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Chapter 1

Introduction

In this booklet the interplay between magnetism and superconductivity in
heavy-fermion system U(Pd, Pty investigated. We use neutron-diffraction and v,/
experiments to study the magnetic properties, while the superconducting propertie
investigated by (magneto)resistance, specific heat, thermal expansion
magnetostriction. Tlie main chapters in this thesis are written in the form of a jou
publication. As a consequence some items are present in more than one chapter.
introductory chapter we first present a short reviewafproperties ofUP4, followed by
the motivation of ouresearch After thiswepresent the outline of the thesis.

1.1 General introduction

In the past fifteen years a host of experiments has been carried out on the heavy-fi
superconductor URtIn spite of this large experimental effort, there are still many of
guestions concerning the magnetism and superconductivity in the systgns tégarded
as exemplary amongst the heavy-fermion superconductors, because of the coexiste
superconductivity and weak antiferromagnetic order. The non-standard BCS propert
the antiferromagnetic heavy-fermion superconductors provide strong evidence fc
unconventional Cooper pair state and have led to speculations upon electron-ele
mediated superconductivity.

At low temperatures the normal state of Rt characterised by pronounced spit
fluctuations (T*~ 20 K), which gives rise to an effective mass of 200 times the free ele
mass|[1,2]. Below Ty= 6 K an unusual type of antiferromagnetic order has been detecte
neutron diffraction [3] and USR [4]. The size of the ordered moment is unusually sr
m- 0.02 Ufi/lU-atom. Incipient magnetic order in WRtas first detected by substitution
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studies [2]. By replacing Pt by iso-electronic Pd , pronounced phase-transition anomali
thermal and transport properties provided evidence for an antiferromagnetic transitio
the spin-density-wave type.

The unconventional superconducting properties of; @R reflected in particular in
the observation of two consecutive superconducting phase transitions with the se
transition located approximately 55 mK below the first one. When a magnetic field
applied a third superconducting phase appears. Substitution studies are a powerful
to study the unconventional superconducting properties. In these studies Pd takes a <
place, because it is so far the only substitution for which the distance between the
superconducting transitions @7ncreases [5]. Most other substitutions, either on the L
or the Pt-site, tend to smear out and to decrease both superconducting transitions
same rate, leavingTc approximately constant.

Different scenarios have been proposed [6-10] to explain the unusual phase diagr
UPt in an external magnetic field [11,12] and under pressure [13,14]. Almost all theo
of the superconducting phase diagram involve unconventional superconductivity, i.e
symmetry of the superconducting gap function is lower than that of the underlying Fe
surface [15]. These scenarios have almost exclusively been discussed on the ba
generalisedsinzburg-Landau (GLjheories of superconductivity, where the free energy
purely derived by symmetry arguments.

The scenarios for the UfRthase diagram can be divided into at least two differe
classes. There is either a symmetry breaking field (SBF) required to lift the degenera
the gap or an accidental near-degeneracy of the superconducting gap function. The
objective of the present study is to investigate whether the weak antiferromagnetic orc
the symmetry breaking field or not. We performed neutron-diffraction and IiS
experiments in order to investigate whether the antiferromagnetic order correlates witl
superconducting properties.

An other important issue is the nature of the weak antiferromagnetic order.
substituting Pd oAu on the Pt site or Th on the U site anomalies in thermal and transy
properties provided evidence for an antiferromagnetic transition with substantial magt
moments. By exploring the development of the magnetic order for Pd substitution
expect to arrive at a better understanding of the weak antiferromagnetic order in gure |
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1.2 Outline

The outline of this thesis is as follows. In chapter 2, the details of several experimer
techniques are discussed. For the in-house experimental techniques we restrict ourselv
a basic description. In this chapter also the sample preparation is presented. After th
detailed description of the (xSR technique will follow, while also some elements of tt
neutron-scattering technique will be discussed.

Chapter 3 is a theory chapter, dealing first with the unconventional superconducti
properties of URt The superconducting state is described within several Ginzburg-Landz
models in which the symmetry of the superconducting gap plays an important role. T
second part deals with the principles of u,SR. The most important issue here is how
interpret the muon depolarisation function.

In chapter 4 the evolution of the antiferromagnetic order in; dBped with Pd is
studied by neutron-diffraction. The development of the small-moment antiferromagne
order (SMAF) in U(PtyPd,)s single crystals is studied for x= 0.000,001, 0.002 and
0.005.The interplay between small-moment magnetism and superconductivity is discuss
The large-moment antiferromagnetism (LMAF) is measured for single crystals wit
x=0.01, 0.02 and 0.05. The differences between small-moment and large-mome
antiferromagnetic order are reviewed.

In chapter 5 the evolution of the antiferromagnetic order in U(Pti.,;Pdj3 is studied I
USR. The USR experiments provide important evidence that there is a fundamer
difference between large-moment and small-moment antiferromagnetic order. While t
SMAF state is not observed by zero-field uSR in polycrystalline samples=wiih 0.002
and 0.005, the LMAF shows up as pronounced oscillations in the muon depolarisati
function forx= 0.01,0.02 and 0.05.

