{i(\text{uncomp})})}\]

Fluoride inhibition was also studied at pH 6.0 and 5.5. Upon lowering the pH, the K_i for the uncompetitive site decreases while the K_i for the competitive site seems unaffected, thus resulting in essentially uncompetitive inhibition at pH 5.0 (Table 6.1). The pH dependence of K_i(\text{uncomp}) parallels the pK_a of the Fe^{III} coordinated water in the enzyme-substrate complex identified in the preceding chapter, indicating that fluoride binds by replacing this ligand. At pH 6.5, fluoride has to compete with hydroxide, while at pH 5.0 it replaces the less strongly bound phosphate ester oxygen. If the uncompetitive binding site for fluoride is indeed at the trivalent metal, the chemical nature of the trivalent metal is expected to affect K_i(\text{uncomp}). Fluoride inhibition was therefore also studied for AlZn-BSPAP and GaZn-BSPAP at pH 5.0. Both Ga(III)Zn(II)-BSPAP and Al(III)Zn(II)-BSPAP are uncompetitively inhibited by fluoride at pH 5.0 (Table 6.1). The inhibition constant for AlZn-BSPAP is 50-70 fold lower than the inhibition constants for both FeZn-BSAP and GaZn-BSPAP, showing that the uncompetitive binding site for fluoride is indeed at the trivalent metal ion.

Table 6.1 Inhibition constants for inhibition of various metal-substituted BSPAP forms by fluoride.

<table>
<thead>
<tr>
<th>enzyme</th>
<th>pH</th>
<th>substrate</th>
<th>K_i competitive (mM)</th>
<th>K_i uncompetitive (mM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FeZn^b</td>
<td>5.0</td>
<td>phenylphosphate</td>
<td>-</td>
<td>0.20 (0.03)</td>
</tr>
<tr>
<td>AlZn^b</td>
<td>5.0</td>
<td>phenylphosphate</td>
<td>-</td>
<td>0.0030 (0.0002)</td>
</tr>
<tr>
<td>GaZn^b</td>
<td>5.0</td>
<td>phenylphosphate</td>
<td>-</td>
<td>0.14 (0.07)</td>
</tr>
<tr>
<td>FeZn^c</td>
<td>5.5</td>
<td>p-NPP</td>
<td>5 (2)</td>
<td>0.43 (0.02)</td>
</tr>
<tr>
<td>FeZn^c</td>
<td>6.0</td>
<td>p-NPP</td>
<td>3 (1)</td>
<td>0.79 (0.05)</td>
</tr>
<tr>
<td>FeZn^c</td>
<td>6.5</td>
<td>p-NPP</td>
<td>3.4 (0.3)</td>
<td>2.05 (0.1)</td>
</tr>
<tr>
<td>FeFe^d</td>
<td>6.5</td>
<td>p-NPP</td>
<td>4.8 (0.5)</td>
<td>4.44 (0.4)</td>
</tr>
</tbody>
</table>

^a K_i values result from a fit of the entire data set at several fluoride concentrations to the Michaelis-Menten equation for mixed-competitive inhibition. Numbers in parentheses are standard deviation values as obtained from the fitting procedure; ^b assay conditions: 100 mM NaOAc, 200 mM KCl, and 22 °C; ^c assay conditions: 100 mM Na-MES, 200 mM KCl and 22 °C; ^d assay conditions: 100 mM Na-MES, 185 mM KCl, 15 mM Na-ascorbate, 0.2 mM Fe(NH_4)_2(SO_4)_2 and 22 °C.
The steady-state kinetics results indicated that in the presence of substrate fluoride binds at the trivalent metal ion. This interaction can be directly probed by studying the effect of fluoride on the optical and EPR spectra of the enzyme. For Fe(III)Zn(II)-BSPAP, both techniques are expected to detect changes in the immediate coordination environment of the Fe$^{3+}$, and to be much less sensitive to fluoride binding at the divalent metal site. The binding of fluoride to FeZn-BSPAP was studied both in the absence and presence of phosphate, which was assumed to mimic the binding of substrate. Figure 6.2 shows the effect of fluoride and/or phosphate on the position of the tyrosinate-to-Fe$^{3+}$ charge-transfer band, both at pH 5 and pH 6.5. The uncomplexed enzyme has its maximal absorbance (λ_{max}) at ~ 536 nm, both at pH 5.0 and 6.5. As shown in the preceding paper, the spectra of FeZn-BSPAP-PO$_4$ are pH dependent, with a λ_{max} of 555 nm at pH 5.0 and a λ_{max} of 540 nm at pH 6.5. Fluoride binding to FeZn-BSPAP causes a blue shift of the absorption band, both at pH 5.0 and pH 6.5. The same blue shift is observed when fluoride is added to FeZn-BSPAP in the presence of saturating concentrations of phosphate. The optical spectrum of this putative FeZn-BSPAP-PO$_4$F complex is similar to that of FeZn-BSPAP-F, indicating that the ligand environment of the Fe$^{3+}$ is similar in both complexes. On the basis of the optical spectra alone, it could be argued that fluoride replaces the phosphate and phosphate is no longer bound. Both the kinetic results and the EPR spectra of FeZn-BSPAP-PO$_4$F (vide infra), however, show that a ternary complex is formed. Thus, unlike the phosphate complexes, the FeZn-BSPAP-PO$_4$F complexes are very similar at 5.0 and 6.5, indicating that the same ternary complex is formed at both pH's.

