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Chapter 1 

Introduction 

In this booklet the interplay between magnetism and superconductivity in the 

heavy-fermion system U(Pd,Pt)3 is investigated. We use neutron-diffraction and y,SR 

experiments to study the magnetic properties, while the superconducting properties are 

investigated by (magneto)resistance, specific heat, thermal expansion and 

magnetostriction. Tlie main chapters in this thesis are written in the form of a journal 

publication. As a consequence some items are present in more than one chapter. In this 

introductory chapter we first present a short review of the properties ofUPt3, followed by 

the motivation of our research. After this we present the outline of the thesis. 

1.1 General introduction 

In the past fifteen years a host of experiments has been carried out on the heavy-fermion 

superconductor UPt3. In spite of this large experimental effort, there are still many open 

questions concerning the magnetism and superconductivity in the system. UPt3 is regarded 

as exemplary amongst the heavy-fermion superconductors, because of the coexistence of 

superconductivity and weak antiferromagnetic order. The non-standard BCS properties of 

the antiferromagnetic heavy-fermion superconductors provide strong evidence for an 

unconventional Cooper pair state and have led to speculations upon electron-electron 

mediated superconductivity. 

At low temperatures the normal state of UPt3 is characterised by pronounced spin 

fluctuations (T*~ 20 K), which gives rise to an effective mass of 200 times the free electron 

mass [1,2]. Below TN= 6 K an unusual type of antiferromagnetic order has been detected by 

neutron diffraction [3] and U.SR [4]. The size of the ordered moment is unusually small, 

m- 0.02 Ufi/U-atom. Incipient magnetic order in UPt3 was first detected by substitution 
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studies [2]. By replacing Pt by iso-electronic Pd , pronounced phase-transition anomalies in 

thermal and transport properties provided evidence for an antiferromagnetic transition of 

the spin-density-wave type. 

The unconventional superconducting properties of UPt3 are reflected in particular in 

the observation of two consecutive superconducting phase transitions with the second 

transition located approximately 55 mK below the first one. When a magnetic field is 

applied a third superconducting phase appears. Substitution studies are a powerful method 

to study the unconventional superconducting properties. In these studies Pd takes a special 

place, because it is so far the only substitution for which the distance between the two 

superconducting transitions (A7C) increases [5]. Most other substitutions, either on the U-

or the Pt-site, tend to smear out and to decrease both superconducting transitions at the 

same rate, leaving ATC approximately constant. 

Different scenarios have been proposed [6-10] to explain the unusual phase diagram of 

UPt3 in an external magnetic field [11,12] and under pressure [13,14]. Almost all theories 

of the superconducting phase diagram involve unconventional superconductivity, i.e. the 

symmetry of the superconducting gap function is lower than that of the underlying Fermi 

surface [15]. These scenarios have almost exclusively been discussed on the basis of 

generalised Ginzburg-Landau (GL) theories of superconductivity, where the free energy is 

purely derived by symmetry arguments. 

The scenarios for the UPt3-phase diagram can be divided into at least two different 

classes. There is either a symmetry breaking field (SBF) required to lift the degeneracy of 

the gap or an accidental near-degeneracy of the superconducting gap function. The main 

objective of the present study is to investigate whether the weak antiferromagnetic order is 

the symmetry breaking field or not. We performed neutron-diffraction and liSR 

experiments in order to investigate whether the antiferromagnetic order correlates with the 

superconducting properties. 

An other important issue is the nature of the weak antiferromagnetic order. By 

substituting Pd or Au on the Pt site or Th on the U site anomalies in thermal and transport 

properties provided evidence for an antiferromagnetic transition with substantial magnetic 

moments. By exploring the development of the magnetic order for Pd substitution we 

expect to arrive at a better understanding of the weak antiferromagnetic order in pure UPt3. 
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1.2 Outline 
The outline of this thesis is as follows. In chapter 2, the details of several experimental 

techniques are discussed. For the in-house experimental techniques we restrict ourselves to 

a basic description. In this chapter also the sample preparation is presented. After that a 

detailed description of the (xSR technique will follow, while also some elements of the 

neutron-scattering technique will be discussed. 

Chapter 3 is a theory chapter, dealing first with the unconventional superconducting 

properties of UPt3. The superconducting state is described within several Ginzburg-Landau 

models in which the symmetry of the superconducting gap plays an important role. The 

second part deals with the principles of u,SR. The most important issue here is how to 

interpret the muon depolarisation function. 

In chapter 4 the evolution of the antiferromagnetic order in UPt3 doped with Pd is 

studied by neutron-diffraction. The development of the small-moment antiferromagnetic 

order (SMAF) in U(Pti.APd.v)3 single crystals is studied for x= 0.000, 0.001, 0.002 and 

0.005. The interplay between small-moment magnetism and superconductivity is discussed. 

The large-moment antiferromagnetism (LMAF) is measured for single crystals with 

x= 0.01, 0.02 and 0.05. The differences between small-moment and large-moment 

antiferromagnetic order are reviewed. 

In chapter 5 the evolution of the antiferromagnetic order in U(Pti.,;Pdj3 is studied by 

U.SR. The U.SR experiments provide important evidence that there is a fundamental 

difference between large-moment and small-moment antiferromagnetic order. While the 

SMAF state is not observed by zero-field u.SR in polycrystalline samples with x= 0, 0.002 

and 0.005, the LMAF shows up as pronounced oscillations in the muon depolarisation 

function for x= 0.01, 0.02 and 0.05. 

In chapter 6 the superconducting properties of U(Pti..vPd )̂3 are studied by resistivity, 

specific heat, thermal expansion and magnetostriction. Combined thermal expansion and 

magnetostriction data are used to construct the multicomponent superconducting phase 

diagram of U(Pto.99sPdo.oo2)3 as a function of temperature and magnetic field. The 

constructed phase diagram is compared with the phase superconducting diagram of pure 

UPt3. 
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Chapter 2 

Experimental techniques 

In this chapter we present the experimental techniques used to study the magnetic and 

superconducting properties of U(Pt,Pd)i. As some of the in-house techniques have been 

discussed already extensively by de Visser [1], van Sprang [2], Bakker [3], Vorenkamp 

[4] and van Dijk [5], we restrict in section 2.1 ourselves to some basic description. In 

section 2.2 we shortly discuss sample preparation. The magnetic properties of the samples 

were mainly studied with neutron scattering and \x.SR experiments. A detailed description 

of the \xSR technique will follow in section 2.3, while some elements of the neutron-

scattering technique will be discussed in section 2.4. 

2.1 Introduction 
The superconducting properties of U(Pt,Pd)3 were measured by electrical resistivity, 

specific heat and dilatometry. The low-temperature experiments on the superconducting 

state of U(Pt,Pd)3 have been performed at the van der Waals-Zeeman Institute in a home-

built He cryostat and/or in a commercial dilution refrigerator. The base temperature of the 

He system is 300 mK. For the experimental details of this 3He cryostat we refer to van 

Sprang [2] and Bakker [3]. For the lower temperatures a dilution refrigerator (Oxford 

instruments, model 200S) with a base temperature of 10 mK has been used. The 

refrigeration process of the system is described in detail by Vorenkamp [4] and van Dijk 

[5]. In order to perform experiments in an external magnetic field, a 9 T superconducting 

magnet (Oxfords Instruments) was installed with additional compensation coils to create a 

field compensated region (B< 4 mT) at the level of the mixing chamber. Two reference 

thermometers were attached to the bottom of the mixing chamber in the zero field region. 

Below the field compensated plateau a H-shaped cold finger of gold-plated copper was 
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mounted. Additional thermometers near the sample position were calibrated using the 

reference thermometers. 

Various experiments can be performed in the refrigerator. The resistance was 

measured using a conventional ac four-point method. Typical dimensions of the samples 

are 0.8x0.8x5 mm3, corresponding to resistance values as small as 10"5 £1. In order to avoid 

Joule heating of the sample the excitation current has to be kept below 100 uA at the 

lowest temperatures. In order to obtain an accuracy of 1% for the resistance, the accuracy 

of the measured voltages are at the order of 10"11 V . This was accomplished by using a 

highly accurate ac (ƒ= 43 Hz) resistance bridge ('Détecteur Multifonction' of Barras 

Provence). 

Specific-heat experiments were carried out on single- and polycrystalline samples 

using the relaxation technique. The U(Pt,Pd)3 samples for the specific-heat experiments 

have a typical mass of 50-100 mg. In order to have a good thermal contact with the sample 

support the contact area should be large. Therefore the samples are shaped into platelets 

with a thickness of about 1 mm. The principle of the relaxation method is as follows. The 

sample (and addenda) are connected by a relatively weak thermal link to a heat sink which 

is at constant temperature, T0. At the time t=to, a constant power Q is applied to the heater 

on the sample holder until thermal equilibrium is achieved at a temperature T=TQ+AT. At 

t=t\ the power is switched off, leading to a relaxation of the temperature to the equilibrium 

temperature, T0. The thermal conductivity of the thermal link, Ki, is calculated using 

K,=Q/ ATI and from the measured relaxation time, x, the heat capacity, C, is calculated 

using C = %K,. A more detailed description of the relaxation technique can be found in 

Ref. 4. 

Dilatation experiments were carried out on single-crystalline samples with a parallel-

plate capacitance method. The capacitance of the dilatometer is measured by a sensitive 

three-terminal technique with an Andeen-Hagerling capacitance bridge (type 2500 A). The 

sample is connected to one of the plates while the other plate is fixed, so that the length 

change of the sample as a function of temperature or field is proportional to the change in 

capacitance (C). The capacitance of a parallel-plate capacitor is given by C=eA/d, where e 

is the dielectric constant of the medium between the plates, A is the area of the plates and d 

the distance between the plates (d= 100 u,m). The effective area of the capacitance plates, 

eA, amounts to 9.73xl0"16 Fm with an accuracy of 3%. Capacitance can be measured very 

accurately in a three terminal configuration (AC/C-10-9), so that the maximum sensitivity 

of this set-up is about 0.01 A for a sample with length 5 mm. 
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The linear magnetostriction, X, is determined by measuring the length change of the 

sample as a function of the applied magnetic field, B. The linear magnetostriction is given 

by X=(L(B)-L(0))/L(0), where L is the length of the sample. The measurements of X are 

performed using a sweep method. In the sweep method the linear magnetostriction was 

measured by changing the magnetic field with a relatively low rate (dB/dr<0.03 T/min) in 

order to prevent eddy current heating, while monitoring the length of the sample. 

The coefficient of the linear thermal expansion, o^Z/'dL/dr, can be determined using a 

discrete method by stepwise heating the capacitance cell. However, there is also a 

contribution to the thermal expansion caused by the capacitance cell, the so called cell 

effect. At the lowest temperatures the cell effect becomes large compared to the thermal 

expansion of the sample. To overcome this problem we used a temperature modulation 

method. By heating only the sample, instead of heating the whole cell, the cell effect can be 

neglected. In the temperature modulation method (/= 0.003 Hz, AT= 5-10 mK) two R11O2 

thick film resistors (Roederstein type DC1), which serve as heater (100 Q) and 

thermometer (3.0 k£2), are glued on the sample. In an ideal situation only the sample 

temperature is modulated. A more detailed description of the dilatation cell and the 

modulation technique can be found in Ref. 5. 

2.2 Sample preparation 

Samples where prepared at the FOM-ALMOS facility at the University of Amsterdam, 

where a variety of equipments is available for crystal growth. Polycrystalline samples 

U(Pti.APdr)3 where prepared by arc-melting the constituents in a stoichiometric ratio in an 

arc furnace on a water-cooled copper crucible under a continuously Ti-gettered argon 

atmosphere (0.5 bar). As starting materials we used natural uranium (JRC-EC, Geel) with a 

purity of 99.98%, and platinum and palladium (Johnson Matthey) with purity 99.999%. 

Polycrystalline material with low Pd contents (x< 0.01) was prepared by using appropriate 

master alloys (e.g. 5 at.% Pd). Single-crystalline samples with x= 0.002, 0.01, 0.02 and 

0.05, were pulled from the melt using a modified Czochralski technique in a tri-arc furnace 

under a continuously Ti-gettered argon atmosphere. Single-crystals with x= 0.001 and 

0.005 were prepared in a mirror furnace (NEC-NSC35) using the vertical floating zone 

method. In order to anneal the samples, they were wrapped in tantalum foil and put in 

water free quartz tubes together with a piece of uranium that served as a getter. After 

evacuating (p< 10"6 mbar) and sealing the tubes, the samples were annealed at 950 °C 

during four days. Next the samples were slowly cooled in three days to room temperature. 
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2.3 The |aSR technique 

|i,SR is an abbreviation for Muon Spin Rotation, Relaxation and Resonance. (xSR is a 

widespread technique used in nuclear solid state physics and is closely related to Nuclear 

Magnetic Resonance (NMR). The principle of the u,SR technique is quite simple. Positive 

muons are implanted in the metal at a particular site. The local magnetic field at the 

interstitial site exerts a torque on the muon spin (5^=1/2), so that the spin precesses around 

the local magnetic field, B^, with frequency co = 27ty B . Yn is the gyromagnetic ratio of 

the muon (y^= 13.554 kHz/Gauss). In this section some elements of the u,SR technique will 

be discussed. A more detailed description of the u,SR technique can be found in Ref. 6. 

Intense beams of muons are produced in large accelerators by bombarding a light 

target (graphite or beryllium) with 600 MeV protons. Several nuclear reactions take place 

between protons (p) and neutrons («), which lead to the production of pions (n): 

p + p—> p + n + n+ 

-> p + p + n° 

-» d + n+ 

(2.1) 
p + n—> n + n + n 

—> p + p + U~ 

—¥ p + n + 71° 

Here d is a deuteron. The charged pions (n+ and n) have a short average lifetime of 26 ns 

and decay into muons (u.+ and (J.") and the accompanying neutrinos (v^ and v ): 

7t +^U. + +V 
(2.2) 

n ^ n +v^ 

The neutral pion (71°) is not important for the U.SR technique, because it has an average 

lifetime 0.089 fs before it decays into photons. In solid state physics almost all U.SR 

research is carried out using positive muons. In the remaining part of this thesis we will 

only make use of the |a+SR technique, for simplicity denoted by uSR. 

Pions possess zero spin and neutrinos have a spin Sv=l/2 polarised opposite to their 

momentum. Angular momentum has to be conserved, so that in the rest frame of the pion 

the muon spin has to be antiparallel to its momentum. This allows the production of a 

highly spin polarised u.+-beam. The polarised muons are implanted into a sample where 

their polarisation evolves in the local magnetic field. The muon lifetime is 2.2 u,s and the 

muon decays into a positron (e+) according to the scheme: 
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M (2.3) 

where ve and vM are the neutrinos and antineutrinos associated with the positron and the 

muon respectively. The decay positrons are preferentially emitted parallel to the u,+ spin 

which allows a determination of the time evolution of the polarisation. The probability 

distribution of positron emission is given by: 

W t (0 ) = l + Acos8 (2.4) 

where 0 is the angle between the muon spin and the positron trajectory. The asymmetry 

parameter A depends on the energy selection of the positrons. The asymmetry parameter A 

is equal to 1 for the maximum positron energy of 52.83 MeV and equal to 1/3 when 

integrated over all energies (see e.g. Ref. 7). In the |aSR technique one deals with the latter 

situation. The corresponding W + (8) angular patterns are represented in figure 2.1. 

The U.SR technique uses the positive muon as a probe. The muon may form a bound 

state with an electron, called muonium, an exotic isotope of hydrogen. The muonium state 

can be stable in insulators or semiconductors, however, muonium has never been observed 

in metals. We shall therefore consider only free muons. 

Because of its positive charge, the muon localises at an interstitial site and its spin 

evolves in the local magnetic field. Due to the absence of a quadrupolar electric moment 

the muon does not couple to electric field gradients. The decay positron is emitted 

preferentially along the muon spin direction. By collecting several million positrons, one 

can reconstruct the time dependence of the muon spin depolarisation function which, in 

turn, reflects the spatial and temporal distribution of magnetic fields at the muon site. 

Figure 2.1 The angular distribution, We+(Q), of the decay positrons 

for (a) the maximum positron energy of 52.83 MeV (A=l) and (b) 

integrated over all energies. 
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The decay positrons are monitored and stored by detection electronics in an intensity 

versus time histogram. The time histogram of the collected intervals has the following 

form: 

Ne+ (0 = N0e~"  ̂ [1 + AG(t)] + b (2.5) 

Where b is a time independent background, 7V0 a normalisation constant, and the 

exponential accounts for the \i+ decay with the average decay time x,,. G(t) reflects the time 

dependence of the u,+ polarisation. The value of the initial asymmetry A depends on the 

experimental geometry and is in practice smaller than the theoretical value of 1/3. A is 

typically equal to 0.25. 

Because of their large kinetic energy (=30 MeV), the positrons are, fortunately, only 

weakly absorbed by the sample and cryostat walls, so that it is possible to use an extended 

experimental set-up. In general two types of experimental geometry are used (figure 2.2). 

The longitudinal and zero-field measurements are performed with the same geometry. The 

positron detectors are set parallel and antiparallel to the beam polarisation SM. We refer to 

this as the forward and backward direction, respectively. The longitudinal field is applied 

along the beam polarisation, S,,. In the transverse geometry Bext is perpendicular to S^ and 

the positrons are detected in a direction perpendicular to Bext. The transverse geometry is in 

practice often different from the situation in figure 2.2. For practical reasons Bext is often 

directed along the beam direction and the muon spin is rotated in the vertical direction. 

Longitudinal or zero-field setup 

muon beam 

sample 

positron 
backward 
detector 

positron 
forward 
detector 

Transverse-field setup 

muon beam 

sample 

positron 
detector 

Figure 2.2 The principle of the two types of experimental geometry: the longitudinal 

and transverse set-ups are shown in the left and right panel, respectively. In the drawings 

the muon beam momentum and the polarisation have been sketched parallel in order to 

have a clear drawing. In reality these two vectors are antiparallel. This figure is taken 

from Ref. 8. 



Experimental techniques 19 

The muon sources can be divided into two categories: continuous beams (PSI, 

Switzerland and TRIUMF, Canada) and pulsed beams (ISIS, UK and KEK, Japan). For 

continuous beams every event is treated separately. When an incoming muon is detected a 

clock is started and when the corresponding decay positron is detected this clock will be 

stopped and the elapsed time will be stored in an intensity versus time histogram. For 

pulsed beams all muons come in at the same time, to. This pulse has however a finite width 

distributed around t0. Due to this uncertainty in t0 continuous beams have a better time 

resolution than pulsed beams. The advantage of the pulsed beams is the lower background. 

After the pulse no other muons come in, which reduces the background b of equation 2.5. 

This lower background leads to a longer time window for the pulsed beam sources. 

Typically, the time window of a pulsed beam source is twice as long as for a conventional 

continuous source. Recently, a new technique has been developed at the PSI to reduce the 

background. This new technique, called 'Muons On REquest' (MORE), combines the 

advantage of a time where no other muons come in, like for pulsed sources, with the 

advantage of a continuous beam. In this technique a "kicker" sends only a muon to the 

instrument when it is required. An other advantage of this technique is that the full beam 

intensity can be available for several instruments. The advantage of MORE becomes clear 

from figure 2.3. This is a typical histogram for a transverse field measurement with an 

10000 

Normal 

—i r 

6 8 10 
Time (microseconds) 

Figure 2.3 Intensity versus time histogram for silver in a transverse field of 

100 Gauss and at a temperature of 10 K measured at PSI with the General 

Purpose Spectrometer. Using MORE instead of the conventional technique leads 

to a much lower background and a larger time window. Figure taken from Ref. 9. 
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applied field of 100 Gauss. Using MORE leads to a decrease of the background by two 

orders of magnitude and an increase of the time window. 

All the u,+SR measurements discussed in this thesis have been carried out at the Paul 

Scherrer Institut (PSI in Villigen, Switzerland), using the u+SR-dedicated beam-line on the 

PSI-600 MeV proton accelerator. For temperatures above 1.6 K a 4He flow cryostat 

(Quantum Design) was used, at the General Purpose Spectrometer (GPS). The external 

magnetic field of 0-0.6 T was produced by a pair of Helmholtz coils. For measurements 

below r=1.6 K, an Oxford Instruments top-loading 3He-4He dilution refrigerator was used 

at the Low Temperature Facility (LTF). The LTF facility can run in a number of modes to 

reach a wide temperature range. Below 1 K the cryostat is operated in the standard dilution 

refrigerator mode with a minimum temperature of 0.025 K. The cryostat can also operate in 

a gas flow mode with just 5% of the 3He-4He mixture circulating as the working fluid. In 

this mode measurements can be performed at temperatures between 0.750 and 20 K. 
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2.4 Elastic neutron scattering 
Neutron scattering is a powerful tool to study magnetism in condensed matter research. The 

neutron with its magnetic moment of 1.913 u.N (where (XN is the nuclear magneton) senses 

the magnetic moments of unpaired electrons due to dipole-dipole interactions. Thermal 

neutrons have a wavelength (1-3 Â) comparable to interatomic distances and an energy 

(10-80 meV) comparable to thermal excitations. Consequently, they display interference 

effects when scattered from solids. This enables one to use thermal neutrons to determine 

either crystallographic structures due to interaction between neutrons and nuclei or to 

determine magnetic order due to magnetic interactions. For structural investigations x-ray 

scattering is often used as well. The advantage of neutrons is that in general neutrons probe 

the whole sample, while x-rays only probe the surface area of the sample due to absorption. 

Another unique advantage of neutron scattering is the possibility of investigating dynamic 

processes arising from the motion of nuclei (phonons) or of the magnetic moments 
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Monochromator 
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The 4F2 triple-axis spectrometer at 

Laboratoire Léon Brillouin (CEA). 
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(magnons). These processes can be studied with inelastic neutron scattering, involving a 

change of neutron energy. In this work mainly elastic neutron scattering with an 

unpolarised neutron beam is discussed. Further details on neutron scattering theory can be 

found for example in Refs. 10 and 11. 

The neutron-diffraction experiments were performed at three different facilities. At 

Siloé (CEA in Grenoble) neutron-diffraction experiments were performed using the DN1 

triple-axis spectrometer, at the Institute Laue-Langevin (Grenoble) the IN14 triple-axis 

spectrometer was used, while at Saclay (Laboratoire Léon Brillouin, CEA) the triple-axis 

spectrometer 4F2 was used. Figure 2.4 shows schematically the experimental set-up of the 

4F2 triple-axis spectrometer. The experimental set-ups of DN1 and IN14 are almost the 

same. The main difference between 4F2 and the other spectrometers is that 4F2 has a 

double monochromator, while DN1 and IN14 have a single monochromator. For all 

experiments a pyrolytic graphite PG(002) analyser was set to zero-energy transfer in order 

to separate the elastic Bragg scattering from possible low-energy magnetic excitations. To 

suppress the second order contamination a Be-filter and/or a pyrolytic graphite (PG) filter 

was used. Also a vertically focusing PG(002) monochromator was used in all cases. The 

experiments have been performed in a temperature interval 0.1-10 K. Below 2 K a dilution 

refrigerator was used and above 2 K a bath cryostat. 

The differential cross section da/dQ, where Q is the solid angle, for neutrons from an 

incoming state with wave vector k and a spin o and an outgoing state with wave vector k' 

and a spin a' is given by the formula: 

where V is the interaction potential between neutron and sample and m the mass of the 

neutron. Note that we use for the cross section a the same symbol as for the spin. The 

differential cross section for scattering of unpolarised neutrons consists of magnetic and 

nuclear contributions. The nuclear cross section can be written as the sum of a coherent and 

an incoherent part. The incoherent scattering is caused by a random distribution of isotopes 

and the fluctuation of nuclear spins, while the coherent part is caused by interference 

between the scattered neutrons. For a collection of nuclei with fixed positions Rj a good 

approach for the interaction potential is: 
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where by is called the scattering length of the nucleus at position Rj. The total coherent 

cross section per unit cell is represented in terms of the nuclear structure factor FN(Q), with 

Q= k'-k. With the idealised interaction potential of equation 2.7 the differential cross 

section results in: 

dc î 
dßJN E , 0Q«R;) -W, bje e 

2 

|FN(Q)|2 (2.8) 

The sum is taken over all atoms in the unit cell. e~ ' denotes the Debye-Waller factor of 

atomy', accounting for the thermal motion of the atoms. The differential cross section given 

by equation 2.8 is the quantity that is measured at the nuclear Bragg reflections of a 

sample. 

Neutrons do not interact with the whole electron-cloud of an atom, like x-rays do, but 

they sense magnetic moments of unpaired electrons due to dipole-dipole interactions. The 

formalism of scattering of neutrons by magnetic moments is comparable with scattering by 

nuclei. The magnetic scattering is also described by a scattering length. However 

contributions to the magnetic scattering cross section are more complex. The additional 

complication is that this scattering is of vector nature. The size of the interaction depends 

on the size and direction of the magnetic moment, the direction of the scattering vector Q 

and the direction of the neutron-spin. Within the dipole approximation the magnetic cross 

section from a collection of atoms becomes analogous to the nuclear scattering cross 

section: 
2 

da') (2.9) (m1)jfj(Q)e 'e ' 
j 

where Yo= 2.696 fm. /j (Q) is the magnetic form factor which usually strongly decreases 

when Q increases, m^ denotes the component of the moment that is perpendicular to the 

scattering vector Q. For the determination of equations 2.8 and 2.9 it has been assumed that 

we deal with an infinite periodic lattice of delta functions (equation 2.7). Because the 

crystal is not perfectly periodic due to mosaic spread, is not infinitely large and because of 

the finite resolution of the instrument, one observes in practice finite spots, rather than 

points. From the width of the observed peaks additional information about the sample can 

be obtained. By rotating the diffractometer around its vertical axis, known as co-scan, one 

can determine the mosaicity of the sample if the experimental resolution is known. For 

magnetic order it is often important to know whether one deals with long-rang order or 

whether the correlation length is finite. In principle it is possible to extract this correlation 
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length from the width of the magnetic Bragg peak by deconvolving the signal with the 

experimental resolution. Considering the finite width of nuclear and magnetic Bragg peaks 

it is important to measure not only peak intensities, but also to make more extended scans 

in reciprocal space. Other corrections to the theoretical cross section are given by the 

following equation: 

/(Q) oc L(Q)ATE\F(Qf (2.10) 

where L(0) is the Lorentz factor, A the absorption factor, T the thermal diffuse scattering 

factor and E the correction for extinction and multiple diffraction. The Lorentz factor, L(0), 

is a purely geometrical correction, related to the time-of-reflection opportunity. For 

reflections in the equatorial plane it is only a function of the Bragg angle 0: L(0)=l/sin(20). 

The absorption correction, A reflects the loss of the intensity due to absorption in the 

sample. In practice the absorption correction is only used for strongly absorbing elements, 

like Ir, Cd and Gd. The thermal diffuse scattering correction, T, accounts for incoherent 

scattering and inelastic phonon scattering. At low temperatures it can usually be neglected. 

By extinction we mean the reduction of intensity by all processes different from the above 

mentioned. The kinematical theory on which equations 2.8 and 2.9 are based assumes that 

there is no reduction of the incident-beam intensity by scattering of the diffracted-beam 

intensity parallel back to the incident beam. There are several models that describe several 

sources of extinction. A detailed description of extinction theory can be found in Ref. 11. 

Under ideal experimental conditions the corrections for absorption, thermal diffuse 

scattering and extinction are unnecessary. 
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Chapter 3 

Theory 

This theory chapter starts with a short introduction to the properties of heavy fermions and 

their relation to magnetism and superconductivity. Next we present an introduction to 

unconventional superconductivity in UPt3. The superconducting state is described within 

several Ginzburg-Landau models in which the symmetry of the superconducting gap 

function plays an important role. The remaining part of this chapter deals with the 

principles of \x.SR. In \iSR experiments the muon depolarisation function reflects the time 

and spatial distribution of the local magnetic fields. The most important issue is how to 

interpret the muon depolarisation function. 

3.1 Introduction 

The term heavy fermion describes a class of intermetallic compounds that have, below a 

characteristic temperature, T*, an enhanced effective mass, m\ which amounts roughly up 

to 10 -10 times the free electron mass. Heavy-fermion behaviour is predominantly found 

in intermetallic compounds that contain the 4/element Ce or Yb or the 5/element U or Np. 

Heavy-fermion materials are characterised by an anomalously large electronic low-

temperature specific heat coefficient, v. For ordinary metals the y-value is of the order of 

1-10 mJ/mol K , while for a heavy-fermion metal the y-value amounts to 

100-1200 mJ/mol K2. 

Most heavy-fermion systems are close to an antiferromagnetic instability which is 

attributed to a competition between Kondo and Ruderman-Kittel-Kasuya-Yosida (RKKY) 

interactions. The Kondo effect gives rise to a low-temperature screening of the/-moments 
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by the conduction electrons. In a Kondo lattice system, the /-moments interact with each 

other via the conduction electrons. The resulting indirect exchange between the/-moments 

is described by the RKKY interaction. The strength of both effects depends on the 

exchange energy J, between the/-electrons and the conduction electrons. For a small J the 

RKKY interaction dominates, which may result in long-range magnetic order. In UPt3 

antiferromagnetic order is observed with a very small ordered moment of 0.02 u.B/U-atom. 

However, by replacing 5 at.% Pt by Pd antiferromagnetic order with a moment of 0.6 u.B/U-

atom can be readily induced. In several other heavy-fermion systems extremely small 

ordered moments are observed as well (e.g. in URu2Si2, where the ordered moment is 0.03 

U-B^U-atom). 

A most interesting observation is that in a number of heavy-fermion compounds 

(CeCu2Si2, URU2SJ2, UPd2Al3, UNi2Al3, UPt3) the antiferromagnetic order coexists with 

superconductivity. According to the standard BCS model strong magnetic interactions 

suppress superconductivity. The large effective mass leads to Cooper pairs with small 

spatial extension and therefore to large Coulomb repulsion between the two conduction 

electrons. This makes electron-phonon coupling as the interaction mechanism unlikely. 