In chapter 6 the superconducting properties of Ufe)3 are studied by resistivity,
specific heat, thermal expansion and magnetostriction. Combined thermal expansion
magnetostriction data are used to construct the multicomponent superconducting pt
diagram of U(Pt0.99sPdo.002)3 as a function of temperature and magnetic field. T
constructed phase diagram is compared with the phase superconducting diagram of
UPt.
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Chapter 2

Experimental techniques

In this chapter we present the experimental techniques used to study the magnetic
superconducting properties @f(Pt,Pd)i. As some of the in-house techniques have bee
discussed already extensivelydy Vissefl], van Sprang [2],Bakker[3], Vorenkamp

[4] and vanDijk [5], we restrict in section 2.1 ourselves to some basic description. Ir
section 2.2 we shortly discusamplepreparation. Themagnetiqroperties of the samples
were mainly studied with neutron scattering aretBRexperimentsA detailed description
of the \xSR technique will follow in section 2.3, while some elements of the neutrc

scattering technique will be discussadection 2.4.

2.1 Introduction

The superconducting properties of U(Pt,Pd)3 were measured by electrical resistivi
specific heat and dilatometry. The low-temperature experiments on the superconduct
state of U(Pt,Pd)have been performed at the \der Waals-Zeemainstitute in a home-
built He cryostatand/or in a commercial dilution refrigerator. The base temperature of th
He system is 300 mK. For the experimental details of*Hiéscryostatwe refer to van
Sprang [2] andBakker [3]. For the lower temperatures a dilution refrigerator (Oxford
instruments, model 200S) with a base temperature of 10 mK has been used.
refrigeration process of the system is described in detail by Vorenkamp [4] amijkvan
[5]. In order to perform experiments in an external magnetic field, a 9 T superconductir
magnet (Oxfords Instruments) was installed with additional compensation coils to create
field compensated region (B<4 mT) at the level of the mixing chamber. Two referenc
thermometers were attached to the bottom of the mixing chamber in the zero field regi
Below the field compensated plateau a H-shaped cold finger of gold-plated copper w
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mounted. Additional thermometers near the sample position were calibrated using
reference thermometers.

Various experiments can be performed in the refrigerator. The resistance |
measured using a conventional ac four-point method. Typical dimensions of the sam
are 0.8x0.8x5 mm corresponding to resistance values as small 4€£10h order to avoid
Joule heating of the sample the excitation current has to be kept below 100 uA at
lowest temperatures. In order to obtain an accuracy of 1% for the resistance, the acc
of the measured voltages are at the order df W0 This was accomplished by using a
highly accurate ac (f= 43 Hz) resistance brid@@étecteur Multifonction' of Barras
Provence).

Specific-heat experiments were carried out on single- and polycrystalline samy
using the relaxation technique. The U(Pt;PsBmples for the specific-heat experiments
have a typical mass of 50-100 mg. In order to have a good thermal contact with the sa
support the contact area should be large. Therefore the samples are shaped into pl:
with a thickness of about 1 mm. The principle of the relaxation method is as follows.
sample (and addenda) are connected by a relatively weak thermal link to a heat sink v
is at constant temperature,. At the timet=to, a constant power Q is applied to the heate
on the sample holder until thermal equilibrium is achieved at a tempefiatigtAT. At
t=t\ the power is switched off, leading to a relaxation of the temperature to the equilibri
temperature, Jf The thermal conductivity of the thermal link, Ki, is calculated usin
K,=Q/ ATl and from the measured relaxation time, x, the heat capacity, C, is calculs
using C =%K,. A more detailed description of the relaxation technique can be founc
Ref. 4.

Dilatation experiments were carried out on single-crystalline samples with a paral
plate capacitance method. The capacitance of the dilatometer is measured by a ser
three-terminal technique with an Andeen-Hagerling capacitance bridge (type 2500 A).
sample is connected to one of the plates while the other plate is fixed, so that the le
change of the sample as a function of temperature or field is proportional to the chanc
capacitance (C). The capacitance of a parallel-plate capacitor is givernd#y/d, wheree
is the dielectric constant of the medium between the plates, A is the area of the plates
the distance between the plates (d= 100 u,m). The effective area of the capacitance
eA, amounts to 9.73xI6* Fm with an accuracy &%. Capacitance can be measured very
accurately in a three terminal configuration (AC/C3LGs0 that the maximum sensitivity
of this set-up is about 0.01 A for a sample with length 5 mm.
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The linear magnetostriction, X, is determined by measuring the length change of
sample as a function of the applied magnetic field, B. The linear magnetostriction is g
by X=(L(B)-L(0))/L(0), where L is the length of the sample. The measurements of X
performed using a sweep method. In the sweep method the linear magnetostriction
measured by changing the magnetic field with a relatively low rate (dB/dr<0.03 T/min)
order to prevent eddy current heating, while monitoring the length of the sample.

The coefficient of the linear thermal expansion, 0*Z/'dL/dr, can be determined usir
discrete method by stepwise heating the capacitance cell. However, there is al
contribution to the thermal expansion caused by the capacitance cell, the so callec
effect. At the lowest temperatures the cell effect becomes large compared to the the
expansion of the sample. To overcome this problem we used a temperature modul
method. By heating only the sample, instead of heating the whole cell, the cell effect ca
neglected. In the temperature modulation method (/= 0.003:Hz,5-10 mK) two R1102
thick film resistors (Roederstein type DC1), which serve as heater (100 Q)
thermometer (3.0 kf£2), are glued on the sample. In an ideal situation only the sal
temperature is modulated. A more detailed description of the dilatation cell and
modulation technique can be foundRaf. 5.