Figure 6.3 shows fluoride titration experiments in the absence (A) and presence (B) of 10 mM phosphate at pH 5.0. The binding curves obtained by plotting the absorbance difference as a function of fluoride concentration yield a K_d of 2.9 ± 0.4 mM for fluoride binding to
FeZn-BSPAP and a K_d of 0.28 ± 0.04 mM for fluoride binding to FeZn-BSPAP-PO$_4$. This latter K_d is in good agreement with the inhibition constant of fluoride as determined by steady-state enzyme kinetics under similar conditions.

Figure 6.4 and 6.5 show the EPR spectra of Fe(III)Zn(II)-BSPAP in the absence of any inhibitor and in the presence of phosphate and/or fluoride at pH 5.0 and 6.5, respectively. The EPR spectra of FeZn-BSPAP and FeZn-BSPAP-PO$_4$ have been reported before [13, 31]. The EPR spectrum of uncomplexed FeZn-BSPAP is the same at pH 5.0 and pH 6.5 and shows peaks that belong to several high-spin Fe$^{3+}$ species with rhombicities of E/D \sim 0.02 (g = 6.5 and 5.9) and E/D \sim 0.08 (g = 1.1 and 5.8). At pH 5.0, the addition of phosphate converts this rather broad spectrum to an intense isotropic signal at g = 4.3, corresponding to the middle Kramers doublet of a species with E/D $=\sim$ 0.33. At pH 6.5, addition of phosphate does not affect the EPR spectrum of FeZn-BSPAP significantly for [phosphate] < 30 mM, indicating that phosphate does not coordinate to the Fe$^{3+}$ at this pH [13]. The titration of FeZn-BSPAP with fluoride at pH 5.0 resulted in the formation of a species with peaks at g = 7.3 and 5.7 (Figure 6.6). The g = 7.3 signal is ascribed to the ground doublet of a species with E/D \sim 0.06, and the g = 5.7 signal is probably due to the middle Kramers doublet of the same species. A fit of the difference of the signal intensities at g = 7.3 and 6.5 as a function of fluoride concentration yields a K_d of 0.13 mM. The EPR spectrum of the FeZn-BSPAP-PO$_4$ complex at pH 6.5 is similar to that at pH 5.0. The K_d for fluoride binding obtained from this EPR titration is 0.5 mM (Figure 6.7).

When fluoride is added to FeZn-BSPAP-PO$_4$ yet another high-spin Fe$^{3+}$ EPR-spectrum is obtained, and again the same spectrum is obtained at pH 5.0 and pH 6.5. The EPR spectrum of this ternary FeZn-BSPAP-PO$_4$-F complex shows peaks at g = 8.6, 5.1 and 3.1. These
Fluoride inhibition of purple acid phosphatase

Figure 6.4 EPR spectra of (A) FeZn-BSPAP, (B) FeZn-BSPAP-PO4, (C) FeZn-BSPAP-F, and (D) FeZn-BSPAP-PO4F in 100 mM NaOAc, 200 mM KCl, pH 5.0. The spectra were normalized to give similar signal heights. EPR conditions: microwave frequency, 9.4 GHz; modulation, 12.7 G at 100 kHz; microwave power, 2.0 mW; temperature, 10 K. FeZn-BSPAP-PO4: 54 mM KH2PO4; FeZn-BSPAP-F: 3 mM KF; FeZn-BSPAP-PO4F: 49 mM KH2PO4 and 8.1 mM KF.