Therefore it has been suggested that the formation of Cooper pairs is mediated by electron-

electron interactions. UPt3 is the compound for which most evidence is available that 

unconventional superconductivity is realised. 

3.2 Unconventional superconductivity 

3.2.1 Superconductivity in UPt3 

In the past decade a host of experiments has demonstrated that the superconducting 

properties of heavy-fermion UPt3 deviate drastically from the standard BCS behaviour. In 

spite of all the research efforts, the key question whether UPt3 is a genuine unconventional 

superconductor, i.e. a superconductor that has a superconducting gap function with a lower 

symmetry than the Fermi surface, is still not settled unambiguously. The experiments 

conducted to probe the unconventional ground state in UPt3 can roughly be divided into 

two categories. To the first category belong experiments that probe the structure of the 

superconducting gap by measuring the temperature variation of the electronic excitation 

spectrum. The observed temperature variations in the form of power laws of, for instance, 

the specific-heat [1], the velocity of sound [2] and the thermal conductivity [3], strongly 
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suggest the presence of point nodes and/or line nodes in the gap, as predicted for 

unconventional superconductors. However, the relevant temperature regime 

r « Tc (=0.5 K), has not been probed reliably yet, especially because the contribution from 

impurity scattering, which is not easily quantified, obscures the intrinsic behaviour. The 

second category of experiments is directed towards exploring the multicomponent phase 

diagram with three vortex phases in the B-T plane [1,4,5]. The phase diagram, obtained by 

dilatometry [7,8] on a high-quality single-crystalline sample is shown in figure 3.1 for a 

magnetic field along and perpendicular to the hexagonal axis. All phase lines are of second 

order, although for the B-C phase line, a weakly first order transition cannot be excluded. 

Second order phase transitions allow for the study of the phase diagram by means of 

Ginzburg-Landau (GL) theory. In the past years several GL-models have been worked out 

in order to understand the observed field and pressure dependence of the three vortex 

phases [6]. 

In section 3.2.2 we focus on the pairing state in unconventional superconductors. The 

gap structure is the topic of section 3.2.3. Important for the understanding of 

unconventional superconductivity is the symmetry of the order parameter, which is 

discussed in section 3.2.4. In section 3.2.5 we will review different GL-scenarios, assuming 

different gap structures. 

3.2.2 Unconventional pairing 
The origin of the pairing potential in a conventional superconductor lies in electron-phonon 

coupling. An effective attractive interaction of the conduction electrons leads to the 

formation of Cooper pairs formed by two conduction electrons with opposite spin (S= 0). 

The pairing state of a conventional superconductor is known as s-wave pairing which refers 

to the absence of an orbital momentum for the Cooper pair (L=0). In analogy to the 

spectroscopic notation, s-wave, p-wave, and d-wave are used to denote L= 0, 1,2. For 

electron-phonon coupling, the pairing is standard s-wave, but other pairing mechanisms 

can favour a different pairing. We will from this point on refer to non s-wave pairing 

(L? 0) as unconventional pairing. 
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Figure 3.1 Superconducting phase diagram of UPt3 

for B l c and B|| c, constructed from anomalies detected by 

thermal expansion and magnetostriction [7,8]. 

A Cooper pair formed by two spin 1/2 quasiparticles has a total spin of either 5= 0 or 

S= 1. For 5=0 the Cooper pair is in a singlet state and the orbital momentum is even 

(L= 0, 2, ..). For S= 1 the projection of the spin on the orbital momentum, L, labels three 

different states with Sz=0, ±1. For the triplet pairing the Cooper pair has an orbital 

momentum which is odd (L= 1, 3, ..). The wave-functions of unconventionally paired 

electrons have a larger spatial extension than those of s-wave paired electrons [9], which 

creates the possibility to overcome the short-range Coulomb repulsion. Because electron-

phonon interaction is also short-range, another coupling mechanism likely exists in heavy 

fermion superconductors. Note that for an unconventional pairing state (L*0) the 

symmetry of the pairing state is lower than the symmetry of the lattice. 
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3.2.3 The energy gap 
Important for superconductivity is the existence of a gap, Ak, in the quasi-particle excitation 

energy, Ek[  10]: 

Ek=(^+K\J (3-D 

Here Çk is the single particle energy relative to the Fermi energy, EF. For conventional 

superconductors the gap is nearly isotropic, although a strong anisotropy of the gap 

function is allowed as long as the symmetry of the gap function is equal to the symmetry of 

the lattice. The coherent two particle state is separated from the ground state by 2A. In an 

isotropic BCS-superconductor the number of electrons excited over an energy gap is given 

by [11]: 
n - exp(-A / kBT) (3.2) 

This manifests itself in an exponential temperature dependence of various physical 

quantities, such as the specific heat and the nuclear relaxation rate. For unconventional 

superconductors, the superconducting gap function is strongly anisotropic with possibly 

nodes in the gap function. The minimum excitation energy is lower in the region of the 

node and the number of excited particles is determined by the geometry of this region. This 

will result in a power-law temperature dependence of various physical quantities [12]. For 

p-wave pairing point-nodes on the Fermi-surface exist, while for d-wave pairing there 

exists at least one line-node. For both p-wave and d-wave superconductivity, several extra 

point- or line-nodes can exist. The shape of the gap determines the low-temperature power-

law behaviour of the thermodynamic quantities. By investigating the low-temperature 

power-laws, the existence of point- or line-nodes can be studied. From the shape of the 

nodes it can be determined whether the form of the pairing is s-wave, p-wave or d-wave. 

However, small amounts of impurities have a large effect on the low-temperature power 

laws. Due to impurities a broadening of point- or line-nodes occurs leading to areas of the 

Fermi-surface that are gapless [13]. These gapless areas have a large influence on the low-

temperature power-law behaviour, which complicates the analysis. Until now the different 

experiments gave no consistency about the gap structure, so that the symmetry 

representation could not be determined unambiguously. 
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3.2.4 The symmetry of the order parameter 

The symmetry of the order parameter determines the temperature dependence of the 

thermodynamic quantities. It is therefore important to determine the symmetry of the order 

parameter. In this section we closely follow a paper of Yip and Garg [14] in which the 

symmetry of the gap function is discussed for several point groups. The symmetry group of 

interest for UPt3 is the hexagonal group D6h. The superconducting gap function 

immediately below Tc is described by a linear combination of the basis functions, y', of 

the irreducible representation, P, for the symmetry group D6h. For singlet pairing the gap 

function is described by a single even function, A0(k), while for a triplet superconductor it 

is described by an odd vectorial function, d(k)= (dx, dy, dz): 

J 

Ao(k) = I X v i ( k ) , even parity, 

i, 
(3.3) 

^ ( k ) = Ê%Vji(k,«), odd parity, 
n=i 

where r^ are arbitrary complex numbers and lj is the dimensionality of P. In the odd case 

the basis functions depend on the pseudospin index (n= x, y, z) in addition to k. The basis 

functions \(/̂  are not unique, but can be written in a more general form. In the most 

Table I Even and odd parity basis functions of the superconducting gap for Déh, 

with k±=kx± ik and r± = x ± iy. Linearly independent basis function 

multiplets are separated by semicolons. Note that more than one basis 

function is given for the identity representation. 

r, Even parity r, Odd parity 

A i s 1, (**+**),  *?,.... Ai„ kzz; (k^x + kyy); Re ^ r+ ; 

A2g Im kl A2„ Im: k_r+; klr+; kfkzz 

B]g kz Im kl Biu Im: k\x; k\kzx+\ k*kzr_ 

B2g kz Re kl B2u Re: k3
+z; £+

2£zr+; k*kzr_ 

E i « £}*<w f Ei« 
{Im) : k+Z'' Kr+ ; k*KT- '  k~Z'  k-k*T- '  k-k* r+ 

E2g Gfc* E2u 
e \:k+r+ ; k2

+kzz; k\r_ ; klr_; Jfcfr+ ; ktkzz 
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general form the basis functions \|/£ can be written as a linear combination of N 

independent basis-function multiplets, Vjf, a= 1, 2,...,N, where N=lj and N=3lj for the 

pseudospin singlet and triplet cases, respectively. 

k 
Vi  (k) = £ Fj a (k)\|f£ (k), singlet, 

(3.4) 

WiiKn) = X /^(k) i^a(k,n), triplet, 
a=\ 

where the functions ^"(k) are arbitrary but invariant under all operations in the point 

group. The irreducible basis functions for a superconducting gap with hexagonal symmetry 

ASA are listed in Table I. For the two-dimensional (2D) representations, E\g and ü^, the 

partners in the multiplet (i.e. functions corresponding to different values of index u, with 

the same index a) are given by the real and imaginary parts of the complex functions. 

In the next sections a number of different Ginzburg-Landau scenarios will be 

discussed. The most important difference between these models is the symmetry of the 

order parameter. For a single 2D representation (E-model) the gap function is described by 

AE =T)xrEx +TiyrEy, where TE,* and TE,y are the basis functions of the E-representation 

and rix, r\y are the complex components of these basis functions forming a vector order 

parameter T)=C'nx, t]y). In the AB-model the total gap is characterised by 

A AB =TUrA +TiB^B' where FA and VB are the basis functions for the A- and B-

representation and T|A, % are the complex components of the two ID representations. 



34 Chapter 3 

3.2.5 Ginzburg-Landau theory 

3.2.5.1 Introduction 

The thermodynamic properties of the superconducting state can be described in terms of 

the free energy, F. Ginzburg and Landau assumed that close to the transition temperature 

Tc, the free energy may be expanded in terms of the order parameter, |v|/|. In the absence of 

magnetic fields and gradients, the free energy can be described by a Taylor expansion in 

terms of the order parameter: 

F = a|V|2+^ßH 4+... (3.5) 

Here cc= Oo(T-Tc) and Oo, ß> 0 for a stable second order phase transition. The first two 

terms of the expansion should be sufficient as long as one stays close to the second-order 

phase transition at Tc. In an applied magnetic field the order parameter is no longer 

uniform, so that the contribution from field gradients should be added to the free energy. 

The contribution of the gradients can be written as: 

ĜRAD = T^ |MV + e* A V I ' (3.6) 

Here A is the magnetic vector potential and m and e* are the charge and the mass of the 

superconducting Cooper pairs, respectively. Several heavy fermion superconductors show 

an anti ferromagnetic transition well above the superconducting transition. In that case the 

free energy is described in terms of two coupled order parameters; the ordered moment and 

the superconducting gap. Although the Ginzburg-Landau analysis can be applied more 

generally, we will focus here on the situation of UPt3. 

The superconducting properties of the system strongly depend on the symmetry of the 

order parameter. The aim of the Ginzburg-Landau analysis is to determine the symmetry of 

the order parameter. In order to come to a description of unconventional superconductivity 

in UPt3, several scenarios have been developed on the basis of generalised Ginzburg-

Landau (GL) theories of superconductivity, where the free energy is purely derived by 

symmetry arguments. The most studied scenarios for the UPt3-phase diagram can be 

divided into three classes, (i) The double transition can occur for a triplet order parameter 

described by the one-dimensional (ID) representation of the crystal point group symmetry 

D6h of UPt3, when the spin-orbit coupling interaction is negligible, (ii) The second 

mechanism for multiple superconducting phases in UPt3 is the presence of a vector order 
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parameter. The order parameter belongs to a two-dimensional (2D) representation of the 

Da, group, (iii) It is also possible that there are two nearly degenerate ID representations of 

the Dei, group. In scenario (i) and (ii) a symmetry breaking field (SBF) is required to lift 

the degeneracy of the spin or the 2D order parameter, respectively. The most likely 

candidates for the symmetry breaking field are the weak antiferromagnetic order [15] or the 

incommensurate structural modulation [16]. The most developed models consider the 

antiferromagnetic order as the SBF of the superconducting vector order parameter. 

Evidence for the antiferrromagnetic order as a symmetry breaking field is found in the 

pressure dependence of the ordered moment. Neutron-diffraction measurements under 

hydrostatic pressure indicate that the ordered moment vanishes at the same critical pressure 

as the splitting of the superconducting transition, A7"c = T* - T~ [17]. These measurements 

suggest a direct relation between the splitting of Tc and the ordered moment (ATc°c m2). For 

scenario (iii) there is no need for an additional SBF, but an accidental near-degeneracy of 

the superconducting gap function is assumed. Within this description there is no intrinsic 

physical reason for the closeness of the critical temperatures belonging to the different 

representations. In the next three sections we will present examples for all three scenarios. 

3.2.5.2 E-model 

The low-temperature properties of UPt3 are determined by both the antiferromagnetic and 

the superconducting order parameters. The total free energy with respect to the normal state 

consists therefore of three components: 

F=FM+FS+FMS (3.7) 

Here FM and Fs describe the antiferromagnetic and the superconducting contributions and 

FMS is the coupling term of the antiferromagnetic and the superconducting order 

parameters. The free energy related to the antiferromagnetic order with TN- 6 K can be 

described by a Ginzburg-Landau expansion of the ordered moment, m. 

FM =aM m2+ißM m4 (3.8) 

Below 7N an ordered moment is formed with m2=  -CCM/PM and ccM =ccM (T-TN). This 

moment saturates at wo= 0.02 u.B/U-atom. The free energy of the superconducting state is 

expanded in terms of a vector order parameter, r\=  (r\x,r\y), describing the complex 

components of a 2-dimensional gap function (E\g, Ezg, E\u, EjuY 
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Fs=asH2+|ßiM 4+|ßJTl2 |2 (3' 9) 

Here as = aSo (T- Tc) and aSo, ßi and ß2 are the Ginzburg-Landau coefficients which are 

positive. In the system described by eq. 3.9 the components of the superconducting order 

parameter are degenerate. In order to lift this degeneracy a symmetry breaking field (e) is 

needed. This symmetry breaking field can be provided by either the antiferromagnetic order 

or the structural modulation. For the antiferromagnetic order the symmetry breaking field is 

proportional to the moment squared (e= ym2). The free energy determined by the coupling 

between the antiferromagnetic order and superconductivity can be expanded as: 

^SM=Y|m-Tl|2+asM'w2N2 <3-10) 

The first term of this expression is responsible for the symmetry breaking. The non-

symmetry breaking invariant term aSMm2\r\\2 can be absorbed into as|îl|
2, which just shifts 

Tc by -ccS Mm2/as . For this reason one uses in general only the symmetry breaking 

expression: 

FSM=-Vn2(K\2-K\2) (3-11) 'SM _ !" ' t r u i p y | 

In order to minimise the total free energy it has to be rewritten in the components |T)X| and 

IV2' 

^ M + 
as(kl2+Kr)+^ßs(hxl4+hyf )-

„ ! i2l I2 ?/i |4 I l 4 \ 

ß*kl Kl -y™ (Kl -Kl J 

(3.12) 

Here ßs= ßi+ß2 and $#= ß,+ß2cos(2(<M>y)). By minimising the free energy with respect to 

|T|X|, \x\y\, m and (|>x-(|>y one obtains four coupled equations for the equilibrium state. The 

magnetic term is assumed to be constant in the superconducting state, because the moment 

is nearly saturated. The two superconducting phases can be characterised by a normalised 

order parameter. The stable phases of eq. 3.12 are the (1,0) phase with only |r|x| different 

from zero and the (l,ai) phase where both amplitudes are nonzero and have a relative 

phase <M>y= n/2. A double superconducting transition is found for ßi, ß2, y> 0 with the 

following solutions: 
2 

(1,0) phase: Tc
+ = Tc + ~^— (3-13) 

as„ 

^ ' ß , + ß , l c  ; 

Kf =0 

T; <T< T; (3.14) 
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(l,cci) phase: ßi lm7 

ß2 «s„ 

a, 
K\ °-{T;*-T) fo 

2ft 

= _io_/y-_: r \ 
2ß, 

r<7r 

where r„+*  = r„ + ß ^ 
ß2 «S„ 

(3.15) 

(3.16) 

(3.17) 

The thermodynamical step in the specific heat divided by temperature can be derived from 

the free energy by A(c/7)= -32F/9T2 for both transitions. The steps are relative to the 

normal state, because we considered the free energy with respect to the normal state. The 

calculated steps are: 

ANAc(7;+)/r+ 

&mc(Tö)lTï 

ß,+ß2 

CCc 

(3.18) 

ß, 

Experimentally the ratio ß2/ßi is determined from the ratio of the relative steps in the 

specific heat. In UPt3 the ratio ß2/ßi is close to the weak-coupling estimate of ß2/ßi=l/2. In 

chapter 5 and 6 we will compare the splitting of the superconducting transition predicted by 

equations 3.13 and 3.15 with the measured splitting, by making use of: 

ß,+ß2 Ym2 

= + _ 
CCc 

(3.19) 

A disadvantage of the Ginzburg-Landau expansion is that it is only valid near the phase 

transition. This means that the description breaks down when ATC becomes too large. A 

limitation of the Ginzburg-Landau expansion up to fourth order is that it does not describe 

the temperature dependence of cIT. The theoretical cIT is constant as function of T with 

steps at Tc
+ and T~. In order to account for the temperature dependence of the specific heat 

as function of temperature, the free energy should be expanded to higher order terms. There 

are however four independent sixth-order terms, and also as and ßi can have higher order 

temperature corrections. The large amount of parameters which are not accessible to 

experimental verification make higher order models difficult to interpret. 

Model calculations of the specific heat with one extra sixth order term, of the form 

^•(hxPhyf+hxfhy l2) " were performed by Thalmeier [18]. With this extra term 

nothing changes for the (1,0) phase. However the transition to the (l.cci) phase occurs at a 
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2 = asJc /2ß , j . 7%e va/we* cfcwen 

/or ffe mode/ parameters are aSoTc 12ß, = 0.53; ß2 / ß , =0 .5 ; ym2/aS ( )7; =0.034 ; 

5 /ß , =1.0 a t ó r c=0 .53K . 

fàgAf; S/?e«y*c Aear, (c/T)/(Co/Tc), as a function of temperature calculated 

for the same model parameters as above ( c0 = a2
sJc / ß , ). Tlie dashed lines in both 

pictures represent the solutions without sixth order correction (8= 0). 

reduced Tc~. Below Tc~ the temperature dependence of |T]X |2 and hy | 2 are no longer 

linear. For large ^ a third re-entrant superconducting phase transition, Tc3, occurs. Below 

Tc3 the (1,0) phase is found again. This re-entrant phase transition is in the model 

calculations accompanied by a large peak in the specific heat. Thalmeier suggested that the 

peak in the specific heat of UPt3 at 18 mK [19] could be explained by a re-entrant 

superconducting transition. It is however very dangerous to apply this Ginzburg-Landau 

expansion in such a large temperature range, because the modelled specific heat has not the 

correct temperature dependence and also entropy conservation is violated in the model. 

Moreover, specific heat measurements in a magnetic field above the critical field [19] 

indicate that the anomaly at 18 mK does not have a superconducting origin. 

We also performed calculations adding the sixth order term, 5|r||6/3, to the free 

energy. The details of these calculations can be found in Appendix I and the results for 

some reasonable values of the model parameters are shown in figure 3.2. The linear 

temperature dependence of cIT observed experimentally in UPt3 can not be reproduced by 

this model calculation, but the complete set of sixth order corrections may lead to a better 

description. 
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So far, we have discussed only the zero field properties. In an applied magnetic field 

the order parameter is no longer uniform, so that the free energy analysis must include the 

contributions from gradients of the order parameter. The field term of the free energy, FB, 

for a two dimensional order parameter of the hexagonal D6 / l group is given by [20]: 

FB = K^Dxr\x\
2 + | öy ï i y |2 ) + ^2( |Dx r i ƒ +|z)yT! x |2) + 

K3(Dxr)xD* yr\y+DxT\yDyx + c . c . ) + (3.20) 

^ 4(|Dzïi x |2+|ö zïi y |2)+JB 2/87t 

where Dj = dj - L4, with A the vector potential and the applied magnetic field is 

normalised by <J)o/27i (where ty, is the quantum of flux). The linearised solutions of equation 

3.20 are anisotropic and depend strongly on the assumptions made for the order parameter. 

In the most simple case the ordered moment is assumed to be always perpendicular to a 

field in the basal plane. The solutions of this model have been worked out by Hess et al. 

[20], who makes use of a different definition for the coefficients Kt. After transforming the 

coefficients AT, to ours, the linearised solutions for the upper critical field for B_L c are: 

^0aSo(Tc
+-T) 

(1,0) phase: B{ c2 271 JK^4 

<hn ccs (T. -T) 

where 
ym2 

a* 

The (1,0) and the (0,1) phase correspond to the experimental A- and C-phase, respectively. 

A critical point only exists when K\> K2. However the model predicts that there is no 

tetracritical point for B|| c: 

Kas0(Tc
+-T) 

(1,0) phase: Bc2 
2% ^K^K2 

èn as (77* - T) 
<0'1,phas,K B - - t - ^ m ~ (W 

This is not in agreement with the experimental observation that the tetracritical point exists 

for all field directions. Although the phenomenological GL theories are formally the same 

for any of the 2D representations, the predictions can depend on the symmetry of the Fermi 

surface and the Cooper pair basis functions. The /sT3-term of equation 3.20 prevents a 
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crossing of the two Bc2(T) curves for B|| c. Sauls [21] and Yin and Maki [22] suggest an 

order parameter for which the mixing-term, K3, vanishes. Sauls chooses an odd parity Eiu 

order parameter with the spin projection along the c-axis (d(k)= dzz) for which K]= K3= 0 

if  one assumes cylindrical symmetry. Yin and Maki consider an Eis order parameter which 

is a d-wave axial state, so that K3 vanishes. Both representations can describe the 

superconducting phase diagram with a tetracritical point for all directions. 

3.2.5.3 AB-model 

The AB-model is in several aspects very similar to the E-model. In the E-model the 

components of a 2D order parameter couple to each other, while in the AB-model the 

coupling of two nearly degenerate ID order parameters is assumed. The free energy in this 

case is given by [23]: 

r-  I 12 I |2 1 „ I |4 1 „ I |4 

^ « A H A I +aBhB| +-PA|I1A| +-ßBM 

ßihAt1B|2+-ß2 (T1Aî1B)2+(T1Aî1*)2J 

(3.23) 

Here aA B = as (T-TAB) where TA and 7B are the transition temperatures (TA> TB) for 

the ID order parameters T|A and r)B. The first four terms of the free energy are the 

conventional terms for both order parameters, where ßA , ßB> 0. The terms with ßi and ß2 

are responsible for the coupling between the order parameters. Also here the model can be 

described by a vector r\= (rjA^ß) with complex components. It is even possible to 

transform the free energy of the AB-model into the free energy of the 2D-model. The 

parameter range for a double superconducting transition is ß2> 0, ßA,B> ßrß2= ß- and 

<I>A-<I>B= n/2. For this parameter range the minimum of the free energy has the following 

stable solutions: 

(1,0) phase: Tc
+ = TA (3.24) 

,2 a s / 

h A |2=-ß^(r A -:r) 

hB|2 = o 
Tc~ <T< Tc

+ (3 .25) 
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(1,cci) phase: 

where 

c ßA-ß-

1 1 ol ;ßAßB-ß-

1 1 ol ;ßAßB-ß-
»_ßBrA-ß_rB 

A " ßB-ß-

T<T: 

(3.26) 

(3.27) 

(3.28) 

The step in the specific heat divided by temperature can be derived from the free energy by 

A(c/7)= ^F/dT2 for both transitions. The steps are relative to the normal state, because we 

considered the free energy with respect to the normal state. The calculated steps are: 

A NAc(r+)/rc
+ = 

ANBC(T-)/T: 

ßA 

, ßA +ßB -2ß„ 
(3.29) 

0 ßAßB-ß-

In an applied magnetic field the order parameter is no longer uniform, so that the free 

energy analysis must include the contributions from gradients of the order parameter. The 

field term of the free energy, FB, for two coupled ID order parameter of the hexagonal D6h 

group is given by: 

FB =* A |D1T I A |2+ /S :B |DL T I B |2 + 

KA\Dzr\A +KB\DZT]B\ +B2/8n 
(3.30) 

where Dj = dj - iAj with A the vector potential and the applied magnetic field is 

normalised by <y2n (where <f>o is the quantum of flux). The difference between the E-model 

and the AB-model is that there is not a mixing term in the AB-model like the /sf3-term for 

the E-model shown in equation 3.20. The AB-model is therefore invariant under field 

rotation in the basal plane. All kinds of order parameters are allowed, the parity of the order 

parameter is not important. It is even possible to have two order parameters of opposite 

parity. However it is assumed that one of the order parameters belongs to the A 

representation and the other to the B representation. When both order parameters belong to 

the A-representation or both belong to the B-representation additional gradient terms 

should be added. Additional mixing terms can avoid crossing of the phase lines like in the 

2D-model. One then has to apply the same arguments as for the 2D-model in order to let 

the mixing terms vanish. The linearised solutions of the upper critical field for the 

AB-model for B± c is given by: 
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(1,0) phase: Ba = ^ " ^ " T) 

271 A A < 

(0,1) phase: £c 2= - ^ V B , (3.31) 

The (1,0) and the (0,1) phase correspond to the experimental A- and C-phase, respectively. 

A critical point can only exist when KAKA > KBKB. The upper critical field for B|| c is 

given by: 

(1,0) phase: Bc2=^ ^ (7~A " T) 

2% KA 

(0,l)phase: Bc2 = f "»» ̂  " ^ (3.32) 

The phase diagram for the AB-model is qualitatively the same as for the 2D-models of 

Sauls [21] and Yin and Maki [22]. The only distinct difference between the two models can 

be found in the pressure dependence of the phase diagram. The p-T phase diagram of the 

AB model has the same topology as the B-T phase diagram. The p-T phase diagram has a 

tetracritical point where the superconducting A, B and C-phase meet with the normal state. 

In the E-model however there is a bicritical point where the B and C-phase meet with the 

normal phase. In order to understand this difference one has to keep in mind that in the 2D-

model a symmetry breaking field is needed. The degeneracy between the components is 

restored at a critical pressure, because the SBF is suppressed. In the AB-model both order 

parameters are suppressed under pressure, but with different rates. This means that below 

the critical pressure TA>TB while above the critical pressure TB> TA. This leads to a 

crossing of the order parameters, while in the 2D-model they merge. A direct consequence 

for the B-T phase diagram above the critical pressure is that in the 2D-model the B and C 

phase always meet at a bicritical point, while in the AB-model the C-phase is the most 

stable phase at high pressures. Sound velocity experiments [24] which indicate the 

presence of a tetracritical point support the AB-model. A tetracritical point is also inferred 

from the Ehrenfest relation by van Dijk et al. [25]. However, specific heat experiments by 

Sieck [26] seem to indicate the absence of a tetracritical point. 

Besides the E-model discussed in the previous section and the AB-model discussed in 

this section, there are several variations of these models. For example (i) the AE-model, 

which has a mixed ID and 2D representation [27,28], (ii) the super conducting glass state 

[27], which is a model based on the Eu representation with the order parameter oriented 

randomly in the basal plane, (lii) In the next section we will discuss the ID representation 
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model proposed by Machida and Ohmi. In this model the spin degeneracy is lifted by a 

symmetry breaking field. 

3.2.5.4 ID-rep with odd parity 

Recently, much attention has been focused on the Ginzburg-Landau models that employ 

the triplet pairing state as advocated by Machida [29], because detailed NMR experiments 

reported by Tou et al. [30, 31] present strong indications for a triplet pairing state. As 

symmetry class for the pairing functions the ID-representation of the D6h group with odd 

parity are considered. When spin-orbit coupling is absent, this representation is described 

by a three-component order parameter r\- (r\x, r|y, r\z) whose components label the spins of 

the Cooper pairs. In the first models of Machida and Ozaki [29,32] an ordered moment, 

m= (m, 0, 0) that lies in the basal plane, pointing along the hexagonal x-axis, was assumed 

to act as symmetry breaking field. In their most recent models [33,34] Machida and Ohmi 

assume antiferromagnetic fluctuations characterised by a triple-q vector with qi= (1/2,0,0) 

and its equivalent positions q2 and q3. The three fluctuation modes give rise to an extra 

term to the free energy: 
3 

f SM=-Se/ |( l r T l |2 (3-33> 

with e,> 0. e, is proportional to the amplitude of the antiferromagnetic fluctuations, m;
2, 

which is the magnetic intensity measured in the elastic neutron scattering experiment. The 

equivalency of the three modes is broken by the incommensurate structural modulation 

observed by transmission electron microscopy [16], such that for instance, Ei> e2= e3. The 

phenomenological GL free energy of the superconducting state in this model is then given 

by [34]: 

^s = asH 2 + ^ß ,H4 + |ß2 |q2 |2 -e|x-îi|2 -à |Z-TI |2 (3.34) 

Here as =aSo(T-Tc) and e=ere2>0 and q^x. The last term, À|z-r||2, which is 

somewhat ad hoc, expresses a weak anisotropy of the order parameter in spin space. This 

term reflects the fact that the Knight shift changes below Tc for B- 0.2 T parallel to the 

c-axis [31]. The free energy can be written as: 

^s= ^s0(T-Tj)\nj\2 +hi\r ]\
4 +h2\n

2\2 (3.35) 
Î — Y \l 1 Â- Z. 
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with rc
x = Tc + E / aSo >TC

Z = TC+X/ aS(j > T/ for e> X> 0. Below Tc
+ = Tc

x the A-phase 

is characterised by rjx*0 and riyz=0. The second transition from the A-phase to the B-phase 

is characterised by rix>z*0 and r\y -0, with a phase difference between r|x and r\z of nil. It 

can be proven that the third transition at T = 7 / is never realised in zero field. Minimising 

the free energy leads to the following solutions: 

(1,0,0) phase: Tc
+ = Tc

x 

aQ 

ß i+ß : 
-(T;-T) 

(1,0,ai) phase: 7C~ = 

Fix 

0; 

_ßsr c
z-ß.7;x 

T; <T<  TC
+ (3.36) 

where T+ = 

2Pî 

-%fir-T) 

= o; Kf-^(r; -r) 

.9X-ÏX 

T<T; 

2ß2 

(3.37) 

(3.38) 

The thermodynamical step in the specific heat divided by temperature can be derived from 

the free energy by A(c/7> -ô2F/372 for both transitions. The expressions for the specific 

heat steps are exactly the same as for the E-model (see equation 3.18). 