2.2 Sample preparation

Samples where prepared at the FOM-ALMOS facility at the University of Amsterda
where a variety of equipments is available for crystal growth. Polycrystalline samp
U(Pti.APd)3 where prepared by arc-melting the constituents in a stoichiometric ratio in
arc furnace on a water-cooled copper crucible under a continuously Ti-gettered a
atmosphere (0.5 bar). As starting materials we used natural uranium (JRE2&yith a
purity of 99.98%, and platinum and palladium (Johnson Matthey) with purity 99.999
Polycrystalline material with low Pd conter{ts< 0.01) was prepared by using appropriats
master alloys (e.g. 5 at.% Pd). Single-crystalline samples x#ith.002, 0.01, 0.02 and
0.05,were pulled from the melt using a modified Czochralski technique in a tri-arc furné
under a continuously Ti-gettered argon atmosphere. Single-crystalsxwitth001 and
0.005 were prepared in a mirror furnace (NEC-NSC35) using the vertical floating z
method. In order to anneal the samples, they were wrapped in tantalum foil and p
water free quartz tubes together with a piece of uranium that served as a getter.
evacuating (p< 16'mbar) and sealing the tubes, the samples were annealed at 95
during four days. Next the samples were slowly cooled in three days to room temperatt
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2.3 The |aSR technique

[,SR is an abbreviation for Muon Spin Rotation, Relaxation and Resonance. (xSR i
widespread technique used in nuclear solid state physics and is closely related to Nu
Magnetic Resonanc€NMR). The principle of the u,SR technique is quite simple. Positive
muons are implanted in the metal at a particular site. The local magnetic field at tl
interstitial site exerts a torque on the muon spin (5*=1/2), so that the spin precesses ar
the local magnetic field, B", with frequenay = 27ty B .Yh is the gyromagnetic ratio of
the muon (y"= 13.554 kHz/Gauss). In this section some elements of the u,SR technique
be discussed. A more detailed description of the u,SR technique can be fRafidbin

Intense beams dafhuonsare produced in large accelerators by bombarding a ligh
target (graphite or beryllium) with 600 MeV protons. Several nuclear reactions take ple
between protons (p) and neutrons («), which lead to the productmons{n):

p+p—>p+n+n
S>p+p+ n°
-» d+n’
(2.1)
p+n—>n+n+n
—p+p+ U~
—¥p+n+7r
Here d is a deuteron. The chargedns (n* and n) have a short average lifetime of 26 ns
and decay intonuons(u.” and (") and the accompanying neutrinos (v* and v ):
7tTAULT 4V
(2.2
n *n +v
The neutralpion (71°) is not important for the USR technique, because it has an avera
lifetime 0.089 fs before it decays into photons. In solid state physics almost all US
research is carried out using positiveions.In the remaining part of this thesis we wiill
only make use of the'®BR technique, for simplicity denoted by uSR.

Pionspossess zero spin and neutrinos have a spii? Yolarised opposite to their
momentum. Angular momentum has to be conserved, so that in the rest frampiafh the
the muon spin has to lmntiparallelto its momentum. This allows the production of a
highly spin polarised {tbeam. The polarisethuonsare implanted into a sample where
their polarisation evolves in the local magnetic field. The muon lifetime is 2.2 u,s and t

muon decays into a positron’Y@ccording to the scheme:
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M (2.3)

where ¢ and Y, are the neutrinos and antineutrinos associated with the positron and t
muon respectively. The decay positrons are preferentially emitted parallel to®thginu,
which allows a determination of the time evolution of the polarisation. The probabilit
distribution of positron emission is given by:

W¢(0) =1+ Acos8 (2.4)

where 0 is the angle between the muon spin and the positron trajectory. The asymm
parameter A depends on the energy selection of the positrons. The asymmetry paramet
is equal to 1 for the maximum positron energy of 52.83 MeV and equal to 1/3 whe
integrated over all energies (see &Rgf. 7). In the |aSR technique one deals with the latter
situation. The corresponding M8) angular patterns are represented in figure 2.1.

The USR technique uses the positive muon as a probe. The muon may form a bo
state with an electron, called muonium, an exotic isotope of hydrogen. The muonium st
can be stable in insulators or semiconductors, however, muonium has never been obse
in metals. We shall therefore consider only fraeeons.

Because of its positive charge, the muon localises at an interstitial site and its s
evolves in the local magnetic field. Due to the absence of a quadrupolar electric mom
the muon does not couple to electric field gradients. The decay positron is emitt
preferentially along the muon spin direction. By collecting several million positrons, on
can reconstruct the time dependence of the muon spin depolarisation function which,

turn, reflects the spatial and temporal distribution of magnetic fields at the muon site.

Figure 2.1 The angular distribution,W..(Q), of the decay positrons
for (a) the maximum positron energy of 52.83 MeV (A=l) and (b)
integrated over all energies.
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The decay positrons are monitored and stored by detection electronics in an inten

versus time histogram. The time histogram of the collected intervals has the followi

form:

Ne. (0 =Noe="" [1+ AG(t)] + b (2.5)

Where b is a time independent backgroundy & normalisation constant, and the
exponential accounts for the \lecay with the average decay time x,,. G(t) reflects the time
dependence of the “ypolarisation. The value of the initial asymmetry A depends on the
experimental geometry and is in practice smaller than the theoretical value of 1/3. A
typically equal to 0.25.