Figure 6.5 EPR spectra of (A) FeZn-BSPAP, (B) FeZn-BSPAP-PO4, (C) FeZn-BSPAP-F, and (D) FeZn-BSPAP-PO4F in 100 mM Na-MES, 200 mM KCl, pH 6.5. The spectra were normalized to give similar signal heights. EPR conditions: microwave frequency, 9.4 GHz; modulation, 12.7 G at 100 kHz; microwave power, 8.0 mW; temperature, 10 K. FeZn-BSPAP-PO4: 91 mM KH2PO4/K2HPO4; FeZn-BSPAP-F: 4 mM KF; FeZn-BSPAP-PO4F: 91 mM KH2PO4 and 4 mM KF.

Features can again be ascribed to a single species with E/D = 0.15. The g = 8.6 signal belongs to the ground doublet, while the g = 5.1 and 3.1 signals are due to a transition in the middle Kramers doublet. The titration data yield Kd values of 0.06 mM and 0.9 mM at pH 5.0 and 6.5, respectively (Figures 6.8 and 6.9). Like the optical spectra, the EPR spectra show that the same fluoride complexes are formed at pH 5.0 and 6.5. Moreover, the EPR spectrum of FeZn-BSPAP-PO4F is clearly different from those of FeZn-BSPAP-PO4 and FeZn-BSPAP-F, providing direct spectroscopic evidence for the formation of a ternary complex. Fluoride addition (up to 15 mM) to the molybdate complex of FeZn-BSPAP at pH 5.0 does not result in any spectroscopic changes in either the optical or the EPR spectrum of FeZn-BSPAP-MO4. We therefore conclude that fluoride is not able to displace molybdate from binding to the Fe3+ site.
Figure 6.6 EPR titration showing the conversion from FeZn-BSPAP to FeZn-BSPAP-F at pH 5.0. Spectra were collected at 0, 0.043, 0.085, 0.17, 0.24, 0.32, 0.47, 0.98, and 3.0 mM KF and 0.12 mM protein in 100 mM NaOAc, 200 mM KCl, pH 5.0. The arrows indicate increasing fluoride concentrations. EPR conditions: microwave frequency, 9.43 GHz; modulation, 12.7 G at 100 kHz; microwave power, 2.0 mW; temperature, 10 K. Inset: the difference of the signal intensities at $g = 7.3$ and $g = 6.5$ as a function of fluoride concentration. The solid line describes a fit with $K_d = 0.13$ mM.

Figure 6.7 EPR titration showing the conversion from FeZn-BSPAP to FeZn-BSPAP-F at pH 6.5. Spectra were collected at 0, 0.20, 0.30, 0.68, and 1.57 mM KF and 0.10 mM protein in 100 mM NaMES, 200 mM KCl, pH 6.5. The arrows indicate increasing fluoride concentrations. EPR conditions: microwave frequency, 9.43 GHz; modulation, 12.7 G at 100 kHz; microwave power, 8.0 mW; temperature, 10 K. Inset: the difference of the signal intensities at $g = 7.2$ and $g = 6.5$ as a function of fluoride concentration. The solid line describes a fit with $K_d = 0.5$ mM.
Figure 6.8 EPR titration showing the conversion from FeZn-BSPAP-PO₄ to FeZn-BSPAP-PO₄F at pH 5.0. Spectra were collected at 0, 0.040, 0.080, 0.12, 0.16, 0.23, 0.31, 0.46, 0.83, 2.0 and 8.1 mM KF, 51 mM KH₂PO₄, and 0.16 mM protein in 100 mM NaOAc, 200 mM KCl, pH 5.0. The arrows indicate increasing fluoride concentrations. EPR conditions: microwave frequency, 9.43 GHz; modulation, 12.7 G at 100 kHz; microwave power, 2.0 mW; temperature, 10 K. Inset: signal intensity at $g = 4.3$ as a function of fluoride concentration. The solid line describes a fit with $K_f = 0.06$ mM.