The calculations so far are valid in zero field only. In an applied magnetic field the 

order parameter is no longer uniform, so that the free energy analysis must include the 

contributions from gradients of the order parameter. The field term of the free energy, FB, 

for a one dimensional representation with odd parity is given by [29,34]: 

FB= X ^i V (|öxri v |2+|Dyï l v |2)+/s:2
v |DzT l v |2 + 

v=x,y,z 

l 
(3.39) 

:A XP|B.TI|-

where Dj = 3;. - L4, with A the vector potential, 1/2A/P is the difference of the 

susceptibilities in the normal and superconducting state and the applied magnetic field is 

normalised by <$>o/2n (where fa is the quantum of flux). The odd parity state is characterised 

by a non-vanishing spin susceptibility, which leads to B2 terms which are quadratic in r|. In 

contrast to the 2D representation model there is no mixing of the three components r)v in 

the ID representation, so that the tetracritical point is not washed out. There are two kinds 
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of gradient terms (tf,v and Kv
2). Because of the antiferromagnetic symmetry breaking these 

terms differ according to: 

K^K.-^m2, KÏ=K 2-Z2m
2, 

Kj=K x+^m\ Ki=K2+r >2m
2, (3.40) 

KÏ=K[  + ̂ m2, Kl=K' 2-^2m\ 

The linearised solutions for the upper critical field are [34]: 
B i z 

c2~^^r  (3-41) 
B 'c2 

0o «s o (?; z-n 
271 ^KfK^ 

Bllz 

2TC fff 

B*~Tn Tl  (3-42) 

Rz _ <f>0 ^ ( W - n 
O -, — • 

2TC K? 

where TJ(B) = 7 / - j x PZ ?2 . Thus under the condition K^K* ~ K]Kl  > K\K\ the phase 

lines for B l z meet in a tetracritical point, while under the condition K\ > K( ~ /sT,zthe 

phase lines for B|| z meet in a tetracritical point. The phase diagram is schematically plotted 

in figure 3.3. For the superconducting A-phase only TIX is non-zero. For the B- and C-phase 

the order parameter depends on the field orientation. For B l x the C-phase is characterised 

by TU and the B-phase is characterised by îi xx+iîi zz. The phase transition from Tixx+iîi zz to 

îlxx+iîi yy is never realised. For B| | z the C-phase is characterised by i\y and in the B-phase a 

rotation of the d-vector occurs in low fields from Tixx+ir|zz to Tixx+ir|yy at | A x P5 r „ t = X . 

Under pressure the antiferromagnetic fluctuations disappear above a critical pressure 

Per- The topology of the superconducting phase diagram above p a is important for the 

verification of this model. In the E-model there is a bicritical point where the B and 

C-phase meet with the normal phase. The p-T phase diagram of Machida and Ohmi 's 
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Figure 3.3 Schematic phase diagram of the B- T plane forBLc and 

B\\c. The components of the d-vector are indicated for each phase. 

The dotted line for Blc represents the non-stable ^jX+i^yy phase. At 

the dashed line for B\\c a rotation of the d-vector occurs. 

model has the same topology as for the AB model. Which means that the p-T phase 

diagram has a tetracritical point where the superconducting A, B and C-phase meet with 

the normal state. Sound velocity [24] and dilatation [25] experiments indicate the presence 

of a tetracritical point, but specific heat experiments by Sieck [26] seem in favour of a 

bicritical point. 

In spite of all experimental and theoretical effort since 1984, when superconductivity 

in UPt3 was discovered [35], the nature of the unconventional superconducting state is not 

completely understood. Knigavoko and Rosenstein [36] proposed recently the existence of 

magnetic skyrmions in UPt3. There exists a class of solutions in Machida and Ohmi's 

model where the vortices carry two units of magnetic flux: the magnetic skyrmion. The 

main issue in almost all old and new Ginzburg-Landau models stays the same: the 

symmetry of the superconducting order parameter. 
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3.3 The principles of ̂SR 

In section 2.3 we presented the experimental aspects of the |uSR technique is presented. 

From the intensity versus time histogram one can reconstruct the time dependence of the u.+ 

depolarisation function, G(t), which reflects the spatial and temporal distribution of the 

magnetic fields at the muon site. An important issue is how to interpret the depolarisation 

function. In the following sections the muon depolarisation function is examined for the 

most important cases. In section 3.3.1 we will discuss the depolarisation functions for Zero 

field U.SR, in section 3.3.2 for Longitudinal field U.SR and in section 3.3.3 for Transverse 

field nSR. For a more extensive theoretical description we refer to the book of A. Schenck 

[37]. For a review of magnetic materials studied by U.SR see refs. 38 and 39. An overview 

of heavy fermion materials studied by liSR can be found in refs. 39 and 40. 

3.3.1 Zero field |iSR 

In a zero field (ZF) U.SR experiment one measures the time dependence of the polarisation 

of the muons in a sample under the action of internal magnetic fields. These local fields are 

either of electronic origin or caused by the nuclear magnetic moments of the atoms. 

Nuclear dipole fields are usually static in the time window of U.SR (fluctuation time 

x> 10"4s), while electronic fields may be of static or dynamic nature. If all the muon spins 

precess in the same static magnetic field, oriented at an angle 0 from the initial muon spin 

direction, S ,̂ the Larmor equation is: 

G{t) = cos2 0 + sin2 6cos(oy) (3.43) 

with Cûn= 27uy^, where y^ is the gyromagnetic ratio of the muon and 5„ is the magnetic 

field at the muon site. Equation 3.43 is one of the basic equations of the U.SR technique. 

For a polycrystalline magnet the spatial average of equation 3.43 has to be calculated. If the 

spatial distribution is isotropic (no texture) the result is: 
1 2 G 0 ) = 3 + - c o s ( o y ) (3.44) 

The oscillating component reflects the magnetic order in the sample. We suppose here that 

there is only one type of muon localisation site and that for all these sites flH is the same. If 

there is disorder, i.e., if there is a distribution of the local fields, then the oscillation can be 

strongly damped and even disappear. 



48 Chapter 3 

1.0 

0.8 -

0.6 -

> 

^ 0 . 4 

0.2 

0.0 

* K \ ' I i ' 

- \\ \ 30 
-

- \\ \ 
10 

\ \ \ 3 

v\\1 

\ 0 \ \ \ 3 

v\\1 0 . 1 \ ^ ^ 

\ \ \ 3 

v\\1 0 . 1 \ ^ ^ 

I i 

-—Si3 

8 

Time(A-i) 
Figure 3.4 The fluctuating-rate dependence of the dynamical Kubo-Toyabe 

function. The numbers indicate the fluctuating rate in units of A. The static Kubo-

Toyabe function corresponds to the curve labelled with 0. 

Another common case is that of an isotropic Gaussian distribution of internal fields 

with an average zero field given by: 

fW-- 271 A 
exp 

y;sr 
2A2 (i = x,y,z) (3.45) 

where A7YH = (B ) represents the second moment of the field distribution along one 

Cartesian axis (the second moment of the three dimensional field distribution is 

Mi= 2A /YH ). This kind of distribution is, for example, found for static nuclear magnetic 

moments or in a dense spin glass system. In this case an analytical formula has been 

derived for G(t), the so called Kubo-Toyabe function, GKT(0-

G(t) = GKT (0 = I + | ( l - A2
K T r 2)exp(- i A2

KTr2 j (3.46) 

GKT(0 has a minimum for t = -J3 IA and saturates if fA is large enough to a value of 1/3. 

The initial time dependence is well approximated by the parabolic form, GKT(0= 1-A2?2, or 

a Gaussian form, GKT(0= exp(-A2r2). 
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Figure 3.5 The magnetic field dependence of the longitudinal depolarisation 
function derived for a static isotropic Gaussian field distribution. The numbers 
indicate the magnetic field in units of A/ŷ . The Kubo-Toyabe function 
corresponds to the curve labelled with 0. 

In fluctuating fields, the Kubo-Toyabe function is modified to the so called dynamical 

Kubo-Toyabe function G^(t,v), which, with the exception of some limiting cases, cannot 

be calculated analytically, see figure 3.4. These fluctuations are characterised by a 

fluctuation rate v. The dynamics is calculated using the strong collision model, which 

means that every fluctuation destroys completely the correlation between the field 

distribution before and after the event. The form of G^° (t,v) depends strongly on v. For 

slow fluctuations (v/A« 1), only the 1/3 term of equation 3.46 will be modified to 

l/3exp(-2/3vf). If v/A is sufficiently large the depolarisation function is given by: 

G(t) = exp(-2A2? / v) = exp(-Xf) (3.47) 

This is the motional narrowing limit. If the motion is fast enough, the n+ will experience 

the average field leading to a field distribution which is narrower than the real field 

distribution. 
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3.3.2 Longitudinal field (iSR 

In zero field studies it is not always possible to distinguish between static or fluctuating 

fields. However, by measurements in a longitudinal field (LF) configuration it is in most 

cases possible to identify whether the field is fluctuating or static. By applying Bext parallel 

to Sn=(0,0,Sz) and choosing Bcxt much bigger than the internal fields, any static distribution 

of internal fields will not influence the time evolution of the muon polarisation. This is 

called the decoupling of the muon spin from static internal fields. For internal fields that 

are Gaussian distributed, f[Bz) in equation 3.45 will be replaced by: 

^ ) = v f e ïe x p ( Yu(5z-5ext)2 

(3.48) 

Hayano et al. [41] have derived the depolarisation function GKT(f,.BMt) as a function of 

applied field, which has the form: 

2A2 

GKT(t,Bext) = l - - T - r 

Yn#ext 

1 « ' 2 
—A-r 
2 c o s(YiA x t f ) H ext* 

3 to 1 
(3.49) 

2A3 7 -\S ƒ % * „ , \ 

Figure 3.5 demonstrates that Gicrt'Axt) for the static case is strongly field dependent and 

gradually removes the time dependence of the polarisation. On the other hand fast 

fluctuations of the internal fields will lead to a depolarisation even in a large longitudinal 

field. For a fast dynamical process the relaxation of the muon spin leads to an exponential 

depolarisation characterised by equation 3.47 with a slightly reduced value for I. 

3.3.3 Transverse field p,SR 

In the transverse field (TF) configuration the external magnetic field Bext is applied 

perpendicular to the initial muon polarisation S^. The arrangement of the set-up is 

described in chapter 2.2. The local magnetic field at the interstitial sites of the implanted 

muon can be determined from the Larmor precession frequency. One expresses the 

measured frequency or frequencies in the form of a Knight shift: 

„ B H - |B e x t | (CO) , 

Prat ro0 
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where C0o= Yn̂ ext- Here, we consider only metals in the paramagnetic state that are exposed 

to a magnetic field. The local magnetic field, B^, at the interstitial site where the muon 

comes to rest can in general be written as follows: 

B^ = Bext + B^p + Bcon + AxmZB«, + Baa (3-51) 

Bdip represents the dipolar fields of the localised lattice spins. The third and the fourth term 

are called the direct and the indirect hyperfine contact field, respectively, and are connected 

with the presence of the muon itself. The direct hyperfine contact field (Bcon) results from 

the spin density at the muon site which is induced by the polarisation of the conduction 

electrons. In the paramagnetic state this polarisation is induced by an external field. Bcon is 

proportional to the Pauli susceptibility Xpauii of the conduction electrons and is usually 

assumed to be temperature independent and isotropic in contrast to the other contributions. 

The indirect contact field is due to the RKKY interaction between localised moment and 

the muon. The effective contact coupling constant Acon is temperature independent, so that 

the indirect contact field is proportional to the susceptibility tensor, x . and the applied 

magnetic field. The last contribution of equation 3.51 is due to the diamagnetic response of 

the electron cloud screening the muon charge. The diamagnetic screening produces only a 

very small contribution, Bdja, to the local magnetic field. For materials with enhanced 

effective electron masses, meff> the small diamagnetic contribution is reduced by a factor 

mJiriM. For heavy-electron compounds the diamagnetic contributions are therefore 

negligible. 

In order to separate the different contributions to the local magnet field the 

experimental Knight shift is usually compared to the calculated one. If the principal axes of 

the crystal structure are chosen as a co-ordinate frame, the dipolar field contribution can be 

written as: 

B^p = AapJcB^ (3.52) 

where the dipolar tensor Adip is given by: 

4p(U) = S ^ ^ - o J (3.53) 

The dipolar field at site r^ is determined from the sum over all ƒ moments at positions r/, 

r=r rr^-{x\^2^c-i)={x,y,z), r=\r\  and Ô,; is Kronecker's symbol. In order to calculate this finite 

sum, the following trick has to be used: define a so called Lorentz sphere with radius rL, 

and separate the sum into a part inside the sphere and a part outside the sphere. If one 

chooses the radius large enough, the summation over the outer region can be approximated 
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with an integral. The magnetic field resulting from this integral yields the Lorentz field 

BL=l/3noM and the demagnetisation field Bdem=-NM. Where M is the magnetisation and 

N is the demagnetisation tensor related to the shape of the sample. Note that for a sphere 

iV=l/3, so that 5L+5dem=0. 

The issue is now to decompose the different Knight shift contributions in order to 

compare experimental data with calculations. Experimental Knight shift results can be 

easily corrected for demagnetisation and Lorentz fields. Therefore we omit these terms in 

the following discussion. The Knight shift is related to the susceptibility tensor (which is 

diagonal) according to: 

^=^con+b.(Äo txb) (3.54) 

where b =Bext/|Bext| is the unit vector parallel to the applied magnetic field, Kcoa is the 

Knight shift due to the direct contact field and A,ot = A^ + Acon is the total hyperfine 

coupling tensor. In contrast to Kcon and %pauii, the contribution from the localised 

/-electronic moments will exhibit a strong temperature dependence. KC0D can therefore be 

determined from the experimental data K^(%) by extrapolating to %-^>0. The elements of 

A,otx can be determined experimentally from the Knight shift anisotropy for the principle 

axes. The Knight shift is simply given by 

K, = A% (3.55) 

With the knowledge of ft the tensor elements A" can be determined from the observed 

Knight shift Kv Because Atot is the sum of a traceless dipolar tensor and a scalar contact 

part, A,ot can be decomposed using Acon=l/3 Tr(A,01). By comparison of the 

experimentally determined Ädip with the theoretical values calculated with the use of 

equation 3.53 it is often possible to determine the actual muon stopping site. If a sample 

orders magnetically below the ordering temperature and the muon stopping site is known, 

then it is easy to calculate from the local field in the ordered state, measured by zero field 

uSR, the size of the ordered moment. 
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Chapter 4 

Neutron diffraction study 

Neutron-diffraction experiments have been carried out on a series of heavy-electron 

pseudobinary U(Pti.xPdx)s single crystals (x< 0.05). The small-moment antiferromagnetic 

order reported for pure UPtj is robust upon doping with Pd and persists till at least 

x= 0.005. The ordered moment grows from 0.018±0.002 \XB/U-atom for pure UPtj to 

0.048±0.008 \iß/U-atom for x= 0.005. The Néel temperature, TN, is approximately 6 K and, 

most remarkably, does not vary with Pd contents. The order parameter for the small-

moment antiferromagnetism has an unusual quasi-linear temperature variation. For 

x> 0.01 a second antiferromagnetic phase with much larger ordered moments is found. For 

this phase at optimum doping (x= 0.05) T^ attains a maximum value of 5.8 K and the 

ordered moment equals 0.63±0.05 \is/U-atom. T^x) for the large-moment 

antiferromagnetic order follows a Doniach-type phase diagram. From this diagram we 

infer that the antiferromagnetic instability in U(Pt].xPdx)z is located in the range 0.5-1 

at.%Pd. 

4.1 Introduction 
It has been recognised, for more than a decade now, that the heavy-electron compound 

UPt3 is close to an antiferromagnetic instability. Evidence for the proximity to a magnetic 

instability is provided by pronounced spin-fluctuation phenomena at low temperatures [1] 

and incipient magnetic ordering [2], which can readily be made visible by chemical 
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substitution. The low-temperature thermal, magnetic and transport properties of pure UPt3 

demonstrate the formation of a strongly renormalised Fermi liquid at low temperatures 

[1-3]. The coefficient, y= 0.42 J/molK2, of the linear term in the specific heat, c(T), is very 

much enhanced with respect to a normal metal, which gives rise to a Fermi-liquid 

description with a quasiparticle mass of =200 times the free electron mass. The low-

temperature Pauli susceptibility, %o=%(T-^0), is equally enhanced. Upon raising the 

temperature, %(T) exhibits a maximum at T^^ 18 K, which indicates the stabilisation of 

antiferromagnetic spin fluctuations below T ^ . From the electrical resistivity, p(T), data, it 

follows that the coherence regime sets in near 10 K, while the Fermi-liquid AT2 regime is 

attained at T< 1.5 K. The coefficient A is enhanced by two orders of magnitude over that of 

a normal metal, which is a general rule in heavy-electron compounds. Measurements of the 

thermal and transport properties in a magnetic field [1,3] provide further evidence that the 

electron correlations are primarily of antiferromagnetic nature. 

Inelastic neutron-scattering experiments have put the evidence for antiferromagnetic 

spin fluctuations on firm footing [4-6]. The fluctuation spectrum is quite complex as 

different energy scales are present. Spin-polarised neutron-scattering data on 

polycrystalline material [4] yield a quasi-elastic contribution centred at =10 meV, which is 

related to the fluctuating local f-moment. The size of the fluctuating moment is of the order 

of 2 ixB/U-atom, which is not far from the value of the effective moment deduced from the 

high-temperature Curie-Weiss constant (u,efï= 2.6±0.2 uVU-atom) [1]. Subsequent 

polarised and unpolarised neutron scattering measurements on single-crystalline samples 

[5] revealed a response centred at 5 meV, which is consistent with antiferromagnetic short-

range order between nearest neighbour uranium atoms located in adjacent basal planes 

(UPt3 has a hexagonal crystal structure). The antiferromagnetic correlations disappear 

above rmal, while in-plane ferromagnetic correlations persist till about 150 K. At yet a 

lower energy (0.2 meV) a second type of antiferromagnetic in-plane correlations was found 

at Q= (0.5,0,1) [6]. Surprisingly, at the same Q-vector, weak magnetic Bragg reflections 

were detected. This then provided evidence that, in pure UPt3, small-moment 

antiferromagnetic order (SMAF) develops below a Néel temperature of =6 K [6]. The size 

of the ordered moment is unusually small, m- 0.02±0.01 u,B/U-atom. It is directed along 

the a -axis in the hexagonal basal plane. The magnetic unit cell consists of a doubling of 

the nuclear unit cell along the a*-axis. More recently, another type of correlations was 

observed near Q= 0 (forward direction) at low energies in a time-of-flight experiment [7]. 
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These ferromagnetic correlations near Q= 0 have been interpreted in terms of the effect of 

low-lying fermion quasi-particles in the presence of strong spin orbit coupling. 

Incipient magnetic order in UPt3 was first detected by substitution studies [2]. By 

replacing Pt by isoelectronic Pd, pronounced phase-transition anomalies appear in the 

thermal and transport properties. Notably, the X-like anomaly in c(T) and the Cr-type 

anomaly in p(7) give evidence for an antiferromagnetic phase transition of the spin-

density-wave type. Neutron-diffraction experiments [8] carried out on a single-crystalline 

sample with optimal doping, U(Pto.95Pdo.05)3 (7N,MK= 5.8 K), confirmed the 

antiferromagnetic order. The ordered moment equals 0.6±0.2 u.BAJ-atom and is directed 

along the a -axis. By plotting the Néel temperatures, deduced from the c(T) and p(7) data, 

as functions of the Pd concentration, the border of the antiferromagnetic phase could be 

delineated [3]. Anomalies observed in the thermal and transport data restricted the 

antiferromagnetic order to the concentration range 2-7 at.% Pd. More recently, microscopic 

techniques, like neutron diffraction (this work) and |xSR [9], have extended the lower Pd 

concentration limit to =1 at % Pd. We have termed this magnetic order large-moment 

antiferromagnetic order (LMAF) in order to distinguish it from SMAF observed in pure 

UPt3. The magnetic instability in UPt3 can also be triggered by substituting Th for U 

[10-12]. Remarkably, the magnetic phase diagrams for the (U,Th)Pt3 and U(Pt,Pd)3 

pseudobinaries are almost identical. This shows that the localisation of the uranium 

moments is not governed by the unit-cell volume of these pseudobinaries (the unit-cell 

volume decreases upon Pd doping, while it increases upon alloying with Th). Long-range 

magnetic order also shows up when UPt3 is doped with 5 at.% Au, while substituting 5 

at.% Ir, Rh, Y, Ce or Os, does not induce magnetic order [13-15]. This indicates that a 

shape effect, i.e. the change in the c/a ratio, is the relevant control parameter for the 

occurrence of magnetic order. 

The pronounced spin-fluctuation phenomena and the incipient magnetic order 

unambiguously demonstrate the proximity to a magnetic instability of UPt3. Therefore, it 

came as a great surprise that the strongly-renormalised Fermi liquid is also unstable against 

superconductivity [16]. In the past decade many experiments have demonstrated that 

superconductivity in UPt3 is unconventional [17]. The most important manifestations of 

unconventional superconductivity in UPt3 are (i) the observation of power laws in the 

temperature variation of the superconducting properties, rather than the standard BCS 

exponential laws, (ii) the splitting of the superconducting transition in zero magnetic field, 

and (iii) the existence of three superconducting vortex phases in the magnetic field-
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temperature plane. In the past years, a number of phenomenological Ginzburg-Landau 

models have been worked out in order to understand the observed field and pressure 

variation of the three vortex phases [18]. The model which received the most attention is 

the so-called E-representation model, which is based on the coupling of a two-dimensional 

superconducting order parameter to a symmetry breaking field (SBF) [19]. The underlying 

mechanism is that a weak SBF lifts the degeneracy of the order parameter, which results in 

two superconducting phases in zero field. The key issue of the E-model is to identify the 

SBF and to prove that it couples to superconductivity. A natural candidate for the SBF is 

the SMAF, which was found to coexist with superconductivity [6]. Within the E-model, 

the splitting of the superconducting transition temperature ATC=T*  -T~ is proportional to 

the strength of the symmetry breaking field, A7*c °c e, or in case that the SMAF acts as the 

SBF, Arc °c m
2. 

In this chapter we report neutron-diffraction experiments conducted to investigate the 

evolution of magnetic order in the U(Pt,Pd)3 series. The aim of these experiments was to 

answer the following questions: (i) what is the connection between the SMAF observed in 

pure UPt3 and the LMAF observed in the doped compounds, (ii) how does the LMAF 

emerge upon Pd doping, (iii) is the SMAF stable with respect to Pd doping and does it 

couple to superconductivity, and (iv) is the SMAF influenced by annealing the samples. In 

order to address these questions we have carried out neutron diffraction experiments on 

single-crystalline UfPti.JPd^ with x= 0.001, 0.002, 0.005, 0.01, 0.02 and 0.05. For all 

concentrations x<0.01 we were able to detect SMAF, while for x>0.01 LMAF was 

observed. This chapter is organised as follows. In section 4.2 we focus on the experimental 

details, like the sample preparation process and the relevant information regarding the 

neutron scattering experiments. Section 4.3 is devoted to the calculation of the magnetic 

moment. In sections 4.4 and 4.5 our neutron diffraction results for the SMAF and the 

LMAF compounds are presented. In section 4.6 we constitute the magnetic phase diagram 

and in section 4.7 we discuss the connection between SMAF and superconductivity. In 

section 4.8 we discuss the results. A preliminary account of part of this work was presented 

in Ref. 20. 

4.2 Experimental 

Polycrystalline material was prepared by arc-melting the constituents in a stoichiometric 

ratio in an arc furnace on a water-cooled copper crucible under a continuously Ti-gettered 
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argon atmosphere (0.5 bar). As starting materials we used natural uranium (JRC-EC, Geel) 

with a purity of 99.98%, and platinum and palladium (Johnson Matthey) with a purity of 

99.999%. Polycrystalline material with low Pd contents (x< 0.01) was prepared by using 

appropriate master alloys (e.g. 5 at.% Pd). Single-crystalline samples with x= 0.002, 0.01, 

0.02 and 0.05, were pulled from the melt using a modified Czochralski technique in a tri-

arc furnace under a continuously Ti-gettered argon atmosphere. Single-crystals with 

x= 0.001 and 0.005 were prepared in a mirror furnace (NEC-NSC35) using the vertical 

floating zone method. In order to anneal the samples, they were wrapped in tantalum foil 

and put in water free quartz tubes together with a piece of uranium that served as a getter. 

After evacuating (p< 10"6 mbar) and sealing the tubes, the samples were annealed at 950 °C 

during four days. Next the samples were slowly cooled in three days to room temperature. 

In the case of the samples with x= 0.001 and x= 0.002, neutron-diffraction data were 

collected before and after annealing. In all cases, the volume of the measured samples was 

of the order of 0.15 cm3. 

In order to characterise the samples the resistivity was measured on bar-shaped 

specimens spark-cut along the crystallographic a-and c-axis. The residual resistivity, p0,a 

and po,c, values are listed in Table I. For pure UPt3 we obtain residual resistance ratios 

(RRR) of =460 and =720 for a current along the a-and c-axis, respectively. Upon alloying 

with Pd, po,a increases smoothly with Pd content at a rate of 11.3 ui2cm/at.%Pd (.*< 0.01), 

which shows that palladium is dissolved homogeneously in the matrix. Also the 

superconducting transition temperature ( Tc
+ ) varies smoothly with Pd content, while the 

width AT* stays about the same (see Table I). Tc
+ is suppressed at a rate 0.79 K/at.%Pd, 

and the critical concentration xc for the suppression of superconductivity equals 0.7 at.%Pd. 

Several crystals were investigated by Electron Probe Micro Analysis (EPMA), but the 

Table I Some characteristic properties of the annealed single-crystalline 

U(Pti-xPdx)} samples. The residual resistivity, p0,a and po,c, the upper superconducting 

transition temperature T*, and its width A 7C
+ as determined by transport experiments 

[21], the superconducting splitting, ATC= 7C
+ - T~, determined by the specific heat, and 

the magnetic moment m at T*. 

x po,a(|^cm) pcc(l^cm) Tc
+ (K) A7C

+ (K) Arc (K) m(rc
+) 

c-axis (u.B/U-atom) 
0.000 0.52(5) 0.18(3) 0.543 0.006(1) 0.054(4) 0.018(2) 
0.001 1.6(2) 0.75(6) 0.437 0.009(1) 0.082(4) 0.024(3) 
0.002 2.5(2) 1.02(9) 0.384 0.007(1) 0.108(5) 0.036(3) 
0.005 6.2(5) - 0.126 - - 0.048(8) 
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concentration of Pd is too small to arrive at a quantitative composition analysis. In the 

following sections the value of x is taken as the nominal composition. 

The neutron-diffraction experiments were carried out at three different reactor 

facilities. At Siloé (CEA-Grenoble) the samples with x= 0.01, 0.02 and 0.05 were measured 

in the temperature range 1.8-10 K, using the DN1 triple-axis spectrometer. At the Institute 

Laue-Langevin in Grenoble the samples with x= 0.002, 0.005 and 0.01 were measured in 

the temperature interval 0.1-10 K, using the IN14 triple-axis spectrometer. Finally, at the 

Laboratoire Léon Brillouin (CEA-Saclay) experiments were carried out on the samples 

with JC= 0.001 and 0.002 in the temperature range 0.1-10 K on the 4F2 triple-axis 

spectrometer. 

For all experiments a pyrolytic graphite PG(002) analyser was set to zero-energy 

transfer in order to separate the elastic Bragg scattering from possible low-energy magnetic 

excitations. To suppress the second order contamination a 10 cm long Be-filter and/or a 4 

cm long pyrolytic graphite (PG) filter was used (see Table E). A vertically focusing 

PG(002) monochromator was used in all cases. The incident wave vector and the 

collimation of the different instruments are listed in Table H. The four different collimation 

angles refer to: (i) the collimation of the neutrons incident on the monochromator, (ii) 

collimation before the sample, (iii) collimation before the analyser and (iv) collimation 

before the detector. 

UPt3 crystallises in a hexagonal closed packed structure (MgCd3-type) with space 

group PÓ3/mmc [22]. The lattice parameters are given by a= 5.764 Â and c= 4.899 À. The 

atomic positions in the unit cell are given by: 

I 1 ±)(l I £\ 
S 3' 4) u ' 3' A) 

2Uat 

I z, 2z, - J ( 2z, z, - j f z, z, - j (4.1) 

_ _ 3 V 3 V _ 3 
z, 2z, — 2z, z, — z, z, — 

where the ideal value of z equals 5/6. The Bragg positions are labelled using reciprocal 

lattice units, where a*=b*=4rc/(aV3) =1.264 À"1 and c*= 2idc = 1.283 Â'1. In order to 

Table H Specifications of the spectrometers used in the experiments. 

Facility kj (Â1) collimation filters 
Siloé 2.66 open-30'-60'-60' PG 
ILL 1.48 34'-40'-40,-40' Be & PG 
LLB 1.48 open-open-60'-60' Be & PG 
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facilitate a quantitative analysis, the samples were always mounted with the c* axis vertical, 

i.e. perpendicular to the scattering plane. In the case of the samples with x= 0.005 and 0.01 

additional data were taken with the reciprocal (1,-2,0) axis vertical, i.e. with the a*-c* plane 

as the scattering plane. 