Because of their large kinetic energy (=30 MeV), the positrons are, fortunately, on
weakly absorbed by the sample arrgostatwalls, so that it is possible to use an extended
experimental set-up. In general two types of experimental geometry are used (figure 2.
The longitudinal and zero-field measurements are performed with the same geometry. 1
positron detectors are set parallel ardiparallelto the beam polarisationySWe refer to
this as the forward and backward direction, respectively. The longitudinal field is applie
along the beam polarisation, S,,. In the transverse georBgirys perpendicular to S and
the positrons are detected in a direction perpendicul8;40The transverse geometry is in
practice often different from the situation in figure 2.2. For practical reaBgnpds often

directed along the beam direction and the muon spin is rotated in the vertical direction.

Longitudinal or zero-field setup Transverse-field setup
muon beam muon beam
sample sample
positron positron positron
backward forward detector
detector detector

Figure 2.2 The principle of the two types of experimental geometry: the longitudin
and transverse set-ups are shown in the left and right panel, respectively. In the drawil
the muon beam momentum and the polarisation have been sketched parallel in order
have a clear drawing. In reality these two vectors ardiparallel. This figure is taken

from Ref. 8.
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The muon sources can be divided into two categories: continuous beams (F
Switzerland and TRIUMF, Canada) and pulsed beams (ISIS, UKKd&K, Japan). For
continuous beams every event is treated separately. When an incoming muon is detec
clock is started and when the corresponding decay positron is detected this clock will
stopped and the elapsed time will be stored in an intensity versus time histogram.
pulsed beams athuonscome in at the same tim#g. This pulse has however a finite width
distributed around,t Due to this uncertainty iny tcontinuous beams have a better time
resolution than pulsed beams. The advantage of the pulsed beams is the lower backgre
After the pulse no othemuonscome in, which reduces the background b of equation 2.t
This lower background leads to a longer time window for the pulsed beam sourc
Typically, the time window of a pulsed beam source is twice as long as for a conventio
continuous source. Recently, a new technique has been developed at the PSI to reduc
background. This new technique, calledluons On REquest’ (MORE), combines the
advantage of a time where no othmuonscome in, like for pulsed sources, with the
advantage of a continuous beam. In this technique a "kicker" sends only a muon to
instrument when it is required. An other advantage of this technique is that the full be
intensity can be available for several instruments. The advantage of MORE becomes ¢

from figure 2.3. This is a typical histogram for a transverse field measurement with

10000
Normal
—
6 8 10
Time (microseconds)
Figure 2.3 Intensity versus time histogram for silver in a transverse field of

100 Gauss and at a temperature of 10 K measured at PSI with the General
Purpose Spectrometer. Using MORE instead of the conventional technique leads
to a much lower background and a larger time window. Figure taken frRah 9.
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applied field of 100 Gauss. Using MORE leads to a decrease of the background by
orders of magnitude and an increase of the time window.

All the u'SR measurements discussed in this thesis have been carried out at the |
Scherrernstitut (PSlin Villigen, Switzerland), using the u+SR-dedicated beam-line on the
PSI-600 MeV proton accelerator. For temperatures above 16°He dlow cryostat
(Quantum Design) was used, at the General Purpose Spectrometer (GPS). The ext
magnetic field of 0-0.6 T was produced by a pair of Helmholtz coils. For measuremel
below r=1.6 K, an Oxford Instruments top-loadite-"He dilution refrigerator was used
at the Low Temperature Facility (LTF). The LTF facility can run in a number of modes t
reach a wide temperature range. Below 1 Kctlyestatis operated in the standard dilution
refrigerator mode with a minimum temperature of 0.025 K. drfiestatcan also operate in
a gas flow mode with just 5% of tfide-*He mixture circulating as the working fluid. In
this mode measurements can be performed at temperatures between 0.750 and 20 K.
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2.4 Elastic neutron scattering

Neutron scattering is a powerful tool to study magnetism in condensed matter research
neutron with its magnetic moment of 1.913 (where (X is the nuclear magneton) senses
the magnetic moments of unpaired electrons due to dipole-dipole interactions. Thel
neutrons have a wavelength (1A} comparable to interatomic distances and an energ
(10-80 meV) comparable to thermal excitations. Consequently, they display interfere
effects when scattered from solids. This enables one to use thermal neutrons to detel
either crystallographic structures due to interaction between neutrons and nuclei ©
determine magnetic order due to magnetic interactions. For structural investigations x
scattering is often used as well. The advantage of neutrons is that in general neutrons
the whole sample, while x-rays only probe the surface area of the sample due to absor,
Another unique advantage of neutron scattering is the possibility of investigating dyna
processes arising from the motion of nuclei (phonons) or of the magnetic mome

Collimator

Shutter
Collimator
Monochromator
Diaphragm

Monochromator

Collimator
Be FILTER at 77K

Diaphragms

The 4F2 triple-axis spectrometer at
Laboratoire LéorBrillouin (CEA).
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(magnons).These processes can be studied with inelastic neutron scattering, involvin
change of neutron energy. In this work mainly elastic neutron scattering with
unpolarised neutron beam is discussed. Further details on neutron scattering theory c
found for example in Refs. 10 and 11.