Figure 6.9 EPR titration showing the conversion from FeZn-BSPAP-PO₄ to FeZn-BSPAP-PO₄F at pH 6.5. Spectra were collected at 0, 0.13, 0.22, 0.46, 0.55, 1.11, 2.0, and 3.6 mM KF, 91 mM KH₂PO₄, and 0.1 mM protein in 100 mM Na-MES, 200 mM KCl, pH 6.5. The arrows indicate increasing fluoride concentrations. EPR conditions: microwave frequency, 9.43 GHz; modulation, 12.7 G at 100 kHz; microwave power, 8.0 mW; temperature, 10 K. Inset: signal intensity at $g = 5.1$ as a function of fluoride concentration. The solid line describes a fit with $K_f = 0.9$ mM.
In the course of the enzyme kinetics experiments, nonlinear product vs time curves were observed for AlZn-BSPAP in the presence of the (low) fluoride concentrations at which AlZn-BSPAP is inhibited. The initial rate decreased in time for approximately 1 min after mixing and then became constant. One explanation for this behavior is that fluoride binding is slow under these conditions, such that the formation of the fluoride complex is still not complete even after the 10 seconds required to mix the enzyme with substrate and inhibitor and place the cuvet in the spectrophotometer. Since our optical titration experiments showed that fluoride binds more strongly to FeZn-BSPAP in the presence of phosphate (and presumably also in the presence of substrate), this hypothesis cannot be tested by preincubation of the enzyme with fluoride. Using a hand stopped-flow apparatus that allowed mixing of enzyme with substrate and inhibitor within 0.5 sec, we probed whether biphasic progress curves could also be detected for FeZn-BSPAP. Figure 6.10 shows reaction progress curves for the hydrolysis of p-NPP at pH 6.5 by FeZn-BSPAP in the absence and presence of various inhibitors. Biphasic progress curves are observed only in the presence of fluoride, but not in the presence of the oxoanion inhibitors phosphate and molybdate. Thus, the effect is specific for fluoride.

![Figure 6.10](image)

To prove that the nonlinear progress curves are indeed due to slow binding of fluoride to the enzyme-substrate complex, the formation of the ternary FeZn-BSPAP-PO₄⁻F complex was studied using time-resolved optical and EPR spectroscopy at pH 5.0. FeZn-BSPAP was rapidly mixed with 25 mM phosphate and 1 mM fluoride using a hand stopped-flow apparatus, and optical spectra were taken every second using a diode-array spectrophotometer. Figure 6.11A shows difference spectra obtained by subtracting the spectrum of FeZn-BSPAP-PO₄⁻F at equilibrium from the spectra obtained at various time points after mixing. The spectra show a
Fluoride inhibition of purple acid phosphatase

Figure 6.11 Time-resolved spectroscopy of the formation of FeZn-BSPAP-PO$_4$F at pH 5.0 and 22 °C. (A) FeZn-BSPAP was rapidly mixed with 25 mM KH$_2$PO$_4$ and 1 mM KF. Shown are difference spectra obtained by subtraction of the optical spectrum of FeZn-BSPAP PO$_4$F at $t > 60$ s from the optical spectra at $t = 1, 2, 3, 4, 5, 6, 7, 9, 11, 15,$ and 24 s. The arrows indicate increased time after mixing. Buffer: 100 mM NaOAc, 200 mM KCl, pH 5.0. Inset: absorbance at 450 nm and 620 nm as a function of time. The solid lines represent single exponential fits with rate constants of 0.195 ± 0.006 s$^{-1}$ (A450) and 0.173 ± 0.003 s$^{-1}$ (A620).

(B) EPR spectra of FeZn-BSPAP that was rapidly mixed with 25 mM KH$_2$PO$_4$ and 1 mM KF, and freeze-quenched after 1, 5, 20 and 40 seconds. The arrows indicate increased time after mixing. Buffer: 100 mM NaOAc, 200 mM KCl, pH 5.0. EPR conditions: microwave frequency, 9.42 GHz; modulation, 12.7 G at 100 kHz; microwave power, 8.0 mW; temperature, 10 K. Inset: intensities of the $g = 4.3$ and $g = 5.1$ signals as a function of time. The solid lines represent single exponential fits with rate constants of 0.158 ± 0.004 s$^{-1}$ ($g = 4.3$) and 0.125 ± 0.05 s$^{-1}$ ($g = 5.1$).