4.3 Calculation of the magnetic moment 
The neutron-diffraction experiments on pure UPt3 [6] and the doped compounds 

U(Pto95Pdo.o5)3 [8] and (Uo.95Th0.o5)Pt3 [12] show that the SMAF and LMAF have an 

identical magnetic structure. The magnetic unit cell corresponds to a doubling of the 

nuclear unit cell along the a*-axis (with the moments pointing along the a*-axis). This 

magnetic structure is schematically shown in figure 4.1. In figure 4.2 we have indicated the 

positions of the corresponding magnetic Bragg peaks in the reciprocal basal plane as 

observed by neutron scattering. The magnetic Bragg peaks corresponding to the domain 

with propagation vector qi= (1/2,0,0) are located at e.g. Q= (1/2,1,0), (3/2,-1,0), (-1/2,-1,0) 

o~ 

o-

o* 

*o 

~o 

Figure 4.1 Magnetic structure of U(Pt,.xPdx)3. The open and closed circles 
indicate U atoms in adjacent hexagonal planes separated by a lattice 
spacing c/2. The arrows indicate the magnetic moments, which are directed 
along the a*-axis. The dotted and solid line delineate the nuclear and 
magnetic unit cell, respectively. 
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Figure 4.2 Reciprocal lattice (a -b plane) of U(Pti.xPdx)3. The open 

symbols indicate the positions where magnetic Bragg reflections are 

observed by neutron scattering. The three magnetic domains (assuming a 

single-q structure) are indicated by qi (O), q2 (O) and qj (A). The closed 

symbols indicate the positions of the nuclear (1,0,0) (>J and (l,l,0)-type (9) 

of reflections. 

and (-3/2,1,0), as indicated by the open circles in figure 4.2. Neutron scattering measures 

the projection of the Fourier component of the moment on a plane perpendicular to the 

scattering vector Q. For reflections such as (±1/2,0,0) this component m is parallel to Q 

and the intensities vanish. There exist two other symmetry-related domains, q2 and q3, 

obtained from qi by a rotation of 120° and 240°, respectively. Assuming a single-q 

structure, qi, q2 and q3 describe the three antiferromagnetic domains. In the absence of an 

in-plane magnetic field one expects, in general, to measure the same intensity for the 

magnetic Bragg peaks of the three domains. In this case the antiferromagnetic Fourier 

component, rriq, becomes equal to the U magnetic moment, m. We will comment on the 

possibility of a triple-q structure later. 

A proper determination of the size of the (tiny) ordered magnetic moments across the 

U(Pti,vPdt)3 series is not an easy task. Therefore, we have chosen to measure the various 

samples under the same experimental conditions and also to use the same procedure for the 

calibration of magnetic intensities. In order to determine the size of the magnetic moment, 

the cross sections of the magnetic and nuclear Bragg peaks have to be compared. We use 
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Figure 4.3 Calculated intensities of the nuclear (1,0,0) (solid line) and 

(1,1,0) (dashed line) Bragg peaks as function of the position, z, of the Pt 

atoms in the unit cell. From the measured ratio of the intensities for the 

(1,0,0) and the (1,1,0) Bragg peaks we find z= 0.8253 or z= 0.8370, instead 

of the ideal value z= 5/6 (indicated by the dotted vertical lines). 

the integrated intensity from longitudinal (6-28) scans. The integrated nuclear FN and 

magnetic PM intensities are calculated from [23,24]: 

PN(Q) = cL(9) l"j e ' e ' 

PM (Q) = cL(9) pKjfjWe 
HQ'-Rj) -Wj 

' e ' 

(4.2a) 

(4.2b) 

where the sum is taken over all the Bravais lattices of the nuclear unit cell. Ry denotes the 

position of the nuclei in the cell, L(6)=l/sin(29) is the Lorentz factor with 0 the Bragg 
-Wi 

angle, e ' is the Debye-Waller factor, bj is the scattering length of the nucleus at site j , 

fj(Q) is the magnetic form factor, the symbol 1 denotes the projection on the plane 

perpendicular to the scattering vector Q, p= 0.2696xl0"12 cm, and c is a normalisation 

constant depending on the experimental conditions. For scattering in the basal plane there 

are two types of nuclear peaks which could be used for calibration, i.e. the (1,0,0) and 

(l,l,0)-type peaks. However, the intensity of the (1,0,0) reflection is very sensitive to 
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deviations from the ideal Pt position z= 5/6 in the unit cell (see figure 4.3). Actually, the 

measured ratio of the (1,0,0) and the (1,1,0) nuclear peaks indicates that the proper z-value 

is 0.8253 or 0.8370 instead of 5/6 (see figure 4.3). We have chosen to use the (1,1,0) 

nuclear peak for calibration as its intensity depends only weakly on the z-value. By this 

procedure we possibly introduce a systematic error in determining the ordered moment. 

However this error is the same for all samples, so that a meaningful comparison between 

the moments of the samples can be made. The systematic error is not included in the error 

bars of the ordered moment for the different samples. Note that the variation of the lattice 

parameters a and c for x< 0.05 is almost negligible. The a parameter remains constant 

within the experimental accuracy and the c-parameter decreases at a relative rate of 

0.7xlO"4perat.%Pd[3]. 

4.4 Small-moment antiferromagnetic order for 0 < x < 0.01 
Neutron-diffraction experiments have been carried out in the temperature range 0.1-10 K 

on annealed IKPti^Pd^b single-crystals with JC= 0.005 and 0.01 and unannealed crystals 

with x= 0.001 and 0.002. The samples with x= 0.001 and 0.002 were remeasured in the 

temperature interval 1.8-10 K after annealing. In figure 4.4 we have plotted the temperature 

variation of the maximum intensity of the magnetic Bragg peak at Q= (1/2,1,0) for x< 0.01 

after subtracting the background. Let us first focus on the data of the annealed samples, 

represented by open symbols. In this case, absolute values of m2 in units of |aB
2 have been 

plotted using the calibration procedure presented in section 4.3. 

The behaviour of m (7) for the various samples as shown in figure 4.4 is quite unusual. 

Figure 4.4 clearly demonstrates that the small-moment magnetism is robust upon alloying 

with Pd. The size of the ordered moment increases gradually with Pd concentration, but, 

remarkably, SMAF invariably sets in near 7N=6K for JC<0.01. For all samples with 

x< 0.005, m (T) has an unusual form. The value of m2 starts to rise slowly below TN~ 6 K, 

then a quasi-linear temperature dependence follows from =4 K down to Tc
+ (0.1-0.4 K, see 

Table I). Below Tc
+ the magnetic intensity saturates. The absolute values of the ordered 

moments have been calculated using integrated intensities. We obtain m{T*)~ 0.024±0.003, 

0.03610.003 and 0.048±0.008 Hu/U-atom for x= 0.001, 0.002 and 0.005, respectively, in the 

annealed state (see also Table I). For comparison figure 4.4 shows also m2{T) for pure UPt3, 

as reported by Hayden et al. [25]. The value for m(Tc
+) was estimated in Ref. 25 at 

0.03±0.01 Hß/U-atom. Because of the relatively large uncertainty in this value we have 

calibrated m2(T) for pure UPt3 with help of a recent measurement by Van Dijk et al. (Ref. 26). 
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Following the same calibration procedure as for the doped compounds we arrive at the value 

m- 0.018±0.002 u.B/U-atom for pure UPt3. This is identical to the value reported recently by 

Isaacs et al. (Ref. 27). 

U(Pt Pd ) 
v 1-x x 73 

4 

r(K) 
Figure 4.4 Temperature variation of m' derived from the intensity of the 

magnetic Bragg peak for annealed (open symbols) and unannealed (closed 

symbols) U(Pt,.xPdx)3. For x=0.001 (O), 0.002 (U), 0.005 (A) data are 

taken at g = (1/2,1,0) and for x= 0.01 (0) at Q= (1/2,0,1). In the case of 

x= 0.00 we have reproduced the data of Ref. 25 (dashed line) after 

normalising them to the moment deduced in Ref. 26 (V). The solid lines are 

guides to the eye. 

The effect on annealing was investigated for the x= 0.001 and 0.002 samples. In the 

limit  T-^TC
+ m equals 0.019±0.003 and 0.038±0.003 u.B/U-atom in the unannealed state, 

for x= 0.001 and 0.002, respectively. This shows that the size of the ordered moment is not 

changed (within the experimental accuracy) by our annealing procedure. Also the temperature 

variation of m2(T) does not change upon annealing. This is illustrated by the comparison of 

the data for the annealed and unannealed samples shown in figure 4.4, where the moments 

for the unannealed sample have been multiplied by a factor 1.26 and 0.95, for x= 0.001 and 

0.002, respectively, for normalisation purposes (assuming that in the limit T—» T* m is the 

same for annealed and unannealed samples). 
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Figure 4.5 Longitudinal scans of the magnetic Bragg peak Q= (1/2,1,0) for annealed 

U(Pto.999Pd0.ooi)3 at temperatures 1.6< T< 6.2 K as indicated. The solid lines are fits to 

the data using a Lorentzian convoluted with the Gaussian experimental resolution. The 

width of the A/2 peak without Be filter is shown in the lower part of the figure together 

with the experimental resolution (dashed line). 
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Figure 4.6 Longitudinal scans of the magnetic Bragg peak Q= (1/2,1,0) for annealed 

U(Pt0.99sPdo.oo2)3 at temperatures 1.7< T< 5.3 K as indicated. The solid lines are fits to 

the data using a Lorentzian convoluted with the Gaussian experimental resolution. 
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In order to investigate the effect of annealing on the magnetic correlation length, ^m, 

we have scanned the magnetic Bragg peak at Q= (1/2,1,0) at several selected temperatures 

for *= 0.001 and 0.002 before and after annealing. Typical data sets, taken on the annealed 

x= 0.001 and 0.002 samples, are shown in figure 4.5 and figure 4.6, respectively. By fitting 

a Lorentzian profile, convoluted with the Gaussian experimental resolution, we were able 

to extract the correlation length along Q. Note that the width of the À/2 peak, measured 

without the Be filter, is not a correct estimate for the experimental resolution on the 

spectrometers used here (see figure 4.6). For x= 0.001 we obtain £„,= 570±130 Â and 

£m=710±150Â before and after annealing, and for x= 0.002 Çm=700±150Â and 

î n= 610±130 A before and after annealing. Thus no effect of annealing on £„, is observed 

within the experimental error. This is consistent with the recent conclusion reached by 

Isaacs et al. [27], who investigated the effect of annealing on the correlation lengths along 

a and c for pure UPt3. Since the size of the ordered moments and the values of the 

correlation lengths are within the experimental error the same before and after annealing, 

we conclude that strain has no significant effect on the SMAF. 

4.5 Large-moment antiferromagnetic order for x > 0.01 

In this section we report our neutron-diffraction results on the annealed U(Pti.xPdj)3 

single crystals with x=0.01, 0.02 and 0.05. We have plotted the temperature variation of 

the maximum intensity of the magnetic Bragg peak at Q= (1/2,1,0) (background 

subtracted) for x= 0.02 and 0.05 in figure 4.7 and for x= 0.01 at Q= (1/2,0,1) in figure 4.8. 

Absolute values of m2 in units of u.B
2 have been obtained using the calibration procedure 

presented in section 4.3. The temperature variation m2(T) for x= 0.02 and 0.05 is rather 

conventional compared to the quasi-linear temperature variation observed for the SMAF 

compounds (Figure 4.4). The order parameter follows m2(7)°c(l-(777'N)a)2ß, with the values 

a= 1.9±0.2 and 1.8±0.1 and ß= 0.50±0.05 and 0.32±0.03 for x= 0.02 and 0.05, 

respectively. These values of ß are not too far from the theoretical value ß= 0.38 for the 3D 

Heisenberg model [28]. The phenomenological parameter a reflects spin-wave excitations. 

In a cubic antiferromagnetic system a is predicted to be 2 [29]. To our knowledge no 

predictions are available for a hexagonal system. In the limit T-* 0 K, we obtain 

m= 0.35±0.05 and 0.63±0.05 |AB/U-atom for x= 0.02 and 0.05, respectively. The size of the 

ordered moment obtained for x= 0.05 is in excellent agreement with the value reported in 

Ref. 8. For the LMAF compounds the magnetic Bragg peaks are resolution-limited. 
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T-(K) 
Figure 4.7 Temperature variation of m2 for annealed U(Pti-xPdx)i derived from the 

intensity of the magnetic Bragg peak Q= (1/2,1,0) for x= 0.02 (D) and 0.05 (O) and at 

Q= (1/2,0,1) for 0.01 (0). The solid lines represent fits to m2(T)oc(l-(T/TN)af& (see text). 
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Figure 4.8 Temperature variation of m measured at the magnetic Bragg peak 

Q= (1/2,0,1) for annealed U(Pti.xPdx)3 with x=0.01 (0). The sharp increase in the 

intensity near 1.8 K indicates a crossover from SMAF to LMAF. 
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Figure 4.9 Longitudinal scans of the magnetic Bragg peak Q- (1/2,0,1) for 

annealed U(Pt0.99Pdo.oi>3 at temperatures 0.08< T< 3 K as indicated. The 

solid lines are fits to the data using a Lorentzian convoluted with the 

Gaussian experimental resolution. The horizontal arrows show the total 

width (FWHM) of the peak. 

The temperature dependence of the magnetic Bragg intensity of the sample with 

x= 0.01 is quite intriguing: m2(T) starts to rise slowly below 7N= 6 K, grows rapidly below 

=2 K, and then saturates below =0.5 K. The rapid rise near 2 K suggests a cross-over from 

the small-moment to the large-moment state, with an estimate of rN= 1.8 K for the LMAF. 

For T-> OK, m reaches a value of 0.11±0.03 \iBfU-atom. This value is obtained for both 

Q= (1/2,1,0) and Q= (1/2,0,1). We emphasise that the width of the magnetic Bragg peak 

does not change in the temperature range 0.08-3 K (see figure 4.9), which ensures that the 

unusual /n2(T) curve is not due to an increase of £„, upon lowering the temperature. The 

interpretation of a cross-over to the LMAF state is consistent with recent U.SR experiments 

on U(Pto.99Pdo.oi)3 [9], which show that the LMAF gives rise to a spontaneous u.+ 

precession frequency below 7"N= 1.8 K. 

In the case of x=0.01, the transition to the LMAF state does not show up in the 

thermal and transport data, in contrast to data for x= 0.02 and 0.05, which exhibit clear 

magnetic phase transitions at TN= 3.5 and 5.8 K, respectively [2,3]. Careful resistivity 

measurements down to 0.016 K on a polycrystalline sample with composition 
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U(Pto99Pdo.oi)3 did not reveal any signature of a phase transition [30]. This was taken as 

evidence that the Néel temperature for the LMAF drops to zero between 1 and 2 at.% Pd. 

However, the present neutron-diffraction data show that the lower bound for LMAF is 

actually between 0.5 and 1 at.% Pd. 

4.6 Evolution of magnetism in the U(Pti.xPdx)3 pseudobinaries 

Our neutron-diffraction results show that all the XJ(Pu.xT?dx)3 compounds (x<0.05) 

order antiferromagnetically. In figure 4.10 we plot the Néel temperatures of the different 

samples versus Pd concentration. For samples with x< 0.01 SMAF invariably sets in with a 

Néel point of =6 K. Most likely this phase line extends horizontally to higher Pd 

concentrations, but for joO.01 it becomes more and more difficult to discriminate 

experimentally between SMAF and LMAF. A closer inspection of the data for x= 0.02 

(figure 4.7) shows that indeed some magnetic intensity is visible in the temperature range 

3.5-6 K. However, a careful measurement of the background signal for x= 0.02 is needed in 

order to put this on firm footing. LMAF emerges in the concentration range 0.5-1 at.% Pd. 

The optimum doping for LMAF is 5 at.% Pd. This compound has the largest Néel 

temperature, TN= 5.8 K, and magnetic moment, m- 0.63±0.05 |XBAJ-atom. For x= 0.10 no 

LMAF has been observed in the thermal and transport properties. However, at this 

moment, we cannot exclude LMAF with a reduced TN as observed for *= 0.01. In order to 

investigate the Pd rich side of the phase diagram, neutron-diffraction or u.SR experiments 

would be most welcome. On the other hand, one should keep in mind that additional lines 

in the x-ray diffraction patterns indicate that the MgCd3-type of structure is lost for x> 0.15 

[3]. 7"N for the LMAF follows a rather conventional Doniach-type phase diagram [33]. The 

compound with x= 0.01 occupies a special place in the phase diagram as we have assigned 

two Néel temperatures to it. The SMAF which emerges near 6 K develops into LMAF near 

1.8 K. 

The size of the ordered moment, measured at Tc
+ as function of Pd concentration is 

plotted in figure 4.11. The moment first increases slowly from 0.018±0.002 nB/TJ-atom for 

pure UPt3 to 0.036±0.003 u-ß/U-atom for 0.5 at.% Pd. For higher Pd concentrations the 

moment rises much more rapidly. The change in slope of m(x) between x= 0.005 and 

x= 0.01 is consistent with LMAF emerging in this concentration range. 
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4.7 Interplay of magnetism and superconductivity 

Recently, we have measured the specific heat and electrical resistivity at the 

superconducting transition of single-crystalline (x= 0.0, 0.001, 0.002 and 0.005) and 

polycrystalline (x= 0.0025, 0.003, 0.004, 0.006 and 0.007) UPt3 doped with small amounts 

of Pd [34,35]. The main findings can be summarised by (i) rc
+ is suppressed linearly with 

Pd content at a rate of 0.79±0.04 K/at.%Pd, (ii) T~ is suppressed at a faster rate of 

1.08±0.06 K/at.%Pd, and as a results (iii) the splitting Arc increases at a rate 

0.30±0.02 K/at.%Pd. This shows that upon alloying with Pd, the high-temperature low-

field A phase gains stability at the expense of the low-temperature low-field B phase. The 

data in figure 4.4 show that the increase in ATC is accompanied by an increase in the size of 

the ordered moment. This provides additional support to the idea that the SMAF acts as the 

symmetry breaking field. The Ginzburg-Landau E-representation scenario [19] predicts 

ATc^m2. However, this proportionality relation is only valid for ATJTQ «1, which no 

longer holds for the Pd-doped samples. At =0.3 at.% Pd, Arc becomes of the order of Tc. 

Instead m grows more rapidly than ATC. Substantial evidence for the SMAF as the 

symmetry breaking field has been obtained by neutron-diffraction [25] and specific-heat 

[36] experiments under pressure. It was found that both m2 and ATC are suppressed quasi-

linearly with pressure and vanish at a critical pressure /v= 0.35 GPa. Interestingly, we find 

a smooth variation of ATC as function of rn when we collect both the pressure and Pd 

doping data [35]. This establishes a firm link between ATC and m2. Only for small 

splittings is ATC °c m (Arc< 0.050 K). For enhanced splittings a more sophisticated 

Ginzburg-Landau expansion (with terms beyond 4th. order) should be elaborated. 

The critical Pd concentration xc for the suppression of superconductivity is =0.7 at.% 

Pd [35]. The value of xc falls in the range where LMAF emerges. It would be of interest to 

know whether the suppression of superconductivity coincides with the emergence of 

LMAF. U.SR experiments aimed at probing the LMAF in this concentration range are in 

progress. 
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Figure 4.10 The Néel temperature, TN, versus Pd concentration for U(Pti.xPdx)i alloys 

as determined from neutron diffraction (O) and specific heat experiments (\3) (Refs. 2, 

3, 31, 32). SMAF and LMAF denote small-moment and large-moment antiferromagnetic 

order, respectively. In the lower left corner the upper superconducting transition 

temperature Tc
+ as determined by resistivity experiments is given [35]. SC denotes the 

superconducting phase. 
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Figure 4.11 Uranium ordered moment at T* as function of Pd concentration in 

single-crystalline U(Ptj-xPdx)3 alloys. The line is a guide to the eye. 
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4.8 Discussion 
Our neutron-diffraction data unambiguously show that the unusual small-moment 

antiferromagnetic order observed in pure UPt3 is stable upon Pd doping. Indeed, we find 

that Pd doping leads to an enhancement of SMAF as the ordered moment grows with 

increasing Pd content. The reverse behaviour was observed in the neutron-diffraction 

experiments under pressure carried out on pure UPt3 [25]. The moment decreases under 

pressure and vanishes completely at pc= 0.35 GPa. A quite remarkable observation is that 

both data sets, obtained by Pd doping and applying pressure, show that TN retains a 

constant value of =6 K. This, together with the gradual increase of m2(T) below ~6 K, could 

indicate that the transition to the SMAF state is not a true phase transition. 

The origin and nature of the SMAF are still subjects of lively debates. Unravelling the 

nature of the small moment is hampered by the fact that, till today, it has been probed 

convincingly by neutron-diffraction (Refs. 6, 25-27 and this work) and magnetic x-ray 

scattering [27] experiments only. The analysis of both neutron-diffraction and magnetic x-

ray scattering data [27], lead to the conclusion that the SMAF is quantitatively the same in 

the bulk and near surface of annealed UPt3. The only difference is the somewhat smaller 

correlation length along a* and c* obtained in the case of magnetic x-ray scattering, 

Ça.= 85±13Â and ^.= 113±30Â at 7/= 0.15 K. These values should be compared to 

Ça»= 280±50 Â and ^»= 5001130 Ä at T- 0.57 K in the case of the neutron diffraction 

experiment. 

The possibility that the small moment is caused by magnetic impurities, defects or 

sample inhomogeneities can safely be excluded. Firstly, rather high impurity concentrations 

would be needed, for instance, =1000 ppm of magnetic impurities with moments of 0.6 u,B, 

in order to obtain the same magnetic signal as for the small moment of 0.02 u.B- Secondly, 

impurities will not contribute to Bragg peaks of the type (1/2,0,0), since randomly 

distributed impurities or defects would give Q-independent scattering, while ordered 

imperfections would give rise to new satellite Bragg peaks close to the nuclear peaks. The 

same arguments are valid for stacking faults, observed in polycrystalline materials by 

transmission electron microscopy and x-ray diffraction measurements [37], and which 

could locally change the crystal symmetry and give rise to magnetic moments on certain 

uranium atoms. On the other hand, one can imagine that there are sizeable sample regions 

(clusters) where large magnetic moments develop, which are perfectly ordered with a 

propagation vector of (1/2,0,0). This in principle could give rise to the observed Bragg 
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peaks. Due to the finite size of these clusters (100-500 Â), the magnetic correlation length 

is limited. These clusters would form 0.1% of the sample volume and would be separated 

by large regions of non-magnetic UPt3. However, the minor influence of annealing on the 

SMAF, and the fact that the better samples (as determined by the degree of crystallographic 

order) all exhibit a magnetic moment [38], strongly suggest that SMAF is an intrinsic 

property. 

At this point it is important to note that recent zero-field uSR studies on 

polycrystalline [8] and single-crystalline [39] UPt3 failed to detect the small magnetic 

moment (except for the \xSR study reported in Ref. 40, but this result has not been 

reproduced). In the course of a detailed investigation [9] of the evolution of magnetism in 

U(Pt,Pd)3 by the U.SR technique, we found that LMAF gives rise to a spontaneous u+ 

precession frequency. However, we did not observe any signal of the SMAF in 

polycrystalline samples with x=0.000, 0.002 and 0.005. A possible explanation for this is 

that the muon comes to rest at a site where the magnetic dipolar fields cancel due to the 

magnetic ordering. However, this is highly unlikely as SMAF and LMAF have an identical 

magnetic structure and we have been able to detect the LMAF (in samples with x= 0.01, 

0.02 and 0.05). It is also unrealistic to expect a change of the stopping site at these low Pd 

concentrations. The uSR technique is sensitive enough to detect a static moment of the 

order of 0.02 jiB- One possibility is that the small moment fluctuates at a rate (f> 10 MHz) 

too fast to be detected by uSR, but on a time scale which appears static to neutrons and x-

rays. This then also solves the long-standing problem of why the small moment of UPt3 

cannot be seen by NMR, while its signal should fall well in the detection limit as was 

concluded from experiments on U(Pt,.xPdJ3 (x<0.05) which successfully probed the 

LMAF [41]. Fluctuating moments are also in line with the hypothesis that there is no true 

phase transition at TN for SMAF. The invariance of 7"N and the cross-over-type of 

behaviour suggests that the small moment is only a weak instability of the renormalised 

Fermi-liquid whose properties hardly change at these low Pd concentrations (x< 0.005). 

In the Ginzburg-Landau analysis [19], which makes use of the symmetry breaking field 

scenario, it is generally assumed that the SMAF forms in a single-q structure. However, the 

existing neutron scattering data are compatible with a triple-q structure as well. The 

question whether the magnetic order corresponds to a single-q or a triple-q structure is 

crucial for the understanding of the unconventional superconductivity because a single-q 

structure breaks the hexagonal symmetry, while a triple-q does not. The single-q and triple-

q structures can be distinguished by applying a magnetic field. For example, in the case of 
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a strong magnetic field applied along the b-axis, one expects to re-orient all domains along 

the a -axis or in the terms of figure 4.2, qi is expected to increase a factor 3 due to the 

depopulation of q2 and q3. Experiments carried out up to 3.2 T [42] and 12 T [26] did not 

show any redistribution of magnetic domains, so a triple-q structure for the SMAF cannot 

be excluded. However, it is possible that a field of 12 T is not sufficiently strong to change 

the domain population of moments as weak as 0.02 ^B- The SMAF itself is very stable to a 

magnetic field. TN is suppressed by only 0.7 K and 0.4 K for a field of 10 T applied along 

the a and c-axis, respectively. In the case of the LMAF the magnetic structure is single-q. 

Neutron-diffraction experiments [43] carried out on U(Pto.95Pdo.o5)3 as function of an 

external field applied in the basal plane showed the formation of a single-domain sample in 

5T. 

The magnetic phase diagram of the U(PtKVPdj)3 pseudobinaries (Figure 4.10) is quite 

unusual because of the distinction between SMAF and LMAF. The differences between the 

SMAF and LMAF can be outlined as follows: (i) the order parameter for the SMAF is 

unusual and grows quasi-linearly, while the order parameter for the LMAF is conventional 

and confirms a real phase transition, (ii) TN for the SMAF does not change with Pd content, 

while 7N of the LMAF compounds follows a rather conventional Doniach-type phase 

diagram, (iii) the SMAF is not observed in zero-field uSR experiments in contrast to the 

LMAF. This demonstrates that the SMAF and LMAF are not directly connected. 

While the origin of SMAF in UPt3 remains unclear, the emergence of LMAF in the 

alloyed systems is a general feature of heavy-fermion systems. The magnetic instability is 

normally explained in terms of a competition between the on-site Kondo effect and the 

inter-site Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction. However, in the case of 

the U(Pt,Pd)3 system a clear-cut identification of TK and TRKKY is not at hand [44]. 

Moreover, since UPt3 is very close to a magnetic instability, the variation of TK and 7RKKY 

before magnetic ordering occurs is small. Better documented systems in this respect are 

(Cei^La^)Ru2Si2, where magnetism sets in at x=0.07 [45] and CeC^-jAu^, where 

magnetism sets in at x- 0.1 [46]. In these systems the magnetic instability is reached at a 

critical hybridisation, which results from expanding the lattice. In the case of U(Pt,Pd)3 the 

occurrence of LMAF can be parametrised, to a certain extent, by the reduction of the c/a 

ratio upon alloying (and not by a volume effect, as the volume decreases). The application 

of pressure has the opposite effect, since pressure increases the c/a ratio due to the 

anisotropy in the linear compressibilities (Kc< Ka) [3], These effects are however small and 

a satisfactory quantitative analysis is hampered by the limited accuracy in the values of the 
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lattice constants and compressibilities. Pressure experiments, carried out on the 5 and 7 

at.% Pd samples show that doping 1 at.% Pd corresponds to an external pressure of about -

0.33 GPa [47]. In the case of 5 at.% Pd it was demonstrated by specific-heat experiments 

under pressure [48] that the LMAF state was fully suppressed at =1.6 GPa, thereby 

recovering the situation of pure UPt3. 

Currently, much attention in heavy-fermion research is focused on the occurrence of 

non-Fermi-liquid effects at the critical concentration for the suppression of magnetism. In 

the case of U(Pt,Pd)3 we expect that the border line magnetic/non-magnetic is close to 

0.7 at.% Pd, which is also the critical concentration for the suppression of 

superconductivity. Resistivity and specific-heat experiments performed so far did not show 

any signature of non-Fermi-liquid phenomena. However, the quantum critical point has not 

been probed in full detail yet. 

4.9 Summary 

Neutron-diffraction experiments, carried out on a series of heavy-electron pseudobinary 

U(PtKJPd,)3 single crystals (x<0.05), show that two kinds of antiferromagnetic order, 

termed small-moment antiferromagnetic order (SMAF) and large-moment 

antiferromagnetic order (LMAF), are found in the phase diagram. The small-moment 

antiferromagnetic order, first reported for pure UPt3, is robust upon doping with Pd and 

persists till at least x= 0.005. The ordered moment grows from 0.018±0.002 u.B/U-atom for 

pure UPt3 to 0.048+0.008 Ua/U-atom for x= 0.005. The Néel temperature of 6 K, does not 

vary with Pd contents. The order parameter for the small-moment antiferromagnetism has 

an unusual quasi-linear temperature variation and points to a cross-over phenomenon rather 

than a true phase transition. The small moment is not observed by u,SR and NMR 

experiments. This could indicate that the moment is not static, but fluctuates at a rate larger 

than 10 MHz. For x> 0.01 large-moment antiferromagnetic order is observed. At the 

optimum doping (x= 0.05) TN attains a maximum value of 5.8 K and the ordered moment 

equals 0.63±0.05 uyU-atom. TN(x) for the large-moment antiferromagnetic order follows a 

Doniach-type phase diagram. From this diagram we infer that the antiferromagnetic 

instability in U(Pt].xPdJ3 takes place for Pd concentrations 0.005 < x < 0.01. 
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Chapter 5 

HSR study of U(Pt,Pd)3 

We report \xSR experiments carried out on a series of heavy-electron pseudobinary 

compounds U(Pti.xPdx)3 (x< 0.05). For x< 0.005 the zero-field muon depolarisation is 

described by the Kubo-Toyabe function. However the temperature variation of the 

Kubo-Toyabe relaxation rate Afcr(T) does not show any sign of the small-moment 

antiferromagnetic phase with Trf= 6 K (signalled by neutron diffraction), in contrast to 

previous reports. For 0.01<x<0.05 the muon depolarisation in the ordered state is 

described by two terms of equal amplitude: an exponentially damped spontaneous 

oscillation and a Lorentzian Kubo-Toyabe function. These terms are associated with 

antiferromagnetic order with substantial moments. The Knight-shift measured in a 

magnetic field of 0.6 T on single-crystalline U(Pto.9sPdo.o5)3 in the paramagnetic state 

shows two signals for B-L c, while only one signal is observed for B\\ c. The analysis of the 

Knight shift points to the presence of one muon localisation site (0,0,z). 