The neutron-diffraction experiments were performed at three different facilities. .
Siloé (CEA in Grenoble) neutron-diffraction experiments were performed using the DI
triple-axis spectrometer, at the Institute Laue-Langevin (Grenoble) the IN14 triple-a
spectrometer was used, while at Saglagboratoire LéorBrillouin, CEA) the triple-axis
spectrometer 4F2 was used. Figure 2.4 shows schematically the experimental set-up
4F2 triple-axis spectrometer. The experimental set-ups of DN1 and IN14 are almost
same. The main difference between 4F2 and the other spectrometers is that 4F2 |
double monochromator, while DN1 and IN14 have a single monochromator. For
experiments a pyrolytic graphite PG(002) analyser was set to zero-energy transfer in c
to separate the elastic Bragg scattering from possible low-energy magnetic excitations
suppress the second order contamination a Be-filter and/or a pyrolytic graphite (PG) f
was used. Also a vertically focusing PG(002) monochromator was used in all cases.
experiments have been performed in a temperature interval 0.1-10 K. Below 2 K a dilu
refrigerator was used and abovK 2 bathcryostat.

The differential cross section da/dQ, where Q is the solid angle, for neutrons from
incoming state with wave vector k and a spiand an outgoing state with wave vector k'
and a spin a' is given by the formula:

where V is the interaction potential between neutron and samplen dmel mass of the
neutron. Note that we use for the cross section a the same symbol as for the spin.
differential cross section for scattering of unpolarised neutrons consists of magnetic
nuclear contributions. The nuclear cross section can be written as the sum of a coheren
an incoherent part. The incoherent scattering is caused by a random distribution of isot
and the fluctuation of nuclear spins, while the coherent part is caused by interfere
between the scattered neutrons. For a collection of nuclei with fixed positions Rj a g
approach for the interaction potential is:
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where Qis called the scattering length of the nucleus at position Rj. The total cohere
cross section per unit cell is represented in terms of the nuclear structure §éQtprvith
Q=k'-k. With the idealised interaction potential of equation 2.7 the differential cros
section results in:
dchi
dRJ

2

Ebie’*®e™  IRQF (2.8)

The sum is taken over all atoms in the unit cell. e~"' denotes the Debye-Waller factor
atomy', accounting for the thermal motion of the atoms. The differential cross section give
by equation 2.8 is the quantity that is measured at the nuclear Bragg reflections of
sample.

Neutrons do not interact with the whole electron-cloud of an atom, like x-rays do, bt
they sense magnetic moments of unpaired electrons due to dipole-dipole interactions. -
formalism of scattering of neutrons by magnetic moments is comparable with scattering
nuclei. The magnetic scattering is also described by a scattering length. Howev
contributions to the magnetic scattering cross section are more complex. The additior
complication is that this scattering is of vector nature. The size of the interaction depen
on the size and direction of the magnetic moment, the direction of the scattering vector
and the direction of the neutron-spin. Within the dipole approximation the magnetic cro:
section from a collection of atoms becomes analogous to the nuclear scattering cre
section:

®W Qe e 9

]
where Yo= 2.696 fm. /j (Q) is the magnetic form factor which usually strongly decrease
when Q increases, m” denotes the component of the moment that is perpendicular to
scattering vector Q. For the determination of equations 2.8 and 2.9 it has been assumed
we deal with an infinite periodic lattice of delta functions (equation 2.7). Because th
crystal is not perfectly periodic due to mosaic spread, is not infinitely large and because
the finite resolution of the instrument, one observes in practice finite spots, rather the
points. From the width of the observed peaks additional information about the sample c
be obtained. By rotating the diffractometer around its vertical axis, known as co-scan, ol
can determine the mosaicity of the sample if the experimental resolution is known. F
magnetic order it is often important to know whether one deals with long-rang order c
whether the correlation length is finite. In principle it is possible to extract this correlatior
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length from the width of the magnetic Bragg peak by deconvolving the signal with t
experimental resolution. Considering the finite width of nuclear and magnetic Bragg pe
it is important to measure not only peak intensities, but also to make more extended <
in reciprocal space. Other corrections to the theoretical cross section are given by
following equation:

/(Q) oc L(Q)ATE\F(Qf (2.10)

where L(0) is the Lorentz factor, A the absorption factor, T the thermal diffuse scattel
factor andE the correction for extinction and multiple diffraction. The Lorentz factor, L(0)
is a purely geometrical correction, related to the time-of-reflection opportunity. F
reflections in the equatorial plane it is only a function of the Bragg angle 0: L(0)=l/sin(2
The absorption correction, A reflects the loss of the intensity due to absorption in
sample. In practice the absorption correction is only used for strongly absorbing eleme
like Ir, Cd and Gd. The thermal diffuse scattering correction, T, accounts for incoher
scattering and inelastic phonon scattering. At low temperatures it can usually be negle
By extinction we mean the reduction of intensity by all processes different from the ab
mentioned. The kinematical theory on which equations 2.8 and 2.9 are based assume
there is no reduction of the incident-beam intensity by scattering of the diffracted-be
intensity parallel back to the incident beam. There are several models that describe se
sources of extinction. A detailed description of extinction theory can be fouRdf.ihl.
Under ideal experimental conditions the corrections for absorption, thermal difft
scattering and extinction are unnecessary.
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Chapter 3

Theory

This theory chaptestartswith a shortintroductionto the properties of heavigrmionsand
their relation to magnetism ansluperconductivity.Next we present an introduction to
unconventional superconductivity in WPThe superconducting state is described within
several Ginzburg-Landau models in which the symmetry of the superconducting g
function plays an important role. The remaining part of this chapter deals with the
principles of\x.SR.In \iSR experiments the mudepolarisatiorfunction reflects the time
and spatial distribution othe local magnetidields. The most important issue is how to

interpret the muon depolarisation function.