clear blueshift of the absorbance with time, consistent with conversion of FeZn-BSPAP-PO$_4$ to FeZn-BSPAP-PO$_4$F. The absorbance at 620 nm could be fitted by a single exponential with a rate constant of 0.173 ± 0.003 s$^{-1}$. This rate is in reasonable agreement with the value of k_{obs} obtained from the reaction progress curves obtained under similar conditions (FeZn-BSPAP, 25 mM phenylphosphate and 1 mM fluoride), which is 0.137 ± 0.017 s$^{-1}$. The time dependence of the formation of FeZn-BSPAP-PO$_4$F was also studied by EPR spectroscopy. FeZn-BSPAP was rapidly mixed with 1 mM fluoride and 25 mM phosphate and injected into EPR tubes. At various times after mixing, the samples were rapidly frozen in a bath of cold isopentane (∼ 140 K). Figure 6.11B shows the conversion of FeZn-BSPAP-PO$_4$ ($g = 4.3$) into FeZn-BSPAP-PO$_4$F ($g = 8.6$ and 5.1). Fits of the intensities at $g = 4.3$ and $g = 5.1$ as a function of time gave rate constants of 0.158 ± 0.004 s$^{-1}$ and 0.125 ± 0.05 s$^{-1}$, respectively, again in good agreement with the rate constants that were obtained from the reaction progress curve and the time dependent optical changes discussed above.

Together, these results firmly establish that the biphasic reaction progress curves are due to the slow binding of fluoride to the enzyme-substrate complex. If it is assumed that inhibitor binding is much slower than substrate binding and substrate hydrolysis (in the absence of fluoride the steady state is reached within a few ms), the time dependence of product
concentration is described by the general equation 2 [34, 35].

\[P(t) = v(t) + (v_{ss} - v(t))(1 - e^{(-k_{obs}t)})/k_{obs} + P(0) \]

\(v(t): \) initial rate at \(t = 0 \), \(v_{ss}: \) rate in final steady-state

Thus, the rate of fluoride binding (\(k_{obs} \)) can be obtained by fitting the product formation traces using equation (2). Enzyme was rapidly mixed with substrate and fluoride using a hand stopped-flow apparatus and the formation of phenol (pH 5.0) or p-nitrophenol (pH 6.5) was monitored spectrophotometrically. The rate of fluoride binding was determined as a function of fluoride concentration for FeZn-BSPAP at pH 5.0 and 6.5 (Figures 6.12B and 6.12D). The influence of the chemical nature of the metals was studied by measuring \(k_{obs} \) values as a function of fluoride concentration for FeFe-BSPAP and AlZn-BSPAP at pH 5.0 (Figures 6.12A and 6.12C). Fluoride binding for other combinations was not studied, because fluoride binding was either too fast (GaZn-BSPAP) or too slow (AlZn-BSPAP at pH 6.5), or because the enzyme was not stable enough in the absence of fluoride during the time course of the reaction (FeFe-BSPAP at pH 6.5).

Figure 6.12 shows that at pH 5.0 \(k_{obs} \) depends linearly on the fluoride concentration for all BSPAP forms. At this pH fluoride inhibition is uncompetitive. Since [S] » K_M, the process that is studied under these conditions is the binding of fluoride to the enzyme-substrate complex at the uncompetitive fluoride binding site (Scheme 6.2). For this mechanism, the observed rate constant, \(k_{obs} \), is related to the fluoride concentration and the intrinsic rate constants \(k_{on} \) and \(k_{off} \) by equation (3).

\[k_{obs} = k_{on}[I] + k_{off} \]

Table 6.2 lists values for \(k_{on} \) and \(k_{off} \) for FeZn-, AlZn-, and FeFe-BSPAP at pH 5.0. Because fluoride release is so slow, our data do not allow an accurate determination of \(k_{off} \); Table 6.2 therefore lists upper limits. The second order on rates for fluoride binding are similar for FeZn-BSPAP and FeFe-BSPAP, and significantly higher for AlZn-BSPAP.

At pH 6.5, the \(k_{obs} \) value for fluoride binding to FeZn-BSPAP is no longer linearly dependent on the fluoride concentration, but instead saturating behavior is observed. This kinetics behavior indicates that a preequilibrium is formed rapidly (formation of ESI''), followed by the slower formation of the catalytically inactive inhibitor complex ESI''' (Scheme 6.3).
Fluoride inhibition of purple acid phosphatase

Figure 6.12. Rate of fluoride binding \((k_{\text{obs}}) \) as a function of fluoride concentration for (A) FeFe-BSPAP at pH 5.0, (B) FeZn-BSPAP at pH 5.0, (C) AlZn-BSPAP at pH 5.0, and (D) FeZn-BSPAP at pH 6.5. Each data point represents the average of ≥3 measurements, the error bars indicate the standard deviation.