5.1 Introduction 

The heavy-fermion material UPt3 continues to attract a great deal of attention, because of 

its unconventional magnetic and superconducting properties. The low-temperature normal-

state of UPt3 [1,2] presents an exemplary strongly renormalised Fermi-liquid, with a 

quasiparticle mass of the order of 200 times the free electron mass, as evidenced by the 

large coefficient of the linear term in the specific heat, y= 0.42 J/molK2 and the equally 

enhanced Pauli susceptibility, Xo(T—» 0). The magnetic properties of this hexagonal 

material are quite intriguing. The magnetic susceptibility %(T) has a broad maximum at 

?max~ 18 K for a field in the hexagonal plane (B—» 0), which is attributed to the 

stabilisation of antiferromagnetic interactions below Tm^. For T< Tmax the magnetisation 
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a(B) exhibits a magnetic transition at a field B*= 20 T (Bl c). This continuous phase 

transition has been termed pseudo-metamagnetic and is interpreted as a suppression of the 

antiferromagnetic interactions. The most striking magnetic property of UPt3 is undoubtedly 

the small-moment antiferromagnetic order (SMAF) which develops below the Néel 

temperature 7/N= 6 K [3]. The ordered moment m= 0.02 (xB/U-atom is unusually small and 

is directed along the a* axis in the hexagonal plane. The magnetic unit cell consists of a 

doubling of the nuclear unit cell along the a* axis. This weak magnetic order has been 

documented extensively by neutron diffraction [3-7] and to a lesser extent by magnetic 

x-ray scattering [8]. It has not been observed reliably in the standard thermal, magnetic and 

transport properties, even not by employing sensitive measuring techniques. 

Substitution studies have demonstrated that UPt3 is close to an antiferromagnetic 

instability [2,9]. By replacing Pt by isoelectronic Pd pronounced phase transition 

anomalies appear in the thermal and transport properties. Notably, the À-like anomaly in 

the specific heat and the chromium-type anomaly in the electrical resistivity give evidence 

for an antiferromagnetic phase transition of the spin-density-wave type. At optimal doping 

(5 at.% Pd) rN,max= 5.8 K and the ordered moment equals 0.6±0.2 nB/U-atom [7, 10]. In 

order to distinguish this phase from the SMAF of pure UPt3 we have termed it the large-

moment antiferromagnetic (LMAF) phase. The magnetic structures of the SMAF and 

LMAF are identical. The magnetic instability can also be triggered by substituting Th for U 

[11-13]. Remarkably, the magnetic phase diagrams for the (U,Th)Pt3 and U(Pt,Pd)3 

pseudobinaries are almost identical. This shows that the localisation of the uranium 

moments is not governed by the unit cell volume of these pseudobinaries (the unit cell 

volume decreases by Pd doping, while it increases by alloying with Th). Long-range 

magnetic order also shows up when UPt3 is doped with 5 at.% Au, while substituting 5 

at.% Ir, Rh, Y, Ce or Os, does not induce magnetic order [14-16]. This indicates that a 

shape effect, i.e. the change in the c/a ratio, is the relevant control parameter for the 

occurrence of magnetic order. 

Recently, a neutron-diffraction study has been carried out in order to investigate the 

evolution of magnetism in U(Pti^Pd^)3 [7] (see chapter 4). The diffraction experiments 

have been carried out on single-crystalline samples for x< 0.05 and the principal results are 

summarised as follows. The SMAF reported for pure UPt3 is robust upon alloying and 

persists till at least x= 0.005. The ordered moment grows from 0.018±0.002 |VU-atom for 

x= 0 to 0.048±0.008 jiu/U-atom for x= 0.005. 7"N= 6 K and, most remarkably, does not vary 

with Pd contents. Near ;t= 0.01 LMAF emerges. The ordered moment of this phase grows 
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rapidly with Pd content and attains a maximum value of 0.63±0.05 |0,B/U-atom for x= 0.05 

where also TN= 5.8 K is maximum. TN(x) for the LMAF follows a Doniach-type phase 

diagram [17]. From this diagram it has been inferred that the antiferromagnetic instability 

in U(Pti-xPdx)3 is located in the range 0.5-1 at.% Pd. 

Superconductivity (Tz~ 0.5 K) in UPt3 is unconventional, as evidenced by the 

multicomponent superconducting phase diagram in the B-T plane [18-21]. In order to 

explain the phase diagram a number of phenomenological Ginzburg-Landau models have 

been proposed (see Ref. 22 and references therein). The models which currently receive the 

most attention are the 2D E-representation model and the ID odd parity model. In both 

models the degeneracy of the superconducting vector order parameter is lifted by a 

symmetry breaking field, thus giving rise to two different superconducting phases in zero 

field. The splitting of the superconducting transition temperature ATC = Tc
+ - T~ is 

proportional to the strength of the symmetry breaking field, Arc °= e. The natural candidate 

for the symmetry breaking field is the SMAF, in which case Arc <* m2. Neutron-diffraction 

experiments [3] have demonstrated that SMAF and superconductivity coexist. Substantial 

evidence for SMAF as symmetry breaking field has been deduced from neutron-diffraction 

[4] and specific-heat [23] experiments under pressure. It was found that both m and A7"c 

are suppressed quasi-linearly with pressure and vanish at a critical pressure pc= 0.35 GPa. 

Another route to explore the correlation between m and ATC is by Pd doping. Specific-heat 

experiments on pseudobinary L^Pt^Pd^ single crystals with x< 0.005 show that ATC 

increases at a rate 0.30 K7at.%Pd [24]. Correlating the values of ATC with the values of the 

ordered moments as deduced by neutron-diffraction [7] (see chapter 4) establishes a firm 

link between ATC and m [24] (see chapter 6). 

In this chapter we report a U.SR study of the evolution of magnetism in U(Pt,Pd)3. This 

work was carried out in parallel with the neutron-diffraction study [7] (see chapter 4). Our 

main objectives were: (i) to investigate the evolution of the weak magnetic order as 

function of Pd content in order to correlate m{x) with ATc(x), and (ii) to investigate the 

connection (or possible coexistence) between SMAF and LMAF. The motivation of using 

the U.SR technique stems from the extreme sensitivity to magnetic signals. Besides, the 

muon acts as a local probe, which permits to discern magnetically inequivalent sample 

regions. For recent reviews of uSR experiments on heavy-electron systems and magnetic 

materials we refer to Refs. 25 and 26. 

Our work was in part inspired by the early U.SR experiments on polycrystalline 

(Ui.xThj:)Pt3 reported by Heffner et al. [27]. For undoped UPt3 these authors observed small 
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increases of the Kubo-Toyabe relaxation rate, ART, and the transverse field Gaussian 

relaxation rate, 0"G, below =6 K. These increases were attributed to weak static magnetism 

with a magnetic moment of the order of 10"3-10"2 ixB/U-atom. This discovery in fact 

preceded the detection of SMAF by neutron diffraction. For U0.95Th0.05Pt3, which orders 

antiferromagnetically at TN- 6.2 K with a large magnetic moment (=0.6 u.B/U-atom), 

spontaneous u.+ oscillations at frequencies of 2 and 8 MHz were detected below rN, while 

for Uo99Tho.oiPt3 no spontaneous oscillations were observed (T> 4.2 K). 

Subsequent liSR experiments on UPt3 predominantly deal with the superconducting 

phases. Most of these experiments were carried out on single-crystalline material. Broholm 

et al. have measured the anisotropy and temperature dependence of the magnetic-field 

penetration by muon spin relaxation [28]. The observed power-law temperature 

dependence of the penetration depth could be accounted for by a superconducting gap 

function with line nodes in the basal plane and axial point nodes. Luke et al. [29] report on 

an increase of the internal magnetic field below the lower superconducting transition, T~, 

which was attributed to a superconducting state with broken time reversal symmetry. 

However, the increase of the internal field below T~ was not confirmed in later 

experiments carried out by Dalmas de Réotier et al. [30]. 

In our U.SR study we concentrate predominantly on the normal-state properties of the 

doped compounds. One of the principal results is that we, quite unexpectedly, could not 

resolve the SMAF in the zero-field experiments carried out on polycrystalline U(Pti.^Pdx)3 

with x= 0, 0.002 and 0.005. Also Dalmas de Réotier et al. failed to detect the SMAF by 

liSR in their high-quality single-crystalline samples [30]. These results are at variance with 

the data reported in Ref. 27. For higher Pd concentrations (;t=0.01, 0.02 and 0.05) we 

observe spontaneous u,+ precession frequencies, similar to those reported for Th doped 

UPt3 [27]. 

This chapter is organised as follows. Section 5.2 is devoted to the experimental details, 

like the sample preparation process, the characterisation of the samples and some relevant 

parameters of the experimental set-up. In sections 5.3 and 5.4 we present the results of the 

zero-field (ZF) and low transverse field (TF= 0.01 T) measurements on the SMAF and 

LMAF states, respectively. In section 5.5 we present TF(= 0.6 T) experiments on single-

crystalline U(Pto.95Pdo.o5)3. carried out in order to determine the angular and temperature 

dependence of the Knight shift. In section 5.6 we analyse the Knight shift and discuss the 

possible muon stopping sites. In section 5.7 we discuss our results, while the summary is 

presented in section 5.8. Parts of these results were presented in Refs. 31 and 32. 
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5.2 Experimental 

The U(Pti..vPdr)3 pseudobinaries crystallise in a hexagonal closed-packed structure 

(MgCd3-type) with space group P63/mmc. The lattice parameters for x= 0 are given by 

a= 5.764 Â and c= 4.899 À. The lattice parameter for the a-axis for x< 0.05 is independent 

of x within the experimental accuracy, while the lattice parameter for the c-axis decreases 

at a rate of 3xl0"4 Â per at.% Pd. This results in a minute reduction of the c/a ratio. 

We have prepared polycrystalline material with x= 0.000, 0.002, 0.005, 0.01, 0.02 and 

0.05 by arc-melting the constituents in a stoichiometric ratio in an arc furnace on a water-

cooled copper crucible under a continuously Ti-gettered argon atmosphere (0.5 bar). 

Samples with low Pd contents (x< 0.01) were prepared by using appropriate master alloys 

(e.g. 5 at.% Pd). As starting materials we used natural uranium (JRC-EC, Geel) with a 

purity of 99.98%, and platinum and palladium (Johnson Matthey) with a purity of 

99.999%. For annealing, the samples were wrapped in tantalum foil and put in water free 

quartz tubes together with a piece of uranium that served as a getter. After evacuating 

(p< 10"6 mbar) and sealing the tubes, the samples were annealed at 950 °C during seven 

days. Next the samples were slowly cooled in three days to room temperature. For x= 0.05 

a single crystalline sample was pulled from the melt using a modified Czochralski 

technique in a tri-arc furnace under a continuously Ti-gettered argon atmosphere. The 

single-crystalline sample was annealed in a similar way as the polycrystalline material. 

Four thin slices (thickness 0.8 mm, area 6x10 mm2) were cut from the annealed 

polycrystalline buttons (x= 0, 0.002, 0.005, 0.01, 0.02 and 0.05) by means of spark-erosion. 

The surface layer, defected by spark-erosion, was removed by polishing with diamond 

paste (grain size 0.3 u.m). The samples were glued on a silver support by General Electric 

varnish as to cover the desired area for the |aSR experiments: 12x20 mm . The single-

crystalline sample (x= 0.05) was glued to a silver rod, which served as sample support. 

Parts of the polycrystalline batches were characterised by electrical resistivity 

measurements. In agreement with the data presented in Ref. 33, the upper superconducting 

transition temperature T^ amounts to 0.533 and 0.389 K, for x- 0 and 0.002, respectively. 

Also the residual resistance, p0, was found to increase linearly with Pd contents (x< 0.005), 

which indicates that Pd dissolves homogeneously in the matrix. We obtain p0 values of 

0.88, 2.49, 6.2 and 12.0 uiîcm for x= 0.000, 0.002, 0.005 and 0.01, respectively. For higher 

Pd concentrations p0 rises more rapidly because of the spin-density-wave type of magnetic 

order. The Néel temperatures of the 2 and 5 at.% Pd polycrystalline sample determined by 
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resistivity amount to 4.0 and 6.3 K, respectively. These values are slightly higher than 

measured previously on other batches (3.6 and 5.8 K) [2]. 

The U.SR experiments were performed at the Paul Scherrer Institute (Villigen), using 

the u+SR-dedicated beam-line 7iM3. ZF and TF data were collected at the General Purpose 

Spectrometer (GPS) using a 4He flow cryostat {T> 1.6 K). Here also the angular variation 

of the Knight shift was measured using an automated stepping motor device. Additional ZF 

and TF data were taken at the Low Temperature Facility (LTF), which is equipped with a 

top-loading 3He-4He dilution refrigerator (Oxford Instruments) with a base temperature of 

0.025 K. By changing the operation mode of the dilution refrigerator temperatures up to 

=10 K can be reached. 

5.3 (iSR experiments on SMAF compounds (x< 0.005) 

Zero-field u,SR experiments have been performed on polycrystalline U(Pti..vPdj)3 samples 

with x= 0.000 in the temperature (T) interval 2.7-7.0 K, with x= 0.002 in the ^-interval 

0.9-8.0 K and with x= 0.005 in the ^-interval 0.03-10 K. Some typical muon depolarisation 

curves, taken on the x= 0.005 compound at 7= 0.1 K and 9.0 K, are shown in figure 5.1. 

For x< 0.005, the muon depolarisation for T< 10 K is best described by the standard 

Kubo-Toyabe function: 

GKT(AKTf) = - + -(l-A 2
KT r2)exp(--A2

KT r2) (5.1) 

Here AKT=ytlv<B2> is the Kubo-Toyabe relaxation rate, with Yn the muon 

gyromagnetic ratio (YH/2TI= 135.5 MHz/T) and < B2 > the second moment of the field 

distribution at the muon site. The Kubo-Toyabe function describes the case of an isotropic 

Gaussian distribution of static internal fields centred at zero field. The solid line in figure 

5.1 presents a fit to the Kubo-Toyabe function for x= 0.005. In figures 5.2, 5.3 and 5.4 

AKT(7) is plotted for x= 0.000, 0.002 and 0.005, respectively. We conclude that AKT shows 

no significant temperature dependence. The average values of AKT are 0.065±0.005, 

0.058±0.009 and 0.083±0.004 u.s"' for x= 0.000, 0.002 and 0.005, respectively. Additional 

data for x= 0.002 were taken in a transverse field (perpendicular to the muon spin 

direction) of 0.010 T. Best fits were obtained using a Gaussian damped oscillation: 

G(0=cos(2ra+<t>)exp(-!/2(o-G?)2). The Gaussian linewidth, CTG, equals 0.081±0.007 jis"1 and 

is temperature independent as well (see figure 5.3). 
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Figure 5.1 Typical zero-field spectra measured for polycrystalline 

U(Pto99sPdo,oos)3- The solid line represents a fit to the Kubo-Toyabe 

function. The muon depolarisation is the same above and below the 

antiferromagnetic transition ("7V= 6 K). 

Surprisingly, our data for polycrystalline UPt3 are at variance with the results reported 

by Heffner et al. [27] who observed a doubling of AKT, from 0.06 jxs"1 just above 6 K to 

0.12 |As" in the limit T—> 0 K. As the doubling of AKT was attributed to the presence of 

weak magnetic order (according to neutron diffraction SMAF), we conclude that the weak 

magnetic order does not show up in the ZF (J.SR signals for x< 0.005. Is does also not show 

up in the TF= 0.010 T data. At this point it is important to realise that the neutron-

diffraction experiments [7] show that for x< 0.005 SMAF invariably sets in at rN= 6 K, 

while the ordered moment grows with Pd content: m- 0.018±0.002 |o,BAJ-atom, 

0.024±0.003 nB/U-atom and 0.048±0.008 iVU-atom for x= 0.000, 0.002 and 0.005, 

respectively. One could argue that the occurrence of SMAF is related to the single-

crystalline nature of the samples used for neutron diffraction. However, the single and 

polycrystalline samples were prepared using the same high-purity starting materials and 

also the po-values are about the same. Our unexpected result is in agreement with recent 

experiments on high-purity single-crystalline UPt3 carried out by Dalmas de Réotier et al. 
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Figure 5.2 Zero-field Kubo-Toyabe line width, AKT, far polycrystalline 

UPts. The solid line indicates the average value. 

[26, 30]. These authors did not detect SMAF in their ZF U.SR data, while neutron-

diffraction measurements carried out on parts of the samples show that SMAF is present 

with the usual characteristics. Two explanations for the absence of SMAF in the U.SR 

signals are conceivable: (i) the muons stop at sites where the dipolar fields due to the 

SMAF cancel, and (ii) the antiferromagnetic moment fluctuates at a rate >10 MHz, i.e. too 

fast to be detected by ixSR, but slower than the time scale of the neutron-diffraction 

experiment = 0.1 THz. We come back to this most important issue in section 5.7. 

The zero-field data for x< 0.005 (Figures 5.2-5.4) can be attributed entirely to the 

depolarisation of the muon due to static 195Pt nuclear moments. For pure UPt3 and 

U(Pt0.998Pdo.002)3 experiments in a small (0.010 T) longitudinal field (along the muon spin 

Table I The calculated Kubo-Toyabe linewidths, AKT, of UPts in the 

polycrystalline limit for axial symmetric sites. The first column 

gives the multiplicity and the Wyckoff letter of the particular site. 

site AKT (Us"1) 
2a 0 0 0 0.061(1) 
2b 0 0 1/4 0.081(1) 
4e 0 0 1/8 0.073(1) 
4f 2/3 1/3 0 0.046(1) 
2d 2/3 1/3 1/4 0.079(1) 



\xSR study of U(Pt, Pd)3 89 

0.12 

0.10 

v" 0.08 
in 

0.06 

0.04 

0.02 h 

0.00 

CD 
O 

U(Pt Pd ) 
0.998 0.00273 

O ZF 
• TF 100 G 

i i i i i_ 

0 8 10 2 4 6 

7(K) 

Figure 5.3 Zero-field Kubo-Toyabe line width (O) and transverse field 

(0.01 T) Gaussian line width (9) for polycrystalline U(Pto.99sPdo.oo2)3- The 

solid lines indicate the average values. 

direction) confirmed the static origin. We have calculated A ^ due to nuclear moments 

using the expression [34, 35]: 

, l v , (un V 5 - 3 c o s2 ( 9 ; ) AKT=^X/Pt('p,+1)(J^Y(JYP,ÄJ ^ r ^ (5-2) 

Here, the sum is over all 195Pt nuclei (abundance 33.7%) with spin /pt=l/2 and 

gyromagnetic ratio yn (YPt/27t= 8.781 MHz/T), which are located at a distance rj from the 

muon localisation site at an angle Qj with respect to the muon spin (\XQ is the permeability of 

free space). For the most probable muon localisation sites the calculated values of AKT 

range between 0.05 and 0.08 us"1 (see Table I). These calculations were performed for pure 

UPt3, but for small amounts of Pt substituted by Pd, which has no nuclear moment, the 

corrections can be neglected. Since the measured values of AKT also fall in the range 

0.05-0.08 u.s" one cannot determine the stopping site from the depolarisation due to the 

nuclear moments. The problem of determining the stopping site is addressed in more detail 

in section 5.6. 
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Figure 5.4 Zero-field Kubo-Toyabe line width for polycrystalline 

U(Pto.99sPdo.oo5)3- The solid line indicates the average value. 

5.4 LMAF probed by \xSR experiments for x> 0.01 

Zero-field u,SR experiments have been performed on polycrystalline U(Pti.xPdJ3 samples 

with x= 0.01 in the ^-interval 0.03-3 K, with x= 0.02 in the ^-interval 1.6-8.0 K and with 

JC=0.05 in the T-interval 3.0-10 K. For all samples we can identify a magnetic phase 

transition temperature, where below a spontaneous u.+ precession frequency appears. This 

phase transition, which takes place at 1.8, 4.1 and 6.2 K for x= 0.01, 0.02 and 0.05, 

respectively, is to the LMAF state. This is confirmed by the neutron-diffraction study on 

single-crystalline U(Pti^PdJ3, from which it follows that the Néel temperature equals 1.8, 

3.5 and 6.2 K, and the ordered moment equals 0.11±0.03, 0.35±0.05 and 0.63±0.05 \iB/\J-

atom, for;t= 0.01, 0.02 and 0.05, respectively [7]. 

Since we do not expect the magnetic behaviour to vary strongly for 0.01< x < 0.05, we 

have attempted to fit the \iSR spectra of the three LMAF compounds with one and the 

same expression. Good fits can be obtained using the following depolarisation function: 

G(t) = A, -exp(-À1r)cos(27W1r + <t)) + -exp(-À '10 
V3 3 ) (5.3a) 

+ A 2 G K L ( ^ K L ? ) + A 3 G K T ( A K T O 
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where 

1 2 
GKL(^KL ?) = - + - ( l -? tK L Oexp( -XK L 0 (5.3b) 

The first term of eq. 5.3a, A\Gv{t), is the standard depolarisation function for a 

polycrystalline magnet and GKL^KLO is the Lorentzian Kubo-Toyabe function. In the 

paramagnetic state A\ = A2= 0 and we only retain the standard Kubo-Toyabe function 

GTCT(AKTO> just as for the SMAF compounds (x< 0.005). The resulting value of AKT is 

comparable to the values reported in figures 5.2-5.4. For T« rN we find A\= A2, whereas 

A3= 0. This suggests that half of the muons stops at sites where the dipolar fields cancel, 

while the other half stops at sites with a net local dipolar magnetic field. The analysis with 

help of eq. 5.3 yields a more consistent description for the various Pd concentrations, when 

compared to the slightly different analysis of the zero-field data preliminary reported in 

Refs. 31 and 32, respectively. 

In order to show that the first two terms in eq. 5.3a account for the LMAF state we 

have plotted in figure 5.5 and figure 5.6 the spontaneous frequency Vi(T) and the 

depolarisation rate of the Lorentzian Kubo-Toyabe function, XKL(T), respectively. For the 

Table II Fitting parameters for the LMAF state, determined from the zero-field 

temperature dependences of m, XKL, and V/, described by the relation 

f(T)=f(0)(l-(T/TN)af. The subscript ND refers to parameters determined 

from neutron-diffraction experiments, while the subscripts KL and V; 

refers to the parameters determined from the \i.SR data (see eq. 5.3). 

X m(0) (UB) ?N,ND ( K ) OCND PND 

0.01 0.11(3) 1.6(2) - -

0.02 0.34(5) 3.5(2) 1.9(2) 0.50(5) 

0.05 0.63(5) 5.8(1) 1.8(1) 0.32(3) 

X ÀKL(0) (us"1) TN.KL (K) CCKL ßKL 

0.01 0.76(5) 1.58(8) 1.9(4) 0.85(30) 

0.02 3.9(3) 4.16(6) 1.9(2) 0.36(5) 

0.05 9.3(9) 6.35(12) 2.0(5) 0.36(6) 

X Vi(0) (MHz) TN.VI (K) CM ßvl 

0.01 4.7(2) 1.75(9) 1.5(4) 0.48(9) 

0.02 7.9(1) 4.15(1) 2.0(2) 0.39(2) 

0.05 8.1(1) 6.21(1) 2.1(3) 0.39(2) 
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LMAF state we found that the order parameter m(T) as measured by neutron diffraction 

could be described by J{T^)=f[0)(l-(T/TN)af. The same expression, with almost identical 

values of a and ß, yields a proper description of Vi(T) and XKL(T) as well (see solid lines in 

figures 5.5 and 5.6). The fit parameters are listed in Table II. For x- 0.02 and 0.05 the 

values of ß are close to the theoretical value ß= 0.38 for the 3D Heisenberg model [36]. 

The phenomenological parameter cc reflects spin-wave excitations. In a cubic 

antiferromagnetic system a is predicted to be 2 [37]. To our knowledge no predictions are 

available for a hexagonal system. A point of concern is that for a simple polycrystalline 

magnet one expects the spontaneous frequency Vi(0) to scale with the ordered moment, 

which is clearly not the case here, as follows from the data in Table H. However, XKL(0) 

scales with the ordered moment. We comment on this point in the next paragraph. 

In order to demonstrate the relative contributions of the first two terms in eq. 5.3a to 

the total depolarisation function we have plotted Gv(t) and GKL(^KL0 in figure 5.7 for a 

typical U.SR spectrum in the LMAF state, taken on U(Pto.99Pdo.oi)3 at T= 0.1 K. In figure 5.8 

the concentration dependence of Gv(t) and GKL(A.KL0 is shown. Whereas GKLC -̂KLO varies 

smoothly with Pd contents, Gv(t) is almost identical for x= 0.02 and 0.05. If both signals 

were to originate from the same ordered moment, then ÀKT and V| should both increase 

proportionally to the ordered moment. A possible reason for the absence of scaling of the 

frequency with the ordered moment is that the expression for Gv(t) is only valid when X\« 

co=27tVi. Such a situation is described in Ref. 38 for a Gaussian field distribution. When X\ 

is of the same order as Vi, large systematic errors can influence the fit parameters of Gv(t). 

Since we deal with heavily damped spontaneous oscillations this is in part the case. The 

temperature dependence of X\ is plotted in figure 5.9, which shows that X\ is almost 

constant below 7N for x= 0.02 and 0.05, with average values of 5.2±0.5 u.s~' and 

6.1±0.5 U.S1, respectively. The fit to eq. 5.3a results in values A,/co=0.1. Using the 

procedure as described in Ref. 38 we arrive at a correction of V] of only = 10%. This small 

correction cannot explain the absence of scaling between Vj and the ordered moment. The 

remaining fit parameter X\ is plotted in figure 5.10. 
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Figure 5.5 Temperature variation of Vy for polycrystalline U(Pt].xPdx)3 

with x= 0.01, 0.02 and 0.05 (see eq. 5.3). The solid lines represent fits to the 

function f(T)=f(0)(l-(T/TNff (see text). 
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Figure 5.6 Temperature variation of XKL for polycrystalline U(Ptj.xPdx)3 

with x=0.01, 0.02 and 0.05 (see eq. 5.3). The solid lines represent fits to the 

function f(T)=fiO)(l-(T/TN)af (see text). XKL(T) scales with the ordered 

moment. 
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Figure 5.7 Typical zero-field spectrum measured for poly crystalline U(Pto.99Pdo,oi)3 at 

T- 0.1 K. The lines represent the different components of the fit (see eq. 5.3). 
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Figure 5.8 Contributions to the muon depolarisation function (see eq. 5.3) in the 

ordered state for polycrystalline U(Ptj.xPdx)3 with x= 0.01, 0.02 and 0.05. Upper frame: 

Lorentzian Kubo-Toyabe function. Lower frame: exponentially damped oscillating 

component. 
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Figure 5.9 Temperature variation of"k\ for polycrystalline U(Pti.xPdx)3 

with x=0.01, 0.02 and 0.05 (see eq. 5.3). 
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Figure 5.10 Temperature variation of V\ for polycrystalline U(Pt].xPdx)3 

withx=0.01, 0.02 and 0.05 (see eq. 5.3). 
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5.5 Transverse field |i,SR 

5.5.1 Knight shift 

In the transverse field configuration the external magnetic field, Bext, is applied 

perpendicular to the initial muon polarisation, S^ The local magnetic field at the interstitial 

site of the implanted muon can be determined from the Larmor precession frequency. The 

Knight shift is the relative frequency or field shift and is defined as: 

|B„ t| Bm Cü0 

where (Oo= Yn̂ ext- Here, we consider only metals in the paramagnetic state that are exposed 

to a magnetic field. Neglecting the Lorentz and the demagnetising fields, as well as small 

diamagnetic contributions, we can write the Knight shift as 

K^=Kcon+b-(A\otXb) (5.5) 

where b= Bext/#ext is the unit vector parallel to the applied magnetic field and KC0B is the 

Knight shift due to the direct contact field induced by the polarisation of the conduction 

electrons. Kcon is proportional to the Pauli susceptibility %o of the conduction electrons, 

which is usually assumed to be temperature independent and isotropic. The second part of 

the Knight shift is proportional to the atomic susceptibility tensor, %, and A\a is the total 

hyperfine coupling tensor. Kcoa can be determined from the experimental K^x) data by 

extrapolating 7"—> °°, where %= Xo- The elements of A\otx can be determined 

experimentally from the Knight shift anisotropy. If the principal axes of the Knight shift are 

chosen as co-ordinate frame, the Knight shift A", for B|| i is simply given by 

K, = A'% (5.6) 

With the knowledge of %, the tensor elements A" can be determined from the observed 

Knight shifts AT,. The total hyperfine coupling tensor is the sum of the dipolar and the 

indirect contact contribution A,ot = A  ̂ + Acon. The indirect contact field is due to the 

RKKY interaction between the localised moments and the muon. The indirect contact 

interaction is independent of the orientation of the external magnetic field, so that 

ACOB=ACOBE, where E is the unit tensor. Because A,0l is the sum of a traceless dipolar 

tensor and a scalar contact part, A,ot can be decomposed using the relation 

A\oa =1/3 Tr( Ätot ) E. The dipolar coupling tensor A p̂ is given by: 
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Table HI Calculated dipolar tensor components for several 

axial symmetric sites ( A^_ = A^ ). 

interstitial 
site 

000 
0 0  1/8 

0 0 1/4 

2/3 1/3  0 

2/3 1/3  1/8 

2/3 1/3  1/4 

A3 

(mol/cm 3) 
0.0037 

0.0039 

0.0041 

-0.0717 

-0.0215 

-0.0128 

(mol/cm3) 
-0.0075 

-0.0078 

-0.0082 

0.144 

0.0430 

0.0256 

Aiip(U) : S4 3JC,-JCJ 
(5.7) 

The dipolar field at site r^ is determined from the sum over all ƒ moments at positions r/, 

r=rj-r Vl={x\^C2^)={x,y,z), r=\r\ and 8,y is Kronecker's symbol. By comparing the 

experimentally determined A \ with the theoretical values, calculated with help of eq. 5.7, 

it is often possible to determine the actual muon stopping site. 