3.1 Introduction

The termheavyfermion describes a class of intermetallic compounds that have, below
characteristic temperaturd,*, an enhanced effective mass, m\ which amounts roughly
to 10 -10 times the free electron mass. Heavy-fermion behaviour is predominantly four
in intermetallic compounds that contain the 4/elen@abr Yb or the 5/element U or Np.
Heavy-fermion materials are characterised by an anomalously large electronic lov
temperature specific heat coefficient, v. For ordinary metals the y-value is of the order
1-10 mJ/mol K, while for a heavy-fermion metal the y-value amounts to
100-1200 mJ/mol K

Most heavy-fermion systems are close to an antiferromagnetic instability which i
attributed to a competition between Kondo &wblerman-Kittel-Kasuya-YosidéRKKY)
interactions. The Kondo effect gives rise to a low-temperature screening of the/-momen
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by the conduction electrons. In a Kondo lattice system, the /-moments interact with e
other via the conduction electrons. The resulting indirect exchange between the/-mome
is described by the RKKY interaction. The strength of both effects depends on t
exchange energy J, between the/-electrons and the conduction electrons. For a small .
RKKY interaction dominates, which may result in long-range magnetic order. In UP1
antiferromagnetic order is observed with a very small ordered moment of gldatam.
However, by replacing 5 at.% Pt by Pd antiferromagnetic order with a moment ¢§0-6 u.
atom can be readily induced. In several other heavy-fermion systems extremely sn
ordered moments are observed as well (e.g. in URuZBere the ordered moment is 0.03
U-B"U-atom).

A most interesting observation is that in a number of heavy-fermion compounc
(CeCuySi2, URU2SI2UPdAI 3, UNiAl;, UPE) the antiferromagnetic order coexists with
superconductivity. According to the standard BCS model strong magnetic interactio
suppress superconductivity. The large effective mass leads to Cooper pairs with sn
spatial extension and therefore to large Coulomb repulsion between the two conduct
electrons. This makes electron-phonon coupling as the interaction mechanism unlike
Therefore it has been suggested that the formation of Cooper pairs is mediated by elect
electron interactions. UPis the compound for which most evidence is available that

unconventional superconductivity is realised.

3.2 Unconventional superconductivity

3.2.1 Superconductivity in URt

In the past decade a host of experiments has demonstrated that the supercondu
properties of heavy-fermion UPt3 deviate drastically from the standard BCS behaviour.
spite of all the research efforts, the key question whetheyit)Btgenuine unconventional

superconductor, i.e. a superconductor that has a superconducting gap function with a lo
symmetry than the Fermi surface, is still not settled unambiguously. The experimer
conducted to probe the unconventional ground state ip ¢dRt roughly be divided into

two categories. To the first category belong experiments that probe the structure of t
superconducting gap by measuring the temperature variation of the electronic excitati
spectrum. The observed temperature variations in the form of power laws of, for instan
the specific-heat [1], the velocity of sound [2] and the thermal conductivity [3], strongly
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suggest the presence of point nodes and/or line nodes in the gap, as predictec
unconventional  superconductors. However, the relevant temperature regi
r « T, (=0.5 K), has not been probed reliably yet, especially because the contribution fr
impurity scattering, which is not easily quantified, obscures the intrinsic behaviour. T
second category of experiments is directed towards exploring the multicomponent pt
diagram with three vortex phases in the B-T pldn,5]. The phase diagram, obtained by
dilatometry [7,8] on a high-quality single-crystalline sample is shown in figure 3.1 for
magnetic field along and perpendicular to the hexagonal axis. All phase lines are of sec
order, although for the B-C phase line, a weakly first order transition cannot be exclud
Second order phase transitions allow for the study of the phase diagram by mean
Ginzburg-Landau (GL)heory. In the past years several GL-models have been worked ¢
in order to understand the observed field and pressure dependence of the three v
phases [6].

In section 3.2.2 we focus on the pairing state in unconventional superconductors.
gap structure is the topic of section 3.2.3. Important for the understanding
unconventional superconductivity is the symmetry of the order parameter, which
discussed in section 3.2.4. In section 3.2.5 we will review different GL-scenarios, assur
different gap structures.

3.2.2 Unconventional pairing

The origin of the pairing potential in a conventional superconductor lies in electron-phor
coupling. An effective attractive interaction of the conduction electrons leads to t
formation of Cooper pairs formed by two conduction electrons with oppositgSpif).
The pairing state of a conventional superconductor is known as s-wave pairing which re
to the absence of an orbital momentum for the Cooper pair (L=0). In analogy to
spectroscopic notation, s-wave, p-wave, and d-wave are used to den®iel,2. For
electron-phonon coupling, the pairing is standard s-wave, but other pairing mechani
can favour a different pairing. We will from this point on referntzn s-wave pairing
(L? 0) as unconventional pairing.
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Figure 3.1  Superconducting phase diagram of JJPt
for Bl ¢ andB||c, constructedfrom anomalies detected by
thermalexpansiorandmagnetostrictiorj7,8].