Equation 4 describes the dependence of \(k_{\text{obs}} \) on \(k_{\text{on}}, k_{\text{off}} \) and the dissociation constant \(K_d \) for this mechanistic scheme. In principle, fluoride binding at pH 6.5 may involve binding to both the competitive site and the uncompetitive site. Binding at the competitive site is unlikely to contribute directly to the slow inhibition phenomenon, however, since fluoride binding to the divalent metal ion is expected to be much faster than fluoride binding to the uncompetitive site (Fe\(^{3+}\)). The data in Figure 6.12D could be fitted with \(K_d = 10 \text{ mM}, k_{\text{on}} = 0.33 \text{ s}^{-1} \) and \(k_{\text{off}} \leq 0.02 \text{ s}^{-1} \) (Table 6.2).

Scheme 6.3

\[
k_{\text{obs}} = k_{\text{on}}[I]/([I] + K_d) + k_{\text{off}} \quad (4)
\]
Table 6.2 Rate constants for fluoride binding.

<table>
<thead>
<tr>
<th>enzyme</th>
<th>pH</th>
<th>k_{xx}</th>
<th>k_{eff} (s$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FeZn</td>
<td>6.5</td>
<td>0.33 (0.01) s$^{-1}$</td>
<td>< 0.02</td>
</tr>
<tr>
<td>FeZn</td>
<td>5.0</td>
<td>102 ± 3 s$^{-1}$·M$^{-1}$</td>
<td>< 0.03</td>
</tr>
<tr>
<td>AlZn</td>
<td>5.0</td>
<td>1.8 ± 0.2·103 s$^{-1}$·M$^{-1}$</td>
<td>< 0.003</td>
</tr>
<tr>
<td>FeFe</td>
<td>5.0</td>
<td>58 ± 5 s$^{-1}$·M$^{-1}$</td>
<td>< 0.02</td>
</tr>
</tbody>
</table>

Discussion

Fluoride is a well known inhibitor of metalloenzymes such as peroxidase [36], laccase [37], inorganic pyrophosphatase [38-40], myo-inositol monophosphatase [41] enolase [42], superoxide dismutase [43], urease [44], and various zinc-containing hydrolases [29, 45, 46]. Fluoride inhibition has been reported for various PAP's, including BSPAP. Noncompetitive [21, 22, 25, 47] and uncompetitive inhibition [17, 24] modes have been reported for PAP's, with inhibition constants of typically ~ 1 mM. Our results show that the inhibition mode of fluoride is pH-dependent, which explains why previous studies have reported both noncompetitive and uncompetitive inhibition by fluoride. A similar pH dependence for the fluoride inhibition mode has been reported for the native PAP isolated from sweet potatoes [24]. We do not observe the curvilinear Lineweaver-Burke plots that were reported previously for (native) BSPAP [15, 16], possibly as a result of the higher ionic strength employed by us.

In most metalloenzymes, fluoride is thought to act by replacing a metal-bound hydroxide or water ligand. The X-ray structure of KBPAP shows three coordination sites at the dimetal center that have been proposed to contain water-derived ligands: a hydroxide bridging the two metals, a hydroxide acting as a monodentate ligand to Fe$^{3+}$ and a water coordinating to Zn$^{2+}$ [4]. In the preceding chapter we showed that substrate probably binds in a monodentate fashion to the divalent metal ion in the catalytically active enzyme-substrate complex formed at pH 6.5. Fluoride binding to the divalent metal ion is therefore likely to be responsible for the competitive inhibition mode. For the uncompetitive binding mode two possibilities may be considered: fluoride replacing the monodentate hydroxide/water bound to the Fe$^{3+}$ or the μ-hydroxo group that is bound to both the Fe$^{3+}$ and the divalent metal ion. The strong binding observed for Al$^{3+}$ in AlZn-BSPAP is in agreement with the Hard-Soft-Acid-Base theory: fluoride is a hard base and Al$^{3+}$ is a harder acid than both Fe$^{3+}$ and Ga$^{3+}$. The relative binding strength of fluoride vs. water is therefore expected to be higher for Al$^{3+}$ than for either Fe$^{3+}$ or Ga$^{3+}$. The much stronger inhibition of AlZn-BSPAP compared to FeZn-BSPAP and GaZn-BSPAP indicates that the uncompetitive fluoride binding site is at the trivalent metal ion, but does not distinguish between a terminal or bridging binding mode. The pH dependence of $K_{i\text{(uncomp)}}$ parallels the pK_a of the Fe$^{3+}$ coordinated water in the enzyme-substrate complex, suggesting that fluoride binds by replacing this terminal bound water/hydroxide. This model predicts that the ternary enzyme-substrate-fluoride complex that is formed is the same at pH 6.5
Fluoride inhibition of purple acid phosphatase