O u 

Pt 

• (0,0,0) 
(2/3,1/3,0) 

• (2/3,1/3,1/4) 
Figure 5.11 The crystallographic unit cell of UPts (space group P6s/mmc). 

The axial symmetric sites (0,0,0), (2/3, 1/3, 0) and (2/3,1/3,1/4) are indicated. 
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In figure 5.11 we show the unit cell of U(Pt,Pd)3 and the possible high-symmetry 

muon localisation sites. In figure 5.12 we show the projection of the magnetic structure as 

determined by neutron diffraction. The calculated dipolar tensor components for axial 

symmetric sites are listed in Table III. 

5.5.2 Results for U(Pto.95Pdo.o5)3 

In this section we report on \iSR experiments carried out on single-crystalline 

U(Pto.95Pdo.o5)3 in a transverse field of 0.6 T. The sample was shaped into a cube 

(dimensions 5x5x5 mm3) with edges along the principal crystallographic directions. The 

temperature variation of the Knight shift was measured between 10 and 250 K for the field 

along the a-axis (ÄTa) and the c-axis (Kc), while the angular variation was measured for a field 

in the (a,c) plane at T- 10, 20, 150 and 250 K. Parts of these results were presented in Ref. 

Figure 5.12 Projection of the crystallographic structure of U(Pti.xPdx)3 on the 

ab-plane. The large (small) circles indicate the U (Pt) atoms. The open and closed 

circles represent atoms in adjacent hexagonal planes. The arrows indicate the magnetic 

moments (along a ) at the U-atoms. The dotted and solid lines delineate the 

crystallographic and magnetic unit cell, respectively. The crosses denote the (0,0,0) site, 

where the dipolar fields cancel. 
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Figure 5.13 Fourier transforms of the spectra measured at 10 K in a 

transverse field of 0.6 T for single-crystalline U(Pt0_9SPdo.o5)3: solid line 

B\\a, dotted line B\\c. The arrow indicates the background signal. 

32. Our preliminary analysis indicated: (i) the presence of only one frequency component in 

the Knight shift, (ii) an unusual crossing of Ka and Kc near 140 K, and (iii) an unusual 

angular variation. Afterwards, similar experiments were carried out on undoped UPt3 

[39, 40]. Because these experiments were carried out at the GPS (TF= 0.6 T) using MORE 

(Muons On REquest, see chapter 2) and at the LTF in transverse fields up to 2 T, the data 

have a better resolution. These high resolution data yield the following important 

conclusions: (i) for B± c the Knight shift consists of two closely spaced frequency 

components with equal amplitudes, (ii) above 115 K slow muon hopping occurs, and (iii) 

the angular dependence in the (a,c) plane follows a normal cos2-law. With this in mind, it is 

conceivable that part of the preliminary results reported in Ref. 32 are to be attributed to 

the limited resolution. In addition, demagnetising effects hampered the interpretation of the 

angular dependence of the Knight shift. 

Motivated by the results obtained for pure UPt3 [39,40], we next analyse the 

transverse-field data of the U(Pt0.95Pdo.05)3 compound in the same way. In figure 5.13 we 

present the Fourier transforms of the spectra at T= 10 K and TF= 0.6 T for Bext|| a and 

Bext|| c. Besides the background signal at 81.55 MHz, which is due to muons stopping in 
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0.5 
U(Pt Pd ) 

v 0.95 0.05'3 

300 

Figure 5.14 Temperature dependence of the Knight shifi oj 
U(Pto.9sPdom)r- (•) one component fit for B\\ a, (M, • ) two component fit 
fvy, v2J for B\\ a, and(0)B\\ c. The solid lines are to guide the eye. 

the silver sample support, we observe two signals for Bext|| a and only one signal for Bext|| c. 

This is in very good agreement with the results reported for pure UPt3 [39,40]. For 

T> 10 K, the two signals in the Fourier transform for Bext|| a are no longer observed. 

Instead, a single but always asymmetric peak is observed. We have analysed the spectra for 

Bext|| a with the following three-component depolarisation function, Ga(t): 

Ga(f ) = A,e"Xl ' cos(2nv,f + (p) + A2e'Xl' cos(2nv2t + (p) 

+Ab$e "e cos(2nvbg? + (p) 

The first two components account for the U.SR signal from the sample and the third 

component is the background signal. Although the first two signals are not resolved in the 

frequency domain, it is possible to fit both components in the time domain by fixing 

A,= A2. In eq. 5.8 the envelops of the oscillating functions are exponentials. We also tried 

Gaussian damping, but it was not possible to discriminate between exponential or Gaussian 

damping terms. The resulting frequencies Vi and v2 are almost not influenced by the choice 

of the envelop function. 
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Figure 5.15 Clogston-Jaccarino plot for U(Pto.95Pd0,05)3: (*) one 
component fit for B\\ a, (M, • ) two component fit (Vy, v2) for B\\ a, and 
(0)B\\c. 

In figure 5.14 K„(T)  and KC(T) are plotted. For Bext|| a we show K^T) obtained by 

fitting a one and a two-component function in addition to the background signal. The data 

follow a Curie-Weiss behaviour in a limited T-range (50-100 K) only. For T> 100 K the 

difference between the two signals, Vi-V2, becomes smaller and above 150 K the data can 

only be fitted with one frequency. This is consistent with muon diffusion for T> 115 K, 

reported for pure UPt3 [40]. As the muon diffuses, it experiences an average local magnetic 

field. 

Next we compare the Knight shift with the susceptibility (measured on a different 

crystal) using a SQUID magnetometer. For T> 30 K %(T) follows a modified Curie-Weiss 

law, %=%o+C/(T-Q). The results are in excellent agreement with measurements reported in 

Ref. 41. In figure 5.15 we present the Clogston-Jaccarino plot, K^fa), with the temperature 

as an implicit parameter. The Clogston-Jaccarino plot shows several remarkable features: 

(0 âOCa) deviates strongly from the expected linear behaviour, while Kc(%c) is 

approximately linear, and (ii) the direct contact contribution to the Knight shift (r-> °°) 

KCQa seems to be strongly anisotropic, while the unrenormalised Pauli susceptibility %0 is 
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not. This strongly suggests that the local and bulk susceptibilities differ, which hampers the 

use of eq. 5.6 to determine the components of the dipolar tensor, A\ol. In the next section 

we follow a more straight-forward method to determine the stopping site, by making use of 

the Knight-shift data only. This analysis for x= 0.05 parallels to a large extent the analysis 

reported for pure UPt3 [40]. 

5.6 The muon localisation site 
It turns out that the Knight-shift data follow a modified Curie-Weiss behaviour accurately, 

albeit in a rather limited temperature range. The lower temperature limit is about 30 K, 

which is the temperature below which x(T) deviates from the Curie-Weiss law because of 

the stabilisation of antiferromagnetic interactions, while the upper limit (= 100 K) is 

determined by muon diffusion. Therefore we write: 

Ki(T) = K'coa+AiotC/(T-ei) (5.9) 

with C=A?AMo|̂ eff2/3̂ B and the coupling constant A'tot = Amn +A'dip. In figure 5.16 we show 

Kj(T) where the solid lines present fits to eq. 5.9. In this way we can determine K'C0D , At'ot C 

0.0 

0.95 0.05'3 
B= 0.6 T 

50 75 100 125 

r(K) 
Figure 5.16 Knight shift of U(Pto.9sPdo.o5)3 between 30 and 100 K: 

(U, • ; frequency components (vlt v2) for B\\ a, and (O) B\\ c. The solid 

lines represent fits to eq. 5.9. 



\JLSR study of U(Pt,Pd)3 103 

Table IV Parameters deduced from a fit of the Knight shift of U(Pto.9sPd0.o5)3 

to the modified Curie-Weis law (see eq. 5.9). For B\\ a the 

parameters for the two different signals are labelled by V; and v2. 

' -Cn(ppm) At'0,C(K-') 9,(K) 

B|| a (vi) -21(30) -0.074(4) -66 
B| |a(v2) -537(128) -0.100(15) -66 
Bljc 568(43) -0.315(20) -100 

and 0,-. The fit results for K0j and A,'ot C are listed in Table IV, where we have taken 9; 

equal to 100 K and 66 K, for the a and c-axis, respectively, as determined from the 

analysis on UPt3 [40]. Next we have evaluated At'ot and Acon for the electronic 

configurations/1 (U3+), f (U4+) and /3 (U5+) with effective moments \xef{= 3.62, 3.58 and 

2.54 (j-ß/U-atom, respectively. The results for B|| a (frequency components Vi and v2) and 

B|| c are listed in Table V. Using the data of Table V we have calculated A^p and the 

results are presented in Table VI. Finally we compare A^p with the calculated values for 

axial symmetric sites, listed in Table JR. For the ƒ ' and f2 configurations we find a very 

good agreement if the stopping site is (0,0,z). It should be noted that t he /1 and /2 free-ion 

effective moment values differ from the value \Jkfr~ 2.8 u^/U-atom determined from the 

modified Curie-Weiss fit to %(T). This indicates that the local susceptibility differs from the 

bulk susceptibility. A second, more direct way to arrive at the (0,0,z) stopping site follows 

from the isotropy of the Knight shift in the basal plane [40], which requires a diagonal 

dipolar tensor. This in turn means that the muon stopping site is of axial symmetry and 

because A^cp < 0 the stopping site is restricted to (0,0,z) (see Table III). The calculated 

values of the dipolar tensor for these sites are very close to each other. 

The analysis of the zero-field experiments on the LMAF compounds, however, seems 

to indicate two different stopping sites in the ordered phase, where each site is related to 

Table V A'm andAcon of U(Pto.95Pd0.osh calculated from A[olC (as listed in Table IV) for 

the electronic configurations f ' (U3+), f2 (if*) and f (U5+). The two different 

signals for B\\ a are labelled by V; and V2. 

U C Aa,v' A a ,V2 A c Av< A v 2 

U ° ^tot ^ o t ^ o t Acon Acon 
(cm3/molK) (mol/cm3) (mol/cm3) (mol/cm3) (mol/cm3) (mol/cm3) 

3+ 20.60 -0.0036 -0.0049 -0.0153 -0.0075 -0.0083 
4+ 20.14 -0.0037 -0.0050 -0.0156 -0.0077 -0.0085 
5+ 10.14 -0.0073 -0.0099 -0.0311 -0.0152 -0.0169 
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Table VI Dipolar tensor components A'& of U(Pto.gsPdo.os)3 for the 

electronic configurations f ' (U3+),f2 (U4+) and f (U5+). 

TT 4",v, 4c,v , .a,v2 .c,v2 

u ^dip ^dip ^dip Adip 

(mol/cm3) (mol/cm3) (mol/cm3) (mol/cm3) 
~3+ 0.0039 -0.0078 0.0034 -0.0070 

4+ 0.0040 -0.0080 0.0034 -0.0071 
5+ 0.0079 -0.0158 0.0068 -0.0141 

one of the two components of the muon depolarisation function (eq. 5.3a). The first term 

with amplitude A\ signals a stopping site with a fairly large local dipolar field which 

amounts to 0.10-0.28 T/(J.B, as the spontaneous frequencies range from 4.7-8.1 MHz for 

x= 0.01-0.05. The second term with amplitude Ai suggests the presence of a site where the 

local dipolar magnetic fields cancel or are at least smaller than 0.025 T/U,B as follows from 

the measured Lorentzian Kubo-Toyabe linewidth. Since A\=Ai both terms have equal 

weight. In figure 5.17 we have plotted the calculated dipolar field along (0,0,z) and along 

(2/3,1/3,z) for the antiferromagnetic structure (assuming an ordered moment of 1 [iß) of the 

U(Pt,Pd)3 compounds. The dipolar fields for (0,0,z) and (2/3,l/3,z) range between 0 and 

0.023 T/(^B and between 0.26 and 0.67 T/U,B, respectively. By comparing the measured and 

calculated (see figure 5.17) local dipolar magnetic fields, we conclude that the Lorentzian 

Kubo-Toyabe term is associated with the (0,0,z) stopping site, which is consistent with the 

analysis of the Knight shift. The presence of the spontaneous frequency term can possibly 

be attributed to a second axial symmetric stopping site along (2/3,l/3,z). However, for this 

site A p̂ > 0 which is in conflict with the analysis of the Knight shift. 

5.7 Discussion 

One of the unexpected conclusions from the present work is that SMAF (x< 0.005) is not 

detected in the zero-field u.SR experiments. A first natural explanation of this result is that 

the SMAF is not present at all. However, this is contradicted by neutron-diffraction 

experiments. A second explanation is offered by a \x+ localisation site where the dipolar 

fields due to the magnetic structure cancel. The most probable (axial symmetric) site is 

then the (0,0,0) site (see figure 5.17). The measured values of ART are consistent with 

depolarisation of the muon due to Pt nuclear moments. A comparison of the measured and 

calculated values of AKT for axial symmetric stopping sites (Table I) is not inconsistent 

with the (0,0,0) stopping site. A third explanation for not observing the SMAF could be 
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Figure 5.17 Calculated local dipolar field for (0, 0, z) and (2/3, 1/3, z) sites. 

that the antiferromagnetic moment fluctuates at a rate >10 MHz, i.e. too fast to be detected 

by u,SR, but slower than the time scale of the neutron-diffraction experiment =0.1 THz. 

This explanation is particularly appealing because it also could clarify the absence of a 

signature of the SMAF in NMR experiments [42, 43]. Kohori et al. [42] carried out 195Pt 

NMR on the U(Pti^Pdx)3 system. For compounds with LMAF (e.g. x= 0.05), zero-field 

experiments showed that the transferred hyperfine field does not cancel at the Pt site. A 

simple calculation showed that the internal field originating from SMAF for Jt= 0 should 

have been observed as well, however, this turned out not to be the case. Since the 

symmetry argument for cancellation of the dipolar field does not hold for the Pt sites, the 

most probable explanation for the absence of the SMAF is the one of the fluctuating 

moment. 
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Recently, it appeared that in a transverse field the situation is different. Experiments 

carried out on UPt3 single crystals in the field range 0.6-2 T and temperature range 

0.1-200 K do show signatures of the SMAF [39]. Notably around 7N, an additional Knight 

shift is observed. The Knight shift consists of two closely spaced signals for B± c, while 

only one signal is observed for B|| c. For B± c a peculiar temperature variation of the 

amplitudes Ai  and A-i of the (Gaussian and exponentially damped) frequency components is 

observed. For 2 K < T < 10 K, A\> Ai with a maximum difference A\-Ai around T^- 6 K, 

while for T< 2 K and T> 10 K A\= Ä2- On the other hand, the analysis of the Knight shift in 

the temperature interval 30-115 K indicates the presence of only one stopping site (0,0,z) 

[40]. The presence of two frequency components and only one stopping site, provides 

strong evidence for two spatially distinct regions of different magnetic response up to at 

least =115 K. Whether the different magnetic response originates from macroscopically 

separated regions (e.g. domains) or is periodic in nature (e.g. a structural modulation [44]) 

remains an open problem. 

For x> 0.01 the LMAF is clearly observed in the zero-field u,SR data. The muon 

depolarisation in the ordered state is described by two terms of equal amplitude: an 

exponentially damped spontaneous oscillation and a Lorentzian Kubo-Toyabe function. 

However, it is not understood why the spontaneous frequency (vi) does not scale with the 

ordered moment, while the linewidth XKL does. The analysis of the Knight shift, measured 

in a transverse field of 0.6 T, indicates the presence of one single axial symmetric stopping 

site (0,0,z). The data in Table IV show that the splitting of the TF-signal for B in the basal 

plane predominantly arises from the different values of Kcoa. The local atomic 

susceptibilities are the same since the values of C and 0, are the same. The fact that the two 

signals in the paramagnetic state and in the ordered state have the same ratio (A1-A2) 

indicates that the two signals in the ordered state are also associated with the site (0,0,z). 

The observation of two contributions, i.e. one term with large spontaneous frequencies (in 

the range 4.7-8.1 MHz) and a second term described by the Lorentzian Kubo-Toyabe 

function, is possibly related to the vastly different Kcon. At the moment we cannot offer an 

explanation how Âcon and the spontaneous dipolar fields below TN may be connected to 

each other, but the absence of scaling of the spontaneous frequency with the ordered 

moment m might be another indication for an unusual muon depolarisation mechanism. 

High-resolution transverse-field experiments are needed to clarify these issues. 

The U.SR and neutron-diffraction studies demonstrate that SMAF and LMAF in the 

U(Pti.vPdv)3 pseudobinaries are not closely connected. The differences between SMAF and 
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LMAF are: (i) TN(x) attains a constant value of = 6 K for SMAF, while TN(x) of the LMAF 

compounds follows a Doniach-type phase diagram, (ii) the squared order parameter m2(T) 

for the SMAF, as measured by neutron diffraction, grows in an unusual quasi-linear 

fashion, while the order parameter for the LMAF is conventional and confirms a real phase 

transition, and (iii) SMAF is not observed in zero-field U.SR experiments in contrast to 

LMAF. The latter point we attribute to the fluctuating nature of the small ordered moment, 

which is consistent with NMR data [42, 43]. This strongly suggests that the SMAF does 

not present a true phase transition, but rather is a crossover phenomenon. The U.SR and 

neutron-diffraction studies both show that LMAF is present for x>0.01, while it is no 

longer observed for x= 0.005. This implies that the antiferromagnetic instability for the 

LMAF is located in the concentration range x= 0.005-0.01. uSR experiments on samples 

with intermediate Pd concentrations are underway in order to determine the critical 

concentration for LMAF, xc. Of particular interest here is to investigate whether this critical 

concentration coincides with the critical concentration for the suppression of 

superconductivity xc= 0.007 [33]. This would provide strong evidence that LMAF and 

superconductivity compete. On the other hand, SMAF interacts with superconductivity as 

the size of the ordered moment controls the splitting 7C
+ - T~ [24] (see chapter 6). 

Although SMAF and LMAF appear not to be connected, there are close similarities in 

the transverse-field signals, as measured for x= 0 and x= 0.05. For both compounds: (i) two 

signals contribute to the Knight shift for B l c, while only one contribution is observed for 

B|| c, (ii) for B l c the amplitudes of the two contributions in the paramagnetic state are 

almost equal, and (iii) the analysis of the Knight shift indicates the presence of only one 

stopping site (0,0,z). 

5.8 Summary 

liSR experiments have been carried out on a series of pseudobinary polycrystalline heavy-

electron U(Pti JPd,)3 compounds (x< 0.05). For x< 0.005 SMAF is not observed in the 

zero-field signals, whereas neutron diffraction shows that SMAF is stable upon alloying 

and TN(x)~ 6 K. The uSR spectra for x< 0.005 are consistent with depolarisation of the 

muon due to nuclear moments. For 0.01< x< 0.05 LMAF is clearly observed in the zero-

field (J.SR data. The muon depolarisation in the ordered state is described by two terms of 

equal amplitude: an exponentially damped spontaneous oscillation and a Lorentzian Kubo-
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Toyabe function. The depolarisation rate of the Lorentzian Kubo-Toyabe function, \KL(T), 

was found to scale with the ordered moment m(T) as measured by neutron diffraction. The 

presence of two terms in the ZF data seem to indicate two different stopping sites, the 

(0,0,z) and (2/3,l/3,z) site. The Knight shift measured at 0.6 T on single-crystalline 

U(Pto.95Pdo.o5)3 in the paramagnetic state shows two signals for B± c, but only one signal 

for B|| c. The analysis of the Knight shift points to the presence of only one stopping site 

(0,0,z). High-resolution transverse-field experiments are needed to elucidate the problem of 

the determination of the stopping site further. 
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Chapter 6 

Superconductivity in U(Pt,Pd)3 

The effect of Pd doping on the superconducting phase diagram of the unconventional 

superconductor UPt3 has been measured by (magneto)resistance, specific heat, thermal 

expansion and magnetostriction. Experiments on single- and polycrystalline U(Pti.xPdx)3 

for x< 0.006 show that the superconducting transition temperatures of the A phase, Tc
+, 

and of the B phase, T~ both decrease, while the splitting ATC increases at a rate of 

0.30±0.02 K/at.%Pd. Tire B phase is suppressed first, near x= 0.004, while the A phase 

survives till xz 0.007. We find that ATc(x) correlates with an increase of the weak 

magnetic moment m(x) upon Pd doping. This provides further evidence for Ginzburg-

Landau scenarios with magnetism as the symmetry breaking field, i.e. the 2D 

E-representation and the ID odd parity model. Only for small splittings ATcoc m (T* ) 

(ATC<0.05K) as predicted. The results at larger splittings call for Ginzburg-Landau 

expansions beyond 4th order. The tetracritical point in the B-T plane persists until at least 

x= 0.002 for Bl c, while it is rapidly suppressed for B\\c. Upon alloying the A and B 

phases gain stability at the expense of the C phase. 

6.1 Introduction 
The superconducting instability in heavy-electron compounds [1,2] continues to attract a 

great deal of attention. In the past years much research has been directed towards the close 

connection between superconductivity and magnetism in heavy-electron materials [3]. The 

principle research issues which have emerged are: (i) spin-fluctuation versus phonon 

mediated superconductivity, (ii) the symmetry of the superconducting gap function, and 

(iii) the interplay of magnetic order and superconductivity. Among the heavy-fermion 

superconductors UPt3, with a superconducting transition temperature Tc= 0.55 K [4], is 
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regarded as exemplary. The low-temperature normal state is characterised by pronounced 

antiferromagnetic spin-fluctuation phenomena (7**=  20 K) and incipient magnetism [5], 

which give rise to a strong renormalisation of the effective mass, of the order of 100 times 

the free electron mass. Neutron-diffraction experiments have shown that superconductivity 

in UPt3 coexists with antiferromagnetic order, which develops below a Néel temperature of 

7N= 6 K [6]. The antiferromagnetic order is unconventional in the sense that the ordered 

moment squared m (7) grows quasi-linearly with temperature. Moreover, the size of the 

ordered moment is extremely small m(0)= 0.02+0.01 u,B/U-atom. The superconducting 

ground state is difficult to reconcile with strong magnetic interactions and, therefore, it has 

been suggested that superconductivity is mediated by antiferromagnetic interactions rather 

than by phonons [7]. However, decisive experimental evidence for this is still lacking. 

More recently, it has been argued that superconductivity is a more general property of 

heavy-fermion antiferromagnets close to a quantum critical point [8]. In the case of UPt3 

the quantum critical point might be reached by doping [5], but the concurrent non-Fermi-

liquid behaviour has not been signalled so far. In the past decade, evidence has 

accumulated that superconductivity in UPt3 is truly unconventional, i.e. the symmetry of 

the superconducting gap function is lower than that of the underlying Fermi surface [9]. 

Evidence for this is in part presented by the power-law temperature dependence of the 

electronic excitation spectrum below Tc, indicating point nodes and/or line nodes in the gap 

[10]. The discovery of a multicomponent superconducting phase diagram with three vortex 

phases in the field-temperature plane [11-14], and the subsequent explanation within the 

Ginzburg-Landau theory of second order phase transitions (see Ref. 15 and references 

therein) is in general considered as hard proof for unconventional superconductivity. 

UPt3 is the only known superconductor with three different superconducting vortex 

phases. In zero magnetic field two superconducting phases are found, the A phase below 

T* = 0.54 K and the B phase below 7"c" = 0.48 K. In a magnetic field the A phase is 

suppressed, while the B phase transforms into a third phase, labelled C. The three phases 

meet in a tetracritical point. The phenomenology of the phase diagram has been studied 

extensively using Ginzburg-Landau (GL) theory, where the free energy functional is 

derived exclusively by symmetry arguments (the symmetry group for UPt3 is D6h). A 

number of GL models have been proposed [15-22] in order to explain the zero-field 

splitting ATC = 7-
c
+-7'c" [11] and the topology of the phase diagram in magnetic field 

[12-14] or under pressure [23, 24]. Most of the GL models require an unconventional 

superconducting order parameter. The most plausible GL models which have been worked 
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out to understand the phase diagram of UPt3 fall into three categor ies: (i) the degeneracy of 

a two-d imensional (2D) even or odd parity order parameter is lifted by a symmetry 

breaking field [16-19] , (ii) the spin degeneracy of a one-dimensional ( I D ) odd parity order 

parameter is lifted by a symmetry breaking field under the assumpt ion of a weak spin-orbit 

coupl ing [15, 20 ] , and (iii) there is an accidental degeneracy of two nearly degenerate I D 

representat ions [19, 21] . However , no consensus has been reached, as each of the three 

models only partial ly descr ibes the field and pressure variat ion of the superconduct ing 

phases. As regards the first two scenarios a key issue is to identify the symmetry breaking 

field (SBF). Exper imenta l ev idence that the anomalous weak ant i ferromagnet ic order, 

which sets in at r N = 6 K, acts as the S B F is at hand [25]. Another candidate for the S B F is 

the incommensurate structural modulat ion which has been detected by transmission 

electron microscopy [26], However , its precise role remains unexplored. 

In this chapter we focus on the G L models with the degeneracy lifted by a SBF [15-

20] . More specifically we investigate the role of the smal l -moment magnet ism as SBF. 

Wi th in the model (see section 6.2), the splitt ing of the superconduct ing transit ion 

temperature is proport ional to the strength of the SBF or A7><: e, where e<* m . Direct 

ev idence for the coupl ing between ATC and tn was deduced from specif ic-heat [23] and 

neutron-diffraction [25] exper iments under hydrostat ic pressure. It was observed that both 

ATC, determined by specific heat, and m2(Tc), measured by neutron diffraction under 

pressure, vary linearly with pressure and vanish at a crit ical pressure pc= 3 kbar. We uti l ise 

another route to verify the coupl ing between ATC and m, namely by doping UPt3 with 

small amounts of Pd. 

Vorenkamp and co-workers [27] carried out specif ic-heat exper iments on 

polycrystal l ine samples of I K P t i . J P d ^ (x< 0.002) and showed that A r c a lmost doubles 

with respect to pure UPt3 for the x= 0.002 compound. Th is then directly prompted the 

question whether the enhancement of AT^ is due to the increase of the ordered moment m. 

Since it was known that for 0.02<x<0.07 pronounced phase-transi t ion anomal ies in the 

thermal and transport propert ies signal an anti ferromagnetic phase transit ion of the spin-

densi ty-wave type [5], we conducted a neutron-diffraction study on single-crystal l ine 

samples in order to investigate m as function of Pd content over a wider range of x , 

including the region where ATC is observed to increase. These results are reported in Ref. 

28 and the conclusions are as fol lows. The smal l -moment ant i ferromagnet ic order (SMAF) 

is robust upon doping with Pd and persists unti l at least x= 0.005. The ordered momen t 

grows from 0.018±0.002 u^ /U-atom for pure UPt3 to 0.048±0.008 nB /U-a tom for x= 0.005. 
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For the SMAF TN~ 6 K and does not vary with Pd contents. For x> 0.01 a second 

antiferromagnetic phase is found, for which at optimum doping (x= 0.05) TN attains a 

maximum value of 5.8 K and an ordered moment of 0.63±0.05 u.B/U-atom. For this large-

moment antiferromagnetic order (LMAF) TN(x) follows a Doniach-type phase diagram. 

From this phase diagram it is inferred that the antiferromagnetic instability in U(Pti^Pdx)3 

is located in the range 0.5-1.0 at.% Pd. 

In this chapter we present a study of the superconducting properties of U(Pti^Pdx)3. 

The main objectives of this work are: (i) to determine ATc(x) by means of specific-heat 

experiments, (ii) to test the SBF model by relating ATc(x) to the ordered moment m(x), and 

(iii) to investigate the effect of Pd doping on the superconducting phase diagram in the B-T 

plane by means of magnetotransport and dilatometry experiments. The chapter is organised 

as follows. In section 6.2 we review the basic relations for the SBF scenario. In section 6.3 

we concentrate on the sample preparation process and the characterisation of the samples 

by means of electrical resistivity. In section 6.4 we present and analyse the specific-heat of 

U(Pti.j;Pdx)3 in the vicinity of the double superconducting transition. In sections 6.5 and 6.6 

we present the magnetoresistance, thermal expansion and magnetostriction data and in 

section 0 we construct the phase diagrams in the B-T plane for x= 0.002. In section 6.8, we 

extract the Ginzburg-Landau parameters, while the SBF model is tested in section 6.9. 

Finally, we present the concluding remarks in section 6.10. Parts of these results have been 

reported in a preliminary form in Refs. 29-31. 