A Cooper pair formed by two spin 1/2 quasiparticles has a total spin of either 5= 0 ol
S=1. For 5=0 the Cooper pair is in a singlet state and the orbital momentum is eve
(L=0, 2, ..). For S=1the projection of the spin on the orbital momentum, L, labels three
different states with S0, £1. For the triplet pairing the Cooper pair has an orbital
momentum which is oddL= 1, 3, ..). The wave-functions of unconventionally paired
electrons have a larger spatial extension than those of s-wave paired electrons [9], whic
creates the possibility to overcome the short-range Coulomb repulsion. Because electrol
phonon interaction is also short-range, another coupling mechanism likely exists in heaw
fermion superconductors. Note that for an unconventional pairing state (L*0) the
symmetry of the pairing state is lower than the symmetry of the lattice.
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3.2.3 The energy gap

Important for superconductivity is the existence of a ggpnAhe quasi-particle excitation
energy,EJ 10]:

E=(M+K\J (3-D

Here Cy is the single particle energy relative to the Fermi energyF& conventional
superconductors the gap is nearly isotropic, although a strong anisotropy of the ¢
function is allowed as long as the symmetry of the gap function is equal to the symmetry
the lattice. The coherent two particle state is separated from the ground state by 2A. In
isotropic BCS-superconductor the number of electrons excited over an energy gap is gi
by [11]:

n- exp(-A/kT) (3.2)
This manifests itself in an exponential temperature dependence of various physi
guantities, such as the specific heat and the nuclear relaxation rate. For unconventic
superconductors, the superconducting gap function is strongly anisotropic with possil
nodes in the gap function. The minimum excitation energy is lower in the region of tt
node and the number of excited particles is determined by the geometry of this region. T
will result in a power-law temperature dependence of various physical quantities [12]. F
p-wave pairing point-nodes on the Fermi-surface exist, while for d-wave pairing the
exists at least one line-node. For both p-wave and d-wave superconductivity, several e
point- or line-nodes can exist. The shape of the gap determines the low-temperature po\
law behaviour of the thermodynamic quantities. By investigating the low-temperatul
power-laws, the existence of point- or line-nodes can be studied. From the shape of
nodes it can be determined whether the form of the pairing is s-wave, p-wave or d-wa
However, small amounts of impurities have a large effect on the low-temperature pov
laws. Due to impurities a broadening of point- or line-nodes occurs leading to areas of t
Fermi-surface that are gapless [13]. These gapless areas have a large influence on the
temperature power-law behaviour, which complicates the analysis. Until now the differe
experiments gave no consistency about the gap structure, so that the symm
representation could not be determined unambiguously.
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3.2.4 The symmetry of the order parameter

The symmetry of the order parameter determines the temperature dependence c
thermodynamic quantities. It is therefore important to determine the symmetry of the o
parameter. In this section we closely follow a paper of Yip and Garg [14] in which t
symmetry of the gap function is discussed for several point groups. The symmetry grou
interest for UR{ is the hexagonal group ¢ The superconducting gap function
immediately below Jis described by a linear combination of the basis functions, y',
the irreducible representation, P, for the symmetry grogip Edr singlet pairing the gap
function is described by a single even functiog(kA while for a triplet superconductor it
is described by an odd vectorial function, d(k)z @l d,):

Ao() =1Xvi(k),  even pary,

i (3.3)
(%) =E%Viji(k,«),  odd parity,

n=I

where r* are arbitrary complex numbers and ljis the dimensionality of P. In the odd ¢
the basis functions depend on the pseudospin ifndex, y, z) in addition to k. The basis
functions \( are not unique, but can be written in a more general form. In the m

Tablel Even and odd paritypasisfunctions ofthe superconducting gap fobéh,
with k=k,+ ik and g =xziy. Linearly independent basis function
multipletsare separated by semicolons. Note that more than one basis

function is given fothe identity representation.

r, Even parity r, Odd parity

Moo L (), ¥ AL kz; (K +kyy), Re “ry;
Ay Im Kkl Az, Im: ko Ky kfkz

By k Im K Biu  Im: K\x; Kikx.\ k*kr_
By k, Rekl B2u  Re: K.z, EEr, Kk

f j
Eic £}*<W Ei« fIm) ktZun K+ ke KT_ vk 2ok ke T_ v K kil

Ezg GfC* Ea e\ik.r,  ICikez; K\ Kir ; Jif: ; ktkz
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general form the basis functions \[/£ can be written as a linear combination of N
independent basis-functiomultiplets, Vjf, a=1, 2,...,N,where N=lj and N=3]jfor the
pseudospin singlet and triplet cases, respectively.

k
Vi(K)=£ F2(\E(K),  singlet,

(3.4)
Wiikn) = X /7(k)i*%(k,n), triplet,

a=\
where the functions ~"(k) are arbitrary but invariant under all operations in the point
group. The irreducible basis functions for a superconducting gap with hexagonal symmetry
ASA are listed in Table I. For the two-dimensional (2D) representatiopsarig\i”, the
partners in thanultiplet (i.e. functions corresponding to different values of index u, with
the same index a) are given by the real and imaginary parts of the complex functions.

