Comment on "What is a gauge transformation in quantum mechanics?"
Landsman, N.P.

Published in: Physical Review Letters

DOI: 10.1103/PhysRevLett.83.1070

Citation for published version (APA):
Comment on “What is a Gauge Transformation in Quantum Mechanics?”

In a recent Letter [1], Rovelli addresses a technical issue in constrained quantization which is of great potential importance for quantum gravity, Yang-Mills theories, and other fundamental theories. Let \mathcal{H} be the Hilbert space of unconstrained states of a quantum theory with quantized first-class constraints C. Rovelli defines two vectors ψ and φ in \mathcal{H} to be related by a “complete gauge transformation” when $\langle \psi | A | \varphi \rangle = \exp(i\langle \psi | C | \varphi \rangle)$. He then proposes that the physical Hilbert space be $\mathcal{H}_{\text{Phys}} = \mathcal{H}/L$, and he shows that when \mathcal{H} is finite dimensional, $\mathcal{H}_{\text{Phys}}$ is the same as the physical state space defined in Dirac’s well-known theory of constrained quantization.

Rovelli’s analysis of the situation in which \mathcal{H} is infinite dimensional is based on his remark that “In infinite dimensions, the orthogonal complement L of a subspace L may be trivial even if L is smaller than \mathcal{H}. But \mathcal{H}/L exists nevertheless…” This is true when L is not closed, but it is not clear what the inner product on \mathcal{H}/L should be in that case, and how it is to be completed so as to become a Hilbert space.

I here wish to point out that the infinite-dimensional case may be handled [2] by modifying the inner product $\langle \psi | \varphi \rangle_0$ on \mathcal{H} (which is positive definite) into a positive semidefinite sesquilinear form $\langle \psi | \varphi \rangle_0$, which in the infinite-dimensional case is defined only on a suitable dense subspace \mathcal{D} of \mathcal{H}. This form has a nontrivial null space $\mathcal{N} = \{ \psi \in \mathcal{H} | \langle \psi | \psi \rangle_0 = 0 \}$, in terms of which the physical state space of the constrained system is the closure of \mathcal{D}/\mathcal{N} in the inner product inherited from $\langle \cdot | \cdot \rangle_0$. When the dimension of \mathcal{H} is finite, the space \mathcal{N} coincides with Rovelli’s L (this is immediate if one combines the theorem on p. 4614 of [1] with the analysis in section 1.3 of [3]).

In addition, one would like to specify the action of physical observables on $\mathcal{H}_{\text{Phys}}$: recall that a Hilbert space as such conveys practically no physical information, since all Hilbert spaces of the same dimension are isomorphic. One may proceed by (i) defining a weak physical observable as an operator on \mathcal{H} satisfying the modified Hermiticity condition $\langle \psi | A | \varphi \rangle_0 = \langle \varphi | A | \psi \rangle_0$; (ii) noting that this implies that A maps \mathcal{N} into itself; (iii) concluding that A induces a well-defined operator A_{Phys} on $\mathcal{H}_{\text{Phys}}$. In cases that are well understood, this procedure indeed turns out to yield the correct physical quantum observables [3].

N. P. Landsman
Korteweg–de Vries Institute for Mathematics
University of Amsterdam, NL-1018 TV Amsterdam
The Netherlands

Received 11 August 1998
PACS numbers: 03.65.Ca, 11.15. – q