6.2 The SBF scenario 
The SBF scenarios, discussed in chapter 3, can be divided into two categories: (i) the 

degeneracy of a 2D even or odd parity order parameter is lifted by a SBF [16-19] and (ii) 

the spin degeneracy of a ID odd parity order parameter is lifted by a SBF under the 

assumption of weak spin-orbit coupling [15,20]. The irreducible representations for the 

superconducting gap with the appropriate D6h symmetry of UPt3 have been tabulated by 

Yip and Garg (Ref. 32). We first concentrate on the 2D representation called the E-

representation model. For a 2D representation with even parity, E\g or E2g, or odd parity, 

Eiu or £2«» the superconducting gap function is given by A£(k) = T|xr£,x(k) + r|yr£,y(k), 

where r£ x and T ŷ are the basis functions for the relevant 2D-representation. The complex 

vector r|= (r|x, r)y)= (|r)x|e"Px, |r|yje
1<f,y) determines the order parameter. The free energy 

functional can be written as the sum of three terms [15-20]: 
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F=FS+FM+FSM (6.1) 

Here Fs is the free energy functional of the superconductor 

Fs=as( r - r c) | i1|2+|ßl |T1|4+iß2|T i2|2 (6.2) 

where the coefficients as, ßi and ß2 are stability parameters. The contribution from the 

magnetic order to the free energy is given by 

FM=aM (r-r N)m2+^ßMm4 (6.3) 

where m= (m,0,0) is the small ordered moment oriented along a principal axis in the basal 

plane (T< TN) and ocM and ßM are stability parameters. The mixing term of magnetic order 

and superconductivity can be written as [16-19]: 

FsM=-Vn2(T\l-r\2y) (6.4) 

where £= ym is the symmetry breaking field. By minimising the free energy it follows that 

the single superconducting transition at Tc splits into two transitions at Tc
+ and T~, where 

ATc = T:-T;=gKh±Km2 (6.5) 

«s ßz 

Here g= 1 for the E-model. The ratio (ßi+ß2)/ß2 can be determined from the measured 

stepsizes in the specific heat at Tc
+ and T~ : 

wyr\1+h (6.6) 
AC(T;)/T; p, 

Here the steps in the specific heat are measured relative to the normal state. The weak-

coupling value for ß2/ßi is 0.5. 

The ID representation model with odd parity yields very similar expressions. The three 

component order parameter is T]= (TIX, r)y, r\z)= (\r\*\em, \r\y\e"^, |riz|e
1<Pl) and the gap function 

is given by [20]: 

A(k)= 2X/(k)x x (6.7) 
X=x,y,z 

with ix=i0"yOx, where the o's denote the Pauli spin matrices. The complex coefficients r|x 

are characterised by a spin index X. The orbital part, Z(k), belongs to the ID representation 

Mu, B\u or B2u- The free energy functional is expressed as in the E-model using equations 

6.1-6.3. The coupling term of the magnetic and the superconducting order parameter 

consists of three components and equation 6.4 now reads: 

^5M=-Y'" 2(2Tl2-riJ-T1z
2) (6.8) 
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For the ID model ATC is given by equation 6.5 with g- 3/2, while the expression for ß2/ßi 

is the same as in the E-model (equation 6.6). Note that in Ref. 20 an incorrect expression is 

given for T~ in which ßi and ß2 are interchanged in the numerator. 

As it is our purpose to verify equation 6.5 by experiments, one also needs, besides 

values for A7C and ß2/ßi, which can be deduced from the specific-heat data, and the value 

of m, which follows from the neutron-diffraction experiments [28], an estimate for the ratio 

|Y|/CCS- We comment on this in section 6.9. 

6.3 Experimental 
The data reported in this chapter have been taken on annealed polycrystalline 0< 0.006) 

and single-crystalline samples (x< 0.002). Polycrystalline material was prepared by arc-

melting the constituents in a stoichiometric ratio in an arc furnace on a water-cooled copper 

crucible under a continuously Ti-gettered argon atmosphere (0.5 bar). As starting materials 

we used uranium (JRC-EC, Geel) with a purity of 99.98%, and platinum and palladium 

(Johnson Matthey) with purity 5N. Polycrystalline material with low Pd contents (x< 0.01) 

was prepared by using master alloys (e.g. 5 at.% Pd). Single-crystals with x= 0 and 0.002 

were prepared in a mirror furnace (NEC-NSC35) using the vertical floating zone method. 

A single-crystalline sample with x= 0.001, was pulled from the melt using a modified 

Czochralski technique in a tri-arc furnace under a continuously Ti-gettered argon 

atmosphere. For annealing, the samples were wrapped in tantalum foil and put in a water-

free quartz tube together with a piece of uranium that served as a getter. After evacuating 

(p< 10"6 mbar) and sealing the tube, the samples were annealed at 950 °C during 4 days. 

Next the samples were slowly cooled in 3 days to room temperature. Several samples were 

investigated by Electron Probe Micro Analysis (EPMA), but the concentration of Pd is too 

small to arrive at a quantitative composition analysis. In the following, the value of x is the 

nominal composition. Samples with appropriate dimensions and weights were obtained by 

means of spark erosion. 

In order to characterise the prepared materials the electrical resistivity, p(7), was 

measured on bar-shaped samples. The results for the polycrystalline samples (x= 0, 0.0025, 

0.003, 0.0035, 0.004 and 0.005) are reported in Ref. 30. The data above Tc
+ are well-

» 
described by the Fermi liquid expression p= Po+AT2 (T< 1 K). The residual resistivity, p0, 
is extracted by extrapolating the AT1 term to T= 0. For x= 0, the residual resistance ratio 

RRR=/?(300K)//?(0)= 1000, indicating a high quality of the pure compound, while 
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T* = 0.57 K. Upon alloying, po increases linearly with x at a rate of 9.6±0.2 uX2cm/at.%Pd, 

which ensures that palladium dissolves homogeneously in the matrix. Also T* varies 

smoothly with Pd content and the critical concentration for the suppression of 

superconductivity is xCiSC~ 0.007. In case of the single-crystalline materials, p(7) was 

obtained for a current, I, along the a and c-axis. The residual resistivity, po,a, amounts to 

0.52, 1.6 and 2.5 uI2cm, while p0,c, amounts to 0.18, 0.75 and 1.02 ußcm, for x= 0, 0.001 

and 0.002, respectively. For pure UPt3 we obtain RRR values of =460 and =720 for I|| a 

and I|| c, respectively. rc
+ is suppressed at a rate 0.77 K/at.%Pd. In the following section 

we compare the resistively determined rc
+ with the bulk value determined by the specific 

heat. 

6.4 Specific heat of U(Pti.,P<U3 

The specific heat, c(T), of a series of U(Pti^Pdt)3 samples was measured using the 

relaxation technique. Experiments have been carried out on annealed single-crystalline 

samples with x= 0.000, 0.001 and 0.002 and on annealed polycry stal line samples with 

Figure 6.1 Specific heat divided by T versus T of U(Pt!.xPdx)3 for x- 0.000, 0.001 and 

0.002 (single crystals) and for x= 0.0025, 0.003, and 0.004 (polycrystalline samples). The 

solid lines represent ideal transitions determined from an equal entropy construction. 
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Table I Parameters deduced from the specific heat of U(Pti.xPdx)3. The ratio ßa/ß; is 

calculated with help of equation 6.10. The superscripts s and p refer to single- and 

poly crystalline samples respectively. 

T; T; Ar c A N A C (T; +) /7;+ ANBc(rc-)/r c- A AB C(77)/T;- ß2/ßi 

(%) (K) (K) (K) (J/mol K2) (J/mol K2) (J/moI K2) 
0.00p 0.560(3) 0.506(3) 0.054(4) 0.23(1) 0.34(1) 0.14(1) 0.60(6) 
0.00s 0.543(3) 0.489(3) 0.054(4) 0.26(1) 0.35(1) 0.13(1) 0.50(5) 
0.10s 0.437(3) 0.355(3) 0.082(4) 0.21(1) 0.26(1) 0.12(1) 0.57(7) 
0.20s 0.384(3) 0.276(4) 0.108(5) 0.17(1) 0.19(1) 0.10(1) 0.58(8) 
0.25p 0.362(3) 0.236(4) 0.126(5) 0.18(1) 0.18(1) 0.08(1) 0.44(9) 
0.30p 0.313(4) 0.163(5) 0.150(6) 0.13(1) 0.09(1) 0.06(1) 0.46(11) 
0.40p 0.222(5) - - 0.07(1) - - -

x= 0.000, 0.0025, 0.003, and 0.004. The typical sample mass was 80 mg. The results are 

shown in figure 6.1 in a plot of cIT versus T. At least three interesting features strike the 

eye: (i) T* and rc~ are well resolved for x< 0.003, while for x= 0.004 only T* is resolved 

(T>0.1K), (ii)  both T* and 7C" decrease smoothly with Pd concentration, while A7C 

increases, and (iii) the overall height of the jumps in cIT at rc
+ and rc" decreases with 

increasing x. The results for the single-crystalline samples (x< 0.002) are in good 

agreement with those obtained by Vorenkamp et al. [27] on polycrystalline material. In 

order to determine the ideal values for the jumps in the specific heat, we have made use of 

an equal entropy construction at the NA and AB phase boundaries. The ideal transitions are 

represented by the solid lines in figure 6.1. The resulting values of Tc
+, T~, ATC, 

A N A c(rc
+) /7/c\ Amc(T~)/T~, A ABc(7;")/7;"andß2/ßi are collected in Table I. Here the 

subscripts NA and NB refer to the step sizes measured with respect to the normal state cIT 

value, while the subscript AB refers to the step size measured with respect to the cIT value 

in the A phase. Below rc" cs(T)= Yo^+oT2, down to the lowest T measured (0.1 K). The àT2 

term shows that the superconducting gap function has a line node [9]. For T—> 0 K 

considerable residual Yo values are observed which is attributed to impurity broadening of 

the line node [33]. Just as is the case for pure UPt3 [11,12], figure 6.1 shows that the 

superconducting state entropy exceeds the entropy of the normal state (assuming CN= JNT). 

The extrapolated entropy unbalance for 0<T<T* is slightly sample dependent in 

U(Pti-xPdJ3 and ranges from 6 to 12% of the normal state entropy. The entropy 

discrepancy can be resolved by either an increase of CN/7" or a decrease of cs/T below 0.1 K. 

The most plausible explanation for the entropy imbalance is offered by the presence of an 

anomaly at 0.018 K in the normal state specific heat [34], The entropy balance is fulfilled 

when this peak is included. 
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Figure 6.2 Tz\ T; and ATC of U(Pt,.xPdx)3 as a function of Pd 

concentration, determined from the specific-heat data. The solid and open 

symbols represent single- and poly crystalline data, respectively. 

In figure 6.2 T*, Tc and ATC are plotted as function of Pd concentration. Both, T* 

and T~ decrease with increasing Pd concentration, but with different rates: dTc
+/cbc= 

-0.79±0.04 K/at.%Pd and d77/dx= -1.08±0.06 K/at.%Pd, and as a result ATC increases at a 

rate dATc/dx= 0.30±0.02 K/at.%Pd. The value dTc
+/dx= -0.79±0.04 K/at.%Pd measured by 

the specific heat is within the experimental error equal to the resistive value 
-0.77 K/at.%Pd. 

Usually, the ratio ß2/ßi is calculated from the steps Ac/Tat T* and rc" with respect to 

the normal phase (equation 6.6). However, in order to obtain proper values of ß2/ßi one 

should realise that equation 6.6 is only correct for small values of ATC, which is not the 

case in the doped samples. Therefore, we use a slightly different relation to estimate ß2/ßi 

given here below. The steps AcIT are derived from the GL free energy by AcIT- ^FldT2. 

The thermodynamic step in the specific heat at rc~ can be written as: 

AABc(77)/Tc- = ANBc(77)/ Tc- - ANAC(T;)/ T; (6.9) 
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Figure 6.3 Schematic temperature dependence of c/T at the double 
superconducting transition. The solid line represents c/T calculated from the 
fourth order GL free energy, while the dotted line reflects the observed behaviour. 

The temperature dependence of c/T at the two phase transitions is shown schematically in 

figure 6.3. In the 4th order GL model c/T is constrained to be temperature independent 

(solid line), while the measured behaviour shows a clear temperature dependence (dotted 

line). In fact, higher order terms need to be taken into account in order to arrive at a 

temperature dependent c/T. In order to arrive at a proper estimate of ß2/ßi we use the 

directly measured step AABc(rc") / T~, instead of ANAc(Tc" ) / T~ . This results in: 

ß, ANAc(77)/7;+ 

The values of ß2/ß i, determined from equation 6.10, are listed in Table I, and are close to 

the weak coupling limit 0.5. The ratio ß2/ßi is within the experimental error independent of 

Pd concentration. Note that in a first analysis of the specific-heat data we used 

equation 6.6 which led to a steady decrease of ß2/ßi upon Pd doping [29]. 

6.5 The upper critical field 

In order to investigate the effect of Pd doping on the upper-critical field, Bc2(T), we have 

measured the electrical resistivity in field for single-crystalline U(Pti_j:Pdx)3 with JC= 0.001 

and 0.002. These experiments were primarily conducted to investigate the presence of a 

kink in Bc2(T), which locates the tetracritical point in the multicomponent B-T phase 
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Figure 6.4 Resistivity of U(Pt0.999Pdo.ooi)3 (I\ \ a) in constant magnetic 

fields B\\ a , ranging from 0 to 1.3 T in steps of 0.1 T. For the most right 

curve B= 0 Tand for the most left curve B= 1.3 T. 

diagram of pure UPt3. The experiments were carried out on bar-shaped samples with the 

current along the long axis (I|| a). The samples were cut from the same single-crystalline 

batch as used for the specific-heat (section 6.4) and neutron-diffraction experiments [28]. 

BC2(T) was determined by resistivity experiments in a transverse constant magnetic field for 

B|| c and B l c (i.e. B|| a , where a* is taken at right angles to a and c). In figure 6.4 some 

typical results are shown for x= 0.001 ( B l c). In these low magnetic fields (B< 1.3 T) the 

magnetoresistance is small (less than 1% of p0 per Tesla). At each applied field T* was 

determined by the 50% resistivity criterion, and the width of the superconducting 

transition, A7C
+, was determined by the 10-90% resistivity criterion. The resulting upper-

critical field curves for B l c and B|| c are shown in figure 6.5, where both axes have been 

normalised by dividing by T*. For comparison we have also plotted in figure 6.5 the 

resistively determined Bc2(T) data of pure UPt3 [35, 36]. 

For B l c clear kinks in Bc2(T) are observed (figure 6.5b). This strongly suggests that in 

the Pd doped samples (x< 0.002) a tetracritical point is present, as for pure UPt3. Upon 

doping the tetracritical point shifts towards lower temperatures and higher fields, which 

indicates that the A phase becomes more stable. For x= 0.001 TCT= 0.309(8) K and 

BCI= 0.461(8) T, while for x= 0.002 Ta= 0.225(8) K and BCI= 0.490(8) ( B l c). Thus for 

B l c the phase diagrams for U(Pt].xPdx)3 (x< 0.002) have the same topology. For B|| c no 

distinct anomalies are observed in Bc2(T) of the Pd doped samples (figure 6.5a). However, 
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Figure 6.5 The upper critical field of U(Pti.xPdx)3, determined by 

resistivity (I\ | a), in a plot ofBc2/Tc as a function ofT/Tcfor (a) B\\c and (b) 

B\\ a*. Tc = Tc
+ is 0.547(5) K, 0.466(5) K and 0.420(5) K for x= 0.000, 

0.001 and 0.002, respectively. The arrows mark the tetracritical points. The 

data of pure UPts are taken from Refs. 35 and 36. 

for pure UPt3 a weak kink in Bc2(T) was reported [36], locating the tetracritical point at 

TCT= 0.45(2) K and Ba- 0.60(2) T. In the following section we study the phase diagrams for 

B l c and B|| c in more detail by dilatometry. 

A closer inspection of the data in figure 6.4 shows that AT* sharpens between 0.4 and 

0.5 T. As a matter of fact the kink in Bc2(T) for B l c is also reflected in the values of 

Arc
+ as shown in figure 6.6. At Ba ATC

+ drops by about 50%. This drop can be explained by 

the abrupt increase of dßc 2/dr upon entering the C phase. An almost smooth variation of 

ATC
+ through the tetracritical point results when AT* is multiplied by dßc2/d7". 
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Figure 6.6 The width of the resistive (I\\ a) superconducting transition, 

AT*, as a function of the applied magnetic field, for U(Ptj.xPdx)3 with 

x-0.001 and 0.002: (a) B\\c and (b)B\\a*. AT*is determined by the 

10-90% criterion. The arrows mark the tetracritical fields. 

6.6 Thermal expansion and magnetostriction 

In order to determine the superconducting phase diagram of the x= 0.002 compound 

dilatometry experiments (thermal expansion and magnetostriction) have been performed. 

The results will be compared with the dilatation experiments on pure UPt3 reported by Van 

Dijk et al. [37,38]. 
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6.6.1 Experimental 

The U(Pto.998Pdo.oo2)3 sample used for the thermal expansion and magnetostriction 

experiments was cut from the same single-crystalline batch as prepared for the resistivity, 

specific heat and neutron-diffraction experiments. The approximate dimensions of the 

sample along the a, a and c-axis are 4.0, 5.0 and 3.4 mm, respectively. The sample was 

mounted in a capacitance dilatation cell machined of oxygen-free high-conductivity copper. 

Two RuC>2 resistors which served as heater and thermometer were glued onto the sample. 

Length changes along the c-axis of the sample were determined with the three-terminal 

capacitor technique, using an Andeen-Hagerling bridge (model 2500E). The sensitivity of 

the experimental set-up amounts to 0.01 Â. The dilatation cell was attached to the cold 

finger of a dilution refrigerator. The coefficient of linear thermal expansion, oc= LAäUdT, 

was measured using a modulation technique (f= 0.003 Hz, AT= 5-10 mK). The linear 

magnetostriction, X- (L(5)-L(0))/L(0), was measured by sweeping the magnetic field at a 

relatively low rate (dS/d?< 0.03 T/min) while monitoring the length, L, of the sample. The 

magnetostriction was measured for a field along the dilatation direction (B|| c) and at right 

angles (B|| a). 

6.6.2 Thermal expansion 

The zero-field temperature variation of the coefficient of linear thermal expansion along 

the c-axis, Oc(7), of U(Pto 998Pdo.oo2)3 is shown in figure 6.7, with as inset Oç(T)/T. Just as 

for pure UPt3, aJT is constant in the normal state, while two clear steps of opposite sign 

(most pronounced in Oc(T)/T) mark the double superconducting transition. The 

superconducting transition temperatures have been determined using an equal-length 

construction and the idealised transition is given by the solid line in figure 6.7. For 

x= 0.002, T*= 0.381(2) K and T~= 0.271(4) K. These values are in excellent agreement 

with the transition temperatures T*= 0.384(3) K and T~ = 0.276(4) K determined by the 

specific heat (see section 6.4). However, the value of T* - 0.420(3) K determined 

resistively is slightly higher. This has also been noticed for pure UPt3 [12]. The resistive 

transition temperature marks the onset of the bulk transitions measured by the specific heat 

and thermal expansion. The difference between the resistive and bulk transition decreases 

in an applied magnetic field. In figure 6.8, a few exemplary Oc(7)-curves are shown in a 

constant magnetic field (B|| c and B|| a). Both T* and T~ are suppressed with field, but T* 

is suppressed more rapidly than T~, so that they merge at a critical field, 5CT. The field 
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Figure 6.7 The coefficient of linear thermal expansion along the c-axis 
(ac) of \](Pto.99sPdo.oo2l3- The solid line represents the ideal transition 
determined from an equal-length construction. In the inset the same data is 
plotted as O.JT vs. T. The transition temperatures are T* = 0.381(2) K and 
I;•= 0.271(4) K. 

dependence is anisotropic. For B|| a the transitions merge in the field range 0.5-0.6 T, while 

for B|| c the transitions do merge at about 1.0 T, which is close to Bc2 at our lowest 

temperature (0.075 K). 

Combining the thermal-expansion and the specific-heat data we can determine the 

uniaxial pressure dependence of the superconducting phase transitions using the Ehrenfest 

relation: 

^ = ̂ Ä - (6.11) 
dPi A(cJT) 

Here pt is the uniaxial pressure along a specific crystallographic axis (i=  a, a*, c) and 

Vm=4.24xl0"5 m3/mol is the molar volume. With help of the thermal-expansion data of 

figure 6.7 and the specific-heat steps listed in Table I, we calculate: 

dT*ldpc = -0.14(1) K/GPa and dT;/dpc = 0.06(1) K/GPa. Thus for uniaxial pressure 

along the c-axis the splitting, ATC- Tc
+ - T~, decreases at a rate dATc/dpc = -0.20(2) K/GPa. 

These calculated pressure dependencies are similar to those determined directly from the 

pressure dependence of the specific heat for pure UPt3, where d Tc
+ /dpc - -0.13(3) K/GPa, 
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dT;/dpc = 0.09(3) K/GPa and dArc/dpc = -0.22(6) K/GPa [39]. Assuming a linear pressure 

dependence of 7C
+ and T~, the A phase vanishes at pa= 0.54 GPa and Ta- 0.308 K for 

x= 0.002, while for pure UPt3 pa is only 0.25 GPa, because of the much smaller zero-

pressure splitting, and TCT- 0.459 K. 
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Figure 6.8 The coefficient of linear thermal expansion along the c-axis 

(ac) of U(Pto.998Pdo.oo2)3 in magnetic fields ranging from 0 to 1 T as 

indicated, with (a) B\\c and (b) B\\a. The curves in field are shifted 

upwards along the vertical axis for the sake of clarity. 
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U(Pt0.998Pdo.oo2)3 at T= 0.075 Kfor B\\ a and B\\ c. 77ie dotted line for B\\ c 

represents the extrapolated normal state magnetostriction (see text). 

6.6.3 Magnetostriction 

The linear magnetostriction along the c-axis, \C(B), at T- 0.075 K is shown in figure 6.9 

for fields up to 2 T (B|| c and B|| a). In addition to the normal state contribution to XC(B), a 

superconducting contribution is present below Bc2. For B|| c the normal-state 

magnetostriction (B< 2 T) is well described by a quadratic field dependence, 

K(B)= \c(0)+bcB . The coefficient of the quadratic term, bc, is slightly temperature 

dependent and is -1.66xl0"7 T2 at T- 0.075 K. In figure 6.10 we show \C(B) with B|| a at 

several temperatures. Here the normal-state magnetostriction also follows a B2 dependence 

(B< 2 T) with bQ is -0.46xl07 T2 at T= 0.075 K. For B|| a the upper critical field Bc2 is 

difficult to distinguish, while the B-C phase transition at B* is visible as a clear kink in the 

data. For B|| c the situation is reversed: Bc2 shows up as a clear anomaly on the XC(B) curve, 

while Bc does not. For this field direction, the superconducting signal, obtained after 

subtracting the quadratic background contribution, is show in figure 6.11. Although the 

behaviour observed for x= 0.002 is in many aspects similar to the behaviour for pure UPt3, 

two important differences should be noted: (i) for x= 0.002 only Bc2 is resolved from the 

magnetostriction curves for B|| c, while for pure UPt3 both Bc2 and B* are resolved, and (ii) 
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Table II Thermodynamic quantities Aac and Axcfor x= 0.002 at 
the superconducting transitions Tc

+ and T~ in zero 

field. The step Axc is determined in the limit B—>0. 

TC
+(K) TT (K) 

Aoc(10_6K 1) -0.56(2) (NA) 0.14(1) (AB) 

Axc ( lOV) -0.11(1) (B|| a) 
-0.07(1) (B|| c) 

0.01(1) (B|| a) 
0.01(1) (B||c) 

-Axc/Acxc (K/T) -0.20(2) (B|| a) 
-0.13(1) (B||c) 

0.07(7) (B|| a) 
0.07(7) (B|| c) 

for x= 0.002 a significant hysteresis is observed for B|| c, which was absent in the data of 

pure UPt3. In figure 6.12 a typical magnetostriction cycle (field sweep up and down) is 

shown. In figure 6.13 we show for both field orientations the amount of hysteresis, 

obtained after subtracting the sweep-up signal from the sweep-down signal. For B|| a the 

hysteresis is negligible, while for B|| c the resulting curve has two peaks. The peak just 

below Bc2 is reminiscent of the peak effect observed in metallic alloys with strong pinning 

of the flux-line lattice. Recently, the peak effect was found in the magnetisation of several 

pure UPt3 samples as well [40,41]. The peak effect is expected to become more 

pronounced upon introducing additional pinning centres, e.g. by doping with Pd. The larger 

low-field peak, observed for x= 0.002 at B= 0.1 T, which is most pronounced for B|| c (see 

figures 6.13), has also been reported for pure UPt3. This peak, which has a weak 

temperature dependence, is not directly related to the superconducting properties as it is 

also present in the normal state. The origin of this anomaly remains unclear, but it has been 

suggested that it is related to a meta-stable magnetic state [42]. 

With help of the measured discontinuities at the superconducting transitions the field 

dependence of the transition temperatures can be estimated with the Ehrenfest relation: 

'dT\ _ Ax^ 

dB)t Aoc. 
(6.12) 

Here x,= dÀ,/dS where i refers to the principal crystallographic directions. The initial field 

dependencies of T* and T~ are determined by the B- 0 thermal expansion data and by 

extrapolation of Axc to ß-> 0. The values determined in this way are listed in Table II and 

should be compared to the directly measured slopes of the phase lines of the 

superconducting phase diagram of U(Pt0.998Pdo 002)3 (see section 6.8). 
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0.1 
U(Pt Pd ) 

0.998 Q.002'3 

Figure 6.10 Linear magnetostriction along the c-axis (Xc) with increasing 

magnetic field of U(Pto.99sPdo.oo2)3 far B\\ a. The temperature ranges from 0.10 

to 0.35 K as indicated. The arrows mark the BC and CN transitions (see text). 

The curves for T>0.15 K are shifted upwards for the sake of clarity. 

0.12 

0.0 1.5 0.5 1.0 

B(T) 

Figure 6.11 Linear magnetostriction along the c-axis (Xc) of 

U(Pt0.998Pdo.oo2)3for increasing B\\ c at temperatures as indicated. The normal 

state contribution is subtracted (see text). 
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ß(T) 
Figure 6.12 Linear magnetostriction along the c-axis (kc) at T= 0.075 K 

of U(Pto.99&Pdox>02)i for B\\c. The normal state contribution is subtracted. 

The arrows indicate the sweeps up and down of the magnetic field. The inset 

shows a close-up of the irreversible magnetostriction peak just below Bc2-
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Figure 6.13 The hysteresis in Xc for field sweeps up and down (XCtUp-Xc,down) of 

U(PtomPdo.oo2)3 with (a) B\\ a and (b) B\\ c. The peak effect is observed just below Bc2for 

B\\c. The temperatures range between 0.075 and 0.4 Kas indicated. 
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6.7 Superconducting phase diagram of U(Pto.99sPdo.oo2)3 
By locating the anomalies at the superconducting phase transitions determined by our 

dilatometry experiments in the B-T plane we have constructed the superconducting phase 

diagrams of U(Pt0.998Pdo.oo2)3 shown in figure 6.14. The NA transition is detected by both 

thermal expansion and magnetostriction, while the AB transition shows up only in the 

thermal expansion. The NC phase line, which is only found for BJ. c, has a very weak 

signature in the thermal-expansion data and was therefore complemented by the Bc2(T) data 

measured resistively (figure 6.5b). In this field range the resistive and bulk T* are equal 

within the experimental accuracy. For B± c the tetracritical point is located at 

rcr= 0.205(4) K and Scr= 0.556(8) T. For B|| c the x= 0.002 compound has no tetracritical 

ca 
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0.0 

U(Pt Pd ) v 0.998 0.002'3 
B l c 

U(Pt Pd ) 
v 0.998 0.002'3 

0.4 

Figure 6.14 The superconducting phase diagram of U(Pto.99sPdo.oo2)3 far 
BA. c and B\\ c, constructed from phase transitions detected in the thermal 
expansion (O) and magnetostriction (•). For BL c the CN phase transition 
is determined resistively (A). 



132 Chapter 6 

Table III Thermodynamic quantities for x= 0.002 in the vicinity of the tetracritical 

point (B\\a) at Tcr= 0.205(4) K and Bcr= 0.556(8) T. The phase lines 

between the A, B, C and N phases are indicated by NA, NC, AB and BC 

NA NC AB BC 
dT/dB (K/T) -0.472(8) -0.217(4) -0.086(1) 1.37(6) 

AOcClO^K"1) -0.18(2) -0.02(2) 0.06(1) -0.10* 

Axc (lO-6!-1) -0.11(1) 0.00(1) 0.00(1) -0.11(1) 

-ATC/AOC (K/T) -0.61(12) 0.0(5) 0.0(2) 1.1(1) 

Determined by the relation A,, - A A B = A N C + A B C -

point (7> 0.075 K), which presents a striking difference with respect to pure UPt.3. 

The AB phase line of U(Pto.998Pdo.oo2)3 measured for B I c shows a clear change of 

slope at B= 0.2 T. For pure UPt3, a similar kink was observed, albeit at a lower field of 

B= 0.1 T. It has been suggested that this kink arises from a coupling of the superconducting 

order parameter to the meta-stable magnetic state [42]. For U(Pt0.998Pdo.oo2)3. however, the 

change of slope does not coincide with the low-field anomaly observed in the 

magnetostriction at B= 0.1 T, and the origin remains unclear. 