Figure 6.13 Model for the coordination of fluoride, phosphate and phosphate ester to FeZn-BSPAP at pH 5.0 and pH 6.5. The model explains the results of both the kinetics and spectroscopic experiments described in this work.

and 5.0 (Figure 6.13). At pH 6.5, fluoride binds to the enzyme-substrate complex by replacing the terminal hydroxide ligand to Fe$^{3+}$, yielding a ternary complex with substrate bound at the divalent metal and fluoride bound at the trivalent metal. At pH 5.0, fluoride binds to the enzyme-substrate complex by replacing the substrate at the trivalent metal, yielding again a ternary complex with substrate bound at the divalent metal and fluoride bound at the trivalent metal.

The model derived from the kinetics results was tested by studying the optical and EPR spectroscopic properties of the FeZn-BSPAP-F and FeZn-BSPAP-PO$_4$-F complexes at pH 5.0 and 6.5. FeZn-BSPAP, FeZn-BSPAP-PO$_4$, FeZn-BSPAP-F, and FeZn-BSPAP-PO$_4$-F each have their own characteristic EPR spectrum, providing direct spectroscopic evidence for the formation of a ternary FeZn-BSPAP-PO$_4$-F complex. The EPR spectra of FeZn-BSPAP-F and FeZn-BSPAP-PO$_4$-F are pH independent and are therefore consistent with the model derived from enzyme kinetics (Figure 6.13). The optical spectra of FeZn-BSPAP-F and FeZn-BSPAP-PO$_4$-F are practically indistinguishable, indicating a similar electron density at Fe$^{3+}$ in these two complexes. The blue shift of the tyrosinate to Fe$^{3+}$ charge-transfer band has been reported in previous studies on fluoride binding to PAP [15, 16] and suggests an increase in electron density at Fe$^{3+}$ upon fluoride binding. The K_d for fluoride binding to FeZn-BSPAP-PO$_4$ obtained from the optical titration at pH 5.0 (0.28 mM), compares nicely with the inhibition constant for fluoride obtained under similar conditions (0.20 mM). The large difference in fluoride affinity between FeZn-BSPAP ($K_d = 2.9$ mM) and FeZn-BSPAP-PO$_4$ indicates that fluoride needs to replace a hydroxide when binding to FeZn-BSPAP, while it needs to replace the less strongly bound, bridging phosphate in FeZn-BSPAP-PO$_4$. The K_d values obtained from the various EPR titrations are all lower than those obtained from the optical titration and kinetics experiments, which may result from the different temperatures at
which the experiments were performed (i.e. 22 °C for the optical and kinetics experiments vs the freezing point of the solution for EPR).

Unlike phosphate, molybdate cannot be displaced from the Fe\(^{3+}\) site by fluoride, which corroborates conclusions from previous studies that divided the oxoanions into two classes, the weak inhibitors phosphate and arsenate and the strong inhibitors molybdate and tungstate [10, 16, 28, 48]. On the basis of EXAFS studies of oxoanion complexes with FeZn-Uf at pH 5.0, Wang and Que recently proposed an asymmetric bridging coordination for molybdate and tungstate with strong binding to the Fe\(^{3+}\) and weak binding to the Zn\(^{2+}\) [11, 12]. This strong binding to the Fe\(^{3+}\) may explain why fluoride is not able to displace molybdate from this site, while it does displace phosphate or substrate. Both competitive [10, 12, 21] and noncompetitive inhibition [16, 49, 50] modes have been reported for molybdate. The competitive mode may be due to conditions where molybdate binds strongly to both the divalent and the trivalent metal ions, while noncompetitive binding may result from strong coordination to the trivalent metal ion and only very weak binding to the divalent metal ion, such that under these conditions substrate can still bind to the divalent metal ion.