In Table HI we compare the measured slopes of the phase lines near the tetracritical 

point with the calculated ones using the Ehrenfest relation (equation 6.12). Within the 

experimental accuracy the data agree, which demonstrates their internal consistency. Near 

the tetracritical point the thermodynamic steps should follow the relation 

ANA + AAB = ANC +ABC, where A is Ac/2", Aa or Ax. We have checked that this relation 

holds for AT. The thermodynamic stability of a phase diagram with a tetracritical point, 

where at least three second order phase-transition lines meet, leads to strict conditions for 

the slopes of the four phase lines as formulated in Ref. 43. In the case of pure UPt3 these 

conditions were satisfied [38]. In order to investigate the thermodynamic stability of 

U(Pto.998Pdo.oo2)3 additional specific-heat measurements in an applied magnetic field are 

needed. 
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6.8 Ginzburg-Landau parameters of U(Pti„JPdx)3 

The temperature derivative of the thermodynamic critical field, dBJdT, near Tc, can be 

estimated from the jump in the specific heat at the superconducting transition in zero field 

[44]: 

A(C/r)  = ̂ f ] 2 (6-13) 
Here, \JLQ is the permeability of free space. The thermodynamic critical field is related to the 

upper critical field by Bc2 = V 2 K 5 , where K is the (isotropic) Ginzburg-Landau parameter 

which characterises the superconducting state [44]. The GL parameter is defined as K= Xl%, 

where X is the penetration depth and % is the coherence length. Since we are dealing with a 

hexagonal strongly anisotropic material K, X and \ are anisotropic. In that case, the upper 

critical field is given by B'c2 = <t>0 / (27tÇ^J, where O0 is the flux quantum and i, j and k 

are the principal cristallographie directions. Assuming that the parameters in the basal 

plane are isotropic the following relations between Bc2 and Bc hold: 

B:2=pKäKcBc 
(6.14) 

Sc
c
2=V2KaBc 

Here the superscripts a and c refer to the direction of the magnetic field, Ka= XJH^ and 

Kc= Xjî^. The average GL parameter is defined as Kav = (K^K C ) " 3. 

We have evaluated the various GL parameters and the temperature derivatives of the 

upper critical fields from the measured data. The results for B^> 0 are listed in Table IV. 

The value of dBJdT for the A phase has been determined using A^ciT*) / T*. The values 

of dBc2/dT determined from the step in the magnetostriction and thermal expansion (see 

Table E) are in reasonable agreement with the values determined directly from the slope of 

the phase diagrams. 

Table IV Slopes of the critical fields for the A phase of U(Pti.xPdx)3, and the calculated 

GL parameters and effective mass ratio. 

X dBJdT dT/dB*c2 d77dßc
c
2 Ka Kc Kav mc/ma 

(%) (T/K) (K/T) (K/T) 

0.0 -0.087(6) -0.241(8)* -0.093(4)* 87(6) 13(1) 46(3) 6.7(6) 
0.1 -0.078(6) -0.250" -0.124** 73(6) 18(1) 46(3) 4.1 
0.2 -0.071(7) -0.258(6) -0.155(6) 64(6) 23(2) 46(3) 2.7(2) 

Data taken from ref 38. 
Average value of the entries for the x- 0.000 andx= 0.002 compounds. 
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UPt3 is an extreme type-II superconductor with for pure samples X> 6000 Â and 

£,= 120 À so that K= 50. Upon Pd doping (x< 0.002) Kav remains roughly constant, while Ka 

decreases and Kc increases (see Table IV). Substituting Pd makes the superconducting 

properties less anisotropic, which is also reflected in the ratio of the anisotropic 

quasiparticle masses, determined by mc I wa = (ßc
c
2 / ßc

a
2)

2 (see Table IV). The lower-

critical field, Bc\, is related to the thermodynamic critical field according to 

Bcl = Bc ln(K)/(V2~K), from which it follows that ßci is about 6% of Bc and less than 0.1% 

of Z?c2. Such small values of Bci have not been probed in our dilatometry experiments. 

6.9 Testing the SBF model 

One of the main objectives of the specific-heat experiments on the U(Pti.xPdx)3 system was 

to determine the superconducting splitting ATC as function of x. From the data in figure 6.2 

we conclude that ATC increases linearly with x at a rate dAT'c/dx= 0.30±0.02 K/at.%Pd. 

Within the GL models presented in section 6.2, ATC is proportional to the strength of the 

SBF or assuming that the ordered moment of the SMAF is the SBF ATc<=c  m
2( Tc

+ ) (see 

equation 6.5; we comment on the prefactor (|Y|/cts)(ßi-+-ß2)/ß2 at the end of this section). In 

order to determine m2(x) we have recently carried out neutron-diffraction experiments [28] 

on single-crystalline samples. The ordered moments at Tc
+ are 0.018(2), 0.024(3), 0.034(6) 

and 0.048(8) u.B/U-atom, for x= 0, 0.001, 0.002 and 0.005, respectively. It is interesting to 

compare this result with ATc°c m2(p) obtained by the hydrostatic pressure experiments [25], 

because doping increases A7C and hydrostatic pressure decreases ATC. A direct comparison 

is not possible because of the relatively large uncertainty in the absolute value of 

m(p= 0)= 0.03±0.01 u.B/U-atom. Therefore, we plotted in figure 6.15 Arc(jc,p)/Arc(0,0) as a 

function of m2(x,p)/m2(0,0). The error bars for the pressure data correspond to the relative 

errors determined by counting statistics, while for the Pd doping these are absolute errors. 

After including the pressure data in figure 6.15, we notice the following three points: (i) 

both the Pd doping and pressure data sets collapse onto one curve, (ii) ATC is a smooth 

function of m\ T+ ), and (iii) A7>= m\ T* ) but in a limited range A7C< 0.05 K. The latter 

result shows that the simple GL models presented in section 6.2 break down for splittings 

ATC> 0.05 K. This is not unrealistic because the applied Ginzburg-Landau expansion is 

only valid for ATJTC« 1. Clearly, for enhanced splittings a more sophisticated Ginzburg-

Landau expansion with terms beyond 4th order is desired. We conclude that there is a clear 

correlation between ATQ and m2{ T* ), which is in line with the SMAF acting as the SBF. 
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3.0 

2.5 h 

D Pressure data 
o U(Pt Pd ) 

v 1-x / 3 

m2(x,p)/m2(0,0) 

Figure 6.15 The variation of the splitting ATr(x,p)/ ATc(0,0) as a function 

ofm2(x,p)/ m2(0,0) for U(Pti.xPdx)s at zero pressure (O) and for UPts under 

pressure (O) [25]. For ATC< 0.05 K ATC<^ m as predicted by the GL model 

(dashed line). The solid line is to guide the eye and the arrows indicate the 

pressure and Pd concentration dependence. 

While verifying equation 6.5 we have assumed that the GL stability parameters fXj and 

ß2/ßi and the coupling constant y do not vary with Pd content. The analysis of the specific-

heat data shows that ß2/ßi is insensitive to Pd doping and equal to =0.5 within the 

experimental accuracy. Notice that also in case of the specific-heat experiments under 

pressure [23] it was found that ß2/ßi=0.5 independent of the applied pressure. The 

parameter a^ is given by ccs =h2 lilrnl^). The penetration depth satisfies 

X2 =m* I (H0c* |(|>„|2 ) , where |<j>„|2 is the order parameter inside the superconductor, and 

m and e are the effective mass and charge of the superconducting quasiparticle, 

respectively [45]. With Kav=X/^ we obtain ocs °= (Kav Im*)2. Because Kav is independent of 

the Pd concentration (see Table IV) it is plausible that dCs does not change with Pd 

concentration. The coupling parameter Y, however, is not accessible to an independent 

experimental verification and we assume it to be constant. 
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6.10 Concluding remarks 

The experimental results reported in sections 6.3-6.6 show that the unconventional 

superconducting properties of UR3 are extremely sensitive to Pd doping. First of all, 

resistivity experiments show that the A phase signalled by T* is completely suppressed at 

a critical concentration xCiSC of =0.007. Secondly, the specific-heat experiments show that 

the B phase, marked by the second transition at Tc , is suppressed even more rapidly, at 

xc = 0.004. Thirdly, ATC increases with Pd contents. One of the main objectives of the 

present work was to investigate the GL model formulated in section 6.2, especially with 

respect to whether the SMAF acts as the SBF. Indeed, we find a close correlation between 

Arc(x) and m2( T* ). However, only for ATC< 0.05 K the proportionality between ATC and 

m2, predicted by the SBF model, holds. For ATC> 0.05 K m2 grows more rapidly. The 

failure of the model for larger splittings is attributed to the limited applicability of the 

simple GL E-representation and ID odd parity models. The 4th order expansion near Tc is 

only valid for ATJTC« 1. 

While SMAF and superconductivity coexist, evidence is accumulating that LMAF and 

superconductivity compete. Recent neutron-diffraction [28] and uSR [46] experiments 

indicate that the critical concentration for the onset of LMAF is near xc af= JCC,SC~ 0.007 

[30]. In order to put this on firm footing, additional uSR experiments are in progress. The 

competition between superconductivity and LMAF lends further support for spin-

fluctuation mediated superconductivity. 

The effects of Pd doping (this work) and hydrostatic pressure [23] on the stability of 

the A phase are opposite. It is interesting to note that this also holds for the B and C phases 

[24, 37, 38], which is most clearly observed for B± c. By applying hydrostatic pressure, the 

tetracritical point in the B-T plane shifts to lower fields. Upon increasing pressure, first the 

A phase disappears (at /?c= 0.35 GPa), followed by the B phase, so that the C phase is the 

most stable phase under pressure [24, 37, 38]. For Pd doping the contrary takes place. 

Upon doping the tetracritical point shifts to higher fields, and the A phase gains stability at 

the expense of the B and C phases. Note that the C phase is completely suppressed for 

U(Pto.998Pdo.oo2)3 in the case B|| c. The normal-state properties of UPt3 react upon Pd 

doping also in an opposite way to hydrostatic pressure. Experiments demonstrate that 

doping of 1 at.% Pd corresponds to an external pressure of about -0.33 GPa [47, 48]. This 

illustrates that the change of the normal-state properties is not governed by the volume, 

because both Pd doping and applying pressure reduce the unit cell volume. Instead, these 
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changes can be explained, to a certain extent, by the change in the c/a ratio. In the case of 

Pd substitution A(c/a)/(c/a)= -0.6xl0"4 per at.% Pd, while for hydrostatic pressure, because 

of the anisotropic compressibility (Kc< Ka), A(c/a)/(c/a)= 1.3xl0"4 per GPa [5], hence, 

doping 1 at.%Pd corresponds to an applied hydrostatic pressure of -0.5(2) GPa. For the 

stability range of the A phase we do not arrive at the same numbers. For pure UPt3, 

dArc/dp=-0.19K/GPa [23], while dArc/dx= 0.30 K/at.%Pd. Thus in this case 1 at.%Pd 

corresponds to -1.6 GPa. 

In analysing the specific-heat data around the double superconducting transition, we 

have provided further evidence that the antiferromagnetism acts as a SBF. This restricts the 

choice of the GL models to the E-representation model, which applies for both even and 

odd parity states, and to the ID odd parity model. The latter model relies on a weak spin-

orbit coupling. In zero magnetic field both models give identical results, but they differ in 

predicting the field and pressure dependence of the superconducting phases. Notably, a 

tetracritical point for all field directions is only possible in the E-model under certain 

conditions and certain symmetries (Eis [49] or E2u [15]), while no additional constraints are 

needed in the odd-parity ID model. As regards, the pressure dependence, the E model 

predicts the B phase to be the stable phase under pressure. A recent refinement of the odd-

parity ID model shows that the C phase is most stable under pressure [50]. This is in line 

with recent pressure studies [24] and dilatometry experiments [38]. Moreover, NMR 

experiments [51, 52] have demonstrated convincingly that (i) the Knight shift does not 

change through the normal-superconducting phase transition, and (ii) the effective spin 

orbit coupling is weak. All these studies provide a strong case for the odd parity ID GL 

model. It is interesting to note that in the refined ID odd parity model [50] the 

antiferromagnetic moment is not static but fluctuates in time. This is consistent with recent 

NMR [51], U.SR [46,53] and neutron diffraction [28] experiments. 

In summary, we have studied the superconducting phase diagram of U(Pti_.cPdjt)3, by 

(magneto)resistance, specific heat and dilatometry. Our results in zero field show a strong 

increase of the splitting A7"c as function of Pd concentration. ATc(x) correlates with an 

increase of the magnetic moment m{x) upon Pd doping. This provides further evidence for 

the Ginzburg-Landau scenario with magnetism as the symmetry breaking field. The 

tetracritical point in the B-T plane is robust upon alloying for Bi. c, at least until x= 0.002, 

while it is rapidly suppressed for B|| c. In a magnetic field the A and B phases gain stability 

at the expense of the C phase upon alloying. In this sense Pd doping and the effect of an 

external pressure are complementary. 
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Appendix I 

E-model: sixth order correction 

The low-temperature properties of UPt3 are determined by both the antiferromagnetic and 

the superconducting order parameters. The total free energy with respect to the normal state 

consists therefore of three components: 

F=FM+FS + FMS (1.1) 

Here FM and F$ describe the antiferromagnetic and the superconducting contributions and 

FMS is the coupling term of the antiferromagnetic and the superconducting order 

parameters. In the E-model the free energy of the superconducting state is expanded in 

terms of a vector order parameter, r\=  (r\x, r\y)= (Ir̂ le1**, |r|y| e"t>y), describing the complex 

components of a 2-dimensional gap function (E\g, E2g, E\u, Eju)- The degeneracy of the 

components of the superconducting vector order parameter is lifted by a symmetry 

breaking field (e). Whith the antiferromagnetic order as the symmetry breaking field 

e= ym2. In section 3.2.5.2 the fourth order expansion of the free energy is given. There exist 

four independent sixth-order terms (e.g. |r)|6,|T13|2,|Tl2Ti*| 2,|Ti2|2|ri|2). We performed 

calculations adding one sixth order term, 6|r||6/3, to the free energy. In order to minimise 

the total free energy it is written in the components |t|x|
2 and |r|y|

2: 

F=FM +as(hxl2+KI r 9M* 1*' 4+hy| j+|3<tKrK|2 + 

(1.2) 
°7l I6 I \6\ Sl l2l l2/l I2 I \2\ t\ I2 I \2\ 3^x1 +|rly| J + 6hx| K | [PI*I +|Tly| J -£ ( k | -|Tly| j 

Here as = as (T-Tc), ßs= ßi+ß2, ßcp ßi+ß2Cos(2(())x-<|)y)) and ccs , ßi and ß2 are the 

Ginzburg-Landau coefficients which are positive in the superconducting state. By 

minimising the free energy with respect to \r\x\, \r\y\, m and 4>x-<t>y one obtains four coupled 

equations for the equilibrium state. The magnetic term is assumed to be constant in the 

superconducting state, because the moment is nearly saturated and (|)x-<j>y= nil. There are 

two coupled equations for the equilibrium state: 
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2K\ 
2hy| 

D l |2 Q I I2 s/l I4 I I4 -,1 l2l | 2 \ 

«--••ßsKI +ß*|Tly| +8(lrlx| +Hy| + 2 hx | P1y| J 

o I I2 o l I2 c/l I4 I I4 „I l2l l 2V 
a

++ßsK| +ßJrlx| +Ô(|rlx| +|Tly| +2K| Hvl j 

= 0 

= 0 

(1.3) 

Here oc+= as ± e. The two superconducting phases are expressed through normalised order 

parameter components. The phases are the (1,0) phase with only \r\x\ different from zero 

and the (l.cri) phase where both amplitudes are nonzero and have a relative phase 

<f»x-<|>y= 7i/2. A double superconducting transition is found for ßi, ß2, Y> 0 with the following 

solutions: 

(1,0) phase: 

(l.oti) phase: 

T+ = T 
* c c 

I |2 

K\ =-

I I 2 

T =T 
I |2 

K\ = 

0C<. 

-ßs+Vß*-48a_ 
2S 

e2S A_!__ 
ß2 «S0 «S0ß2 

(1.4) 

T; <T< rc
+ (1.5) 

(1.6) 

^ _ ß l 
2ß2 4ôy 

' _ ^ + ß l 
2ß2 45 

+—Jß2-45as 45V ' s 

= + _ 

^Vßi" 4 5«s 

ßi eS 

ß2 tij 

T<T: (1.7) 

(1.8) 

In the limit of 8—> 0, all equations are the same as in the fourth order E-model. The 

temperature dependence of the specific heat divided by temperature is derived from the free 

energy by c/T= -32F/372. The results for some reasonable values of the coefficients are 

plotted in section 3.2.5.2 figure 3.2. The analytical calculation of cIT from the free energy 

is straight forward, but tedious. As a check we performed the calculation both analytically 

and numerically. The analytical expression is given by: 

A NAc(r)/r= 
Vßs-45a. 

(1.9) 

&NBC(T)/T--
OCc 

Vß?-4öccs 
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Summary 

For more than a decade now it has been realised that the intermetallic compound UPt3 is an 
exemplary system for the study of unconventional magnetic and superconducting 
properties. The unconventional superconducting properties (7C= 0.5 K) of UPt3 are most 
clearly evidenced by the multicomponent superconducting phase diagram in the B-T plane. 
Notably in zero-field two consecutive superconducting phase transitions are observed at a 
distance ATC = T* - T~ = 0.055 K. The magnetic properties are unconventional in the 
sense that pronounced antiferromagnetic spin fluctuation phenomena coexist with 
antiferromagnetic order (7"N= 6 K) with an extremely small ordered moment 
(m= 0.02 u.B/U-atom). By substituting Pt by small amounts of isoelectronic Pd the 
superconducting and magnetic properties are strongly influenced. In this thesis we report a 
study of the magnetic properties of the U(Pt,Pd)3 system by means of neutron-diffraction 
and U.SR experiments, while the superconducting properties are investigated by 
(magneto)resistance, specific heat, thermal expansion and magnetostriction techniques. In 
this way we are able to probe the interplay of magnetism and superconductivity in the 
U(Pt,Pd)3 system. 

Chapter 1 gives a short general introduction, followed by the motivation of our 
research. The experimental techniques used to study the superconducting and magnetic 
properties of U(Pt,Pd)3 are described in chapter 2. The in-house techniques are only briefly 
presented, while the principles of the |iSR and the neutron-diffraction techniques are 
discussed in more detail. 

In chapter 3 we present the theoretical aspects of our research. This chapter consists of 
two distinct parts. In the first part the theory of unconventional superconductivity in UPt3 is 
discussed, while in the remaining part the interpretation of the muon depolarisation 
function as measured in a u,SR experiment is presented. As regards unconventional 
superconductivity in UPt3, we predominantly focus on Ginzburg-Landau models. In these 
models the symmetry of the superconducting gap function plays an important role. The 
Ginzburg-Landau models presented in chapter 3 are: (i) triplet superconductivity with 
negligible spin-orbit coupling, described by a ID representation, (ii) coupling of the 
components of a 2D superconducting vector order parameter to a symmetry breaking field, 
(iii) coupling of two nearly degenerate ID superconducting order parameters. In scenarios 
(i) and (ii) a symmetry breaking field (SBF) is required to lift the degeneracy of the spin or 
the 2D order parameter, respectively. In the case that the weak antiferromagnetic order acts 
as the SBF it is predicted A7"coc m2. 

In chapter 4 neutron-diffraction experiments on a series of U(Pti.IPd^)3 single crystals 
(*<0.05) are presented. It was found that the small-moment antiferromagnetic order 
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(SMAF), previously reported for pure UPt3 is robust upon doping with Pd and persists till 
at least x= 0.005. The ordered moment grows from 0.018±0.002 u,B/U-atom for pure UPt3 
to 0.048±0.008 Hß/U-atom for x= 0.005. For the SMAF the Néel temperature, TN, is 
approximately 6 K and, most remarkably, does not vary with Pd contents. The order 
parameter squared has an unusual quasi-linear temperature variation. For x> 0.01 a second 
antiferromagnetic phase with much larger ordered moments is found. For this phase at 
optimum doping (x= 0.05) TN attains a maximum value of 5.8 K and the ordered moment 
equals 0.63±0.05 (J-ß/U-atom. T^(x) for the large-moment antiferromagnetic (LMAF) order 
follows a Doniach-type phase diagram. From this diagram we infer that the antiferro­
magnetic instability for the LMAF in U(Pti^PdJ3 is located in the range 0.5-1 at.% Pd. 

In chapter 5 we report u,SR experiments carried out on a series of \J(Pt\.xPdx)3 samples 
with x< 0.05. For x< 0.005 the zero-field muon depolarisation is described by the Kubo-
Toyabe function. However, the temperature variation of the Kubo-Toyabe relaxation rate 
AKT(7) does not show any sign of the small-moment antiferromagnetic phase with T^- 6 K, 
in contrast to previous reports. The absence of SMAF in the zero-field ^SR signal provides 
evidence that the antiferromagnetic moments fluctuate at a rate >10 MHz, i.e. too fast to be 
detected by u,SR, but slower than the time scale of the neutron-diffraction experiment 
= 0.1 THz. For 0.01<x<0.05 the muon depolarisation in the ordered state is described by 
two terms of equal amplitude: an exponentially damped spontaneous oscillation and a 
Lorentzian Kubo-Toyabe function. These terms are associated with antiferromagnetic order 
with substantial moments. The Knight-shift measured in a magnetic field of 0.6 T on 
single-crystalline U(Pto.95Pdo.os)3 in the paramagnetic state shows two signals for B l c, 
while only one signal is observed for B|| c. The analysis of the Knight shift points to the 
presence of one muon localisation site (0,0,z). 

In chapter 6 we report the effect of Pd doping on the superconducting phase diagram of 
the unconventional superconductor UPt3 as measured by (magneto)resistance, specific heat, 
thermal expansion and magnetostriction. Experiments on single- and polycrystalline 
U(Pti..l:PdJ)3 for x< 0.006 show that the superconducting transition temperatures T* and 
T~ both decrease, while the splitting ATC increases at a rate of 0.30±0.02 K/at.%Pd. The B 
phase is suppressed first, near x= 0.004, while the A phase survives till x^ 0.007. We find 
that ATc(x) correlates with an increase of the weak magnetic moment m{x) upon Pd doping. 
This provides further evidence for Ginzburg-Landau scenarios with magnetism as the 
symmetry breaking field (scenarios (i) and (ii)). Only for small splittings A7>: m2( T* ) 
(ATC< 0.05 K) as predicted. The results at larger splittings call for Ginzburg-Landau 
expansions beyond 4th order. The tetracritical point in the B-T plane persists until at least 
x= 0.002 for B l c, while it is rapidly suppressed for B|| c. Upon alloying the A and B 
phases gain stability at the expense of the C phase. 



146 Samenvatting 

Samenvatting 
De intermetallische verbinding UPt3 wordt beschouwd als een modelsysteem voor het 
bestuderen van onconventionele magnetische en supergeleidende eigenschappen. De 
onconventionele supergeleidende eigenschappen (7>= 0.5 K) van UPt3 komen het best tot 
uiting in het meervoudige supergeleidende fasediagram in het B-T vlak. Met name 
bijzonder is dat voor B= 0 twee supergeleidende faseovergangen worden waargenomen, 
met een splitsing Arc = rc

+ - T~ = 0.055 K. De magnetische eigenschappen zijn 
onconventioneel in de zin dat sterke spinfluctuatie verschijnselen coëxisteren met 
antiferromagnetische ordening (7^= 6 K) met een extreem klein geordend moment 
(m~ 0.02 Hs/U-atoom). Door kleine hoeveelheden Pt te vervangen door isoelectronisch Pd 
kunnen de supergeleidende en magnetische eigenschappen sterk beïnvloed worden. Dit 
proefschrift behandelt de magnetische eigenschappen van U(Pt,Pd)3, zoals die bestudeerd 
zijn d.m.v. neutronendiffractie en liSR experimenten. Daarnaast zijn de supergeleidende 
eigenschappen onderzocht d.m.v. (magneto)weerstand, soortelijke warmte, thermische 
uitzetting en magnetostrictie technieken. Op deze manier is het mogelijk om de wissel­
werking tussen magnetisme en supergeleiding in het U(Pt,Pd)3 systeem te bestuderen. 

Hoofdstuk 1 geeft een korte algemene inleiding gevolgd door de motivatie van het 
onderzoek. De experimentele technieken die gebruikt zijn voor het bestuderen van de 
supergeleidende en magnetische eigenschappen van U(Pt,Pd)3 worden beschreven in 
hoofdstuk 2. De technieken die op het Van der Waals-Zeeman Instituut tot het standaard 
instrumentarium behoren zijn beknopt besproken, terwijl de U.SR en neutronendiffractie-
techniek in meer detail worden beschreven. 

In hoofdstuk 3 presenteren we de theoretische aspecten van ons onderzoek. Dit 
hoofdstuk bestaat uit twee afzonderlijke delen. In het eerste deel komt de theorie van 
onconventionele supergeleiding in UPt3 aan bod, terwijl in het resterende deel de 
interpretatie van de muon depolarisatiefunctie, zoals gemeten in een |0,SR experiment 
beschreven wordt. De bespreking van de theorie van onconventionele supergeleiding in 
UPt3 richt zich voornamelijk op Ginzburg-Landau modellen. In deze modellen speelt de 
symmetrie van de supergeleidende gap een belangrijke rol. De Ginzburg-Landau modellen 
die in hoofdstuk 3 aan de orde komen zijn: (i) triplet supergeleiding met verwaarloosbare 
spin-orbit koppeling, beschreven met een ID representatie, (ii) koppeling van de 
componenten van een 2D supergeleidende vector ordeparameter met een symmetrie-
brekend veld (iii) koppeling van twee bijna ontaarde ID supergeleidende ordeparameters. 
In scenarios (i) en (ii) is een symmetrie-brekend veld noodzakelijk om de ontaarding van 
de spin of de 2D ordeparameter op te heffen. In het geval dat de zwakke antiferro­
magnetische ordening het symmetrie-brekend veld is voorspelt de theorie: À7>c m2. 

In hoofdstuk 4 worden de resultaten van neutronendiffractie experimenten aan een 
reeks U(Pti_IPdJ3 éénkristallen (j^0.05) gepresenteerd. Het "kleine moment" antiferro-
magnetisme (KMAF) gevonden in zuiver UPt3 is ook aanwezig voor Pd doping tot ten 
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minste x= 0.005. Het geordende moment groeit van 0.018±0.002 u,B/U-atoom voor zuiver 

UPt3 tot een waarde van 0.04810.008 Ufl/U-atoom voor x= 0.005. De Néeltemperatuur, TN, 

is voor het KMAF ongeveer 6 K en varieert niet met de Pd concentratie. De ordeparameter 

in het kwadraat varieert quasi-lineair met de temperatuur. Een tweede antiferromagnetische 

fase met veel grotere momenten is gevonden voor x> 0.01. Bij optimale doping (x= 0.05) 

bereikt 7N voor deze fase een maximale waarde van 5.8 K, terwijl het geordend moment 

0.63±0.05 Hs/U-atoom bedraagt. TN(x) voor het "grote moment" antiferromagnetisme 

(GMAF) volgt een Doniach-type fasediagram. Uit dit fasediagram leiden we af dat de 

antiferromagnetische instabiliteit voor het GMAF in U(Pti..vPdt)3 zich bevindt tussen 0.5 en 

1 at.%Pd. 

In hoofdstuk 5 rapporteren we U.SR experimenten uitgevoerd aan een reeks 

U(Pti_j:Pdj:)3 preparaten met x<0.05. De nulveld muon depolarisatie kan beschreven 

worden door de Kubo-Toyabe functie voor x< 0.005. De temperatuurafhankelijkheid van 

de Kubo-Toyabe lijnbreedte AKT(7) vertoont geen teken van het "kleine moment" 

antiferromagnetisme, zoals gevonden in vroegere metingen door anderen. De afwezigheid 

van het KMAF in het nulveld U.SR signaal vormt een bewijs dat de antiferromagnetische 

momenten fluctueren met een frequentie >10 MHz. Dus de fluctuaties zijn te snel om te 

worden waargenomen met uSR, maar langzamer dan de tijdschaal voor neutronen-

diffractieexperimenten = 0.1 THz. Voor 0.01<x<0.05 kan de muon depolarisatie in de 

geordende toestand beschreven worden door twee termen met gelijke amplitude: een 

exponentieel gedempte oscillatie en een Lorentzische Kubo-Toyabe functie. Deze termen 

kunnen geassocieerd worden met antiferromagnetische ordening met beduidende 

momenten. De Knight-shift gemeten aan een U(Pto.95Pdo.o5)3 éénkristal in een magnetisch 

veld van 0.6 T bestaat in de paramagnetische toestand uit twee signalen voor B I c, terwijl 

slechts een signaal is gevonden voor B|| c. De analyse van de Knight shift duidt op de 

aanwezigheid van één positie waar de muon tot rust komt (0,0,z). 

In hoofdstuk 6 bespreken we het effect van Pd doping op het supergeleidende 

fasediagram van UPt3, zoals gemeten d.m.v. (magneto)weerstand, soortelijk warmte, 

thermische uitzetting en magnetostrictie. Experimenten aan één- en polykristallijn 

U(Pti.jPd^)3 preparaten met *< 0.006 laten zien dat de supergeleidende overgangs-

temperaturen T* en T~ beide afnemen, terwijl de opsplitsing ATC toeneemt met een 

snelheid van 0.30±0.02 K/at.%Pd. De B fase wordt als eerste onderdrukt rond x= 0.004, 

terwijl de A fase stabiel is tot JCH 0.007. ATc(x) correleert met de toename van het zwakke 

moment m(x) voor Pd doping. Dit vormt aanvullend bewijs voor Ginzburg-Landau 

modellen met het magnetisme als het symmetrie-brekend veld (scenarios (i) en (ii)). 

Slechts voor kleine waarden van ATC (ATC< 0.05 K) vinden we dat A7>= m2( T* ), zoals 

voorspeld. De resultaten voor grotere splitsing duiden op de noodzaak voor een Ginzburg-

Landau ontwikkeling met termen hoger dan vierde order. Het tetrakritische punt in het B-T 

vlak blijft bestaan tot ten minste x= 0.002 voor B I c, terwijl het snel onderdrukt wordt 

voor B|| c. Door substitutie van Pt door Pd neemt de stabiliteit van de A en B fasen toe ten 

koste van de C fase. 
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