A surprising result from these studies is that fluoride, unlike the oxoanions phosphate and molybdate, is a slow-binding inhibitor of BSPAP. Substitution reactions at hexacoordinated Fe\(^{3+}\) are generally dissociative in nature. This means that the on rate for fluoride binding may be limited by the rate of dissociation of the ligand that is displaced by fluoride, while the off rates are limited by the dissociation rate for fluoride. The spectroscopic results of this study and of the structure of the phosphate complex described in the preceding paper, indicate that fluoride binding to the enzyme-substrate complex at pH 5.0 involves displacement of the substrate at the trivalent metal ion. The on rates of fluoride binding at pH 5.0 may therefore reflect the intrinsic rate by which phenylphosphate dissociates from this trivalent metal ion. For FeZn-BSPAP and FeFe-BSPAP these rates are 100 M\(^{-1}\)s\(^{-1}\) and 60 M\(^{-1}\)s\(^{-1}\), while for AlZn-BSPAP the rate is 1800 M\(^{-1}\)s\(^{-1}\). Since we cannot exclude the formation of a preequilibrium with a \(K_d > 10\) mM (or \(K_d > 0.1\) mM for AlZn), the true dissociation rates may be lower and these numbers should be regarded as upper limits. Although we can only determine upper limits for \(k_{on}\), it is clear that the rate of fluoride dissociation from either Fe\(^{3+}\) or Al\(^{3+}\) in M(III)Zn(II)-BSPAP is very slow (< 0.03 s\(^{-1}\) and < 0.003 s\(^{-1}\), respectively (Table 6.2)). Future studies using methods suited to determine these low off rates may reveal more accurate values of \(k_{off}\) and allow the aluminum and iron enzymes to be compared.

The hyperbolic dependence of \(k_{obs}\) on fluoride concentration at pH 6.5 indicates the formation of an enzyme-fluoride complex prior to the formation of the inhibited fluoride form. The nature of this species is unknown. One possibility is that the fluoride binds initially at the divalent metal ion (the competitive binding site)\(^1\). The value of the apparent \(K_d\) is roughly consistent with this interpretation. The value of \(k_{on}\) obtained from this experiment is a true first

\(^1\) Since fluoride and substrate compete for the same binding site in this mechanism, the apparent dissociation constant for fluoride binding to this site is: \(K_d = K_d([S] + K_{M})/K_{M} = 3.4\) mM\(^2\)(50 mM + 10 mM)/10 mM = 20.4 mM.
order rate constant and is very low, only 0.33 s⁻¹. This low rate is consistent with our model for the phosphate/substrate complex at pH 6.5, which predicts that fluoride binds to the Fe³⁺ by replacing a hydroxide. Dissociation of the hydroxide is expected to be slower than the release of the substrate that needs to take place at pH 5.0.

Slow binding of fluoride has been observed for other metalloenzymes, as well. Baykov et al. studied the slow binding of fluoride to pyrophosphatases, and interpreted their results in a model that involved the formation of a quaternary enzyme-Mg-PP̂F complex [38-40]. Fluoride binding to urease, an enzyme that also possesses a dinuclear metal site containing two Ni ions, is even more relevant to the present study [44]. In urease, fluoride binds rapidly to a competitive site with a K_d of 1 mM, but fluoride binding to an uncompetitive site was shown to be slow and to have a K_d of 0.2 mM. The rates of slow fluoride binding observed by these authors are 0.008 - 0.38 s⁻¹, which are in the same range as the rates observed in this work. Slow inhibitor binding is normally associated with very tight binding inhibitors, with binding constants < 1 nM [34], but fluoride binding to PAP and the enzymes mentioned above is rather weak (µM to mM range). Molybdate and fluoride both bind to the PAP active site and both do so by displacing the same ligands, so why is slow binding only observed for fluoride and not for molybdate?

Binding of the oxoanions involves the fast formation of a preequilibrium in which the oxoanion binds at the divalent metal ion, followed by slower coordination to Fe³⁺ [51-53]. Most of the stability of the oxoanion complexes is derived from interactions with amino acid side chain residues such as histidines. For fluoride, which has fewer possible interaction modes with these amino acids, the binding strength may be due almost exclusively to its interaction with the metal ion, and no preequilibrium should exist. This in turn means that at inhibitor concentrations around K_d (when $[I] = K_d$), $k_{on}[I] ≈ k_{off}$ and therefore $k_{obs} = 2k_{off}$. For an inhibitor with the same values for k_{on}, k_{off} and overall K_d, but now with a preequilibrium such that e.g. $K_{dpreequil} = 5K_d$, $k_{on}[I]/([I] + K_{dpreequil}) = k_{on}/6$ and therefore $k_{obs} = k_{on}/6$ and >> k_{off}. The slow binding of fluoride often observed for metalloenzymes thus results from the fact that its rate is determined by the slow dissociation rate of fluoride from a metal ion and the absence of other interactions besides metal coordination that contribute to its stability.

Acknowledgment

We thank Winfried Roseboom for his helpful suggestions on the rapid-mixing rapid-freezing experiment.
Fluoride inhibition of purple acid phosphatase