In the next sections a number of different Ginzburg-Landau scenarios will be
discussed. The most important difference between these models is the symmetry of the
order parameter. For a single 2D representation (E-model) the gap function is described by
Ae =T)urex +Tiyrey, whereTE* and &,y are the basis functions of the E-representation
andrix, r\, are the complex components of these basis functions forming a vector order
parameter T)=Gnt],). In the AB-model the total gap is characterised by
AMB=TUrA *TiBAB' where B and \4 are the basis functions for the A- and B-
representation antly, % are the complex components of the two ID representations.
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3.2.5 Ginzburg-Landau theory

3.2.5.1 Introduction

The thermodynamic properties of the superconducting state can be described in terms
the free energy, F. Ginzburg and Landau assumed that close to the transition temperatt
T,, the free energy may be expanded in terms of the order parameter, |v}). In the absence
magnetic fields and gradients, the free energy can be described by a Taylor expansion

terms of the order parameter:

F=al|*+ "3H*+... (35)

Here oc=00(T-T) and Oof3>0 for a stable second order phase transition. The first two
terms of the expansion should be sufficient as long as one stays close to the second-or
phase transition at.TIn an applied magnetic field the order parameter is no longer

uniform, so that the contribution from field gradients should be added to the free energy
The contribution of the gradients can be written as:

CRAD = TA MY H Ay (3.6)

Here A is the magnetic vector potential andand e* are the charge and the mass of the
superconducting Cooper pairs, respectively. Several heavy fermion superconductors shc
an antiferromagnetic transition well above the superconducting transition. In that case the
free energy is described in terms of two coupled order parameters; the ordered moment a
the superconducting gap. Although the Ginzburg-Landau analysis can be applied mor
generally, we will focus here on the situatiorlJgft3.

The superconducting properties of the system strongly depend on the symmetry of th
order parameter. The aim of the Ginzburg-Landau analysis is to determine the symmetry «
the order parameter. In order to come to a description of unconventional superconductivit
in UPL, several scenarios have been developed on the basis of generalised Ginzbur
Landau (GL) theories of superconductivity, where the free energy is purely derived by
symmetry arguments. The most studied scenarios for thgpb&te diagram can be
divided into three classes, (i) The double transition can occur for a triplet order paramete
described by the one-dimensional (ID) representation of the crystal point group symmetr
Den Of UPt, when the spin-orbit coupling interaction is negligible, (i) The second
mechanism for multiple superconducting phases iry $Phe presence of a vector order
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parameter. The order parameter belongs to a two-dimensional (2D) representation of
Da, group, (iii) It is also possible that there are two nearly degenerate ID representations
the Dei, group. In scenario (i) and (ii) a symmetry breaking field (SBF) is required to i
the degeneracy of the spin or the 2D order parameter, respectively. The most like
candidates for the symmetry breaking field are the weak antiferromagnetic order [15] or t
incommensurate structural modulation [16]. The most developed models consider t
antiferromagnetic order as the SBF of the superconducting vector order paramet
Evidence for the antiferrromagnetic order as a symmetry breaking field is found in tf
pressure dependence of the ordered moment. Neutron-diffraction measurements ur
hydrostatic pressure indicate that the ordered moment vanishes at the same critical pres
as the splitting of the superconducting transition, AM™* - T~[17]. These measurements
suggest a direct relation between the splitting infl the ordered mome(AT.°c nt). For
scenario (i) there is no need for an additional SBF, but an accidental near-degeneracy
the superconducting gap function is assumed. Within this description there is no intrins
physical reason for the closeness of the critical temperatures belonging to the differe
representations. In the next three sections we will present examples for all three scenaric

3.2.5.2 E-model

The low-temperature properties of LJRte determined by both the antiferromagnetic and
the superconducting order parameters. The total free energy with respect to the normal s
consists therefore of three components:
F=Fm+FstFus (3.7

Here FM and Fs describe the antiferromagnetic and the superconducting contributions a
FMS is the coupling term of the antiferromagnetic and the superconducting orde
parameters. The free energy related to the antiferromagnetic order with TN- 6 K can
described by a Ginzburg-Landau expansion of the ordered moment, m.

Fu=awm?+iBym?* (3.8)

Below 7N an ordered moment is formed witfi= -ccwPv and og =cGy (T-Ty).  This
moment saturates at wo= 0.02/U-atom. The free energy of the superconducting state is
expanded in terms of a vector order parameter, (r\,,r\,), describing the complex
components of a 2-dimensional gap functiong,(Ek, E\, EjuY
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Fs=asH+|RiM*+[*JT?? :9)

Here a = a5, (T- T.) and &, Ri andl, are the Ginzburg-Landau coefficients which are
positive. In the system described by eq. 3.9 the components of the superconducting ol
parameter are degenerate. In order to lift this degeneracy a symmetry breaking field (e
needed. This symmetry breaking field can be provided by either the antiferromagnetic or
or the structural modulation. For the antiferromagnetic order the symmetry breaking field
proportional to the moment squared yef). The free energy determined by the coupling
between the antiferromagnetic order and superconductivity can be expanded as:

ASM=Y|m-TIf+asM"2N? <810
The first term of this expression is responsible for the symmetry breaking. The no

symmetry breaking invariant teraMn\n\? can be absorbed ina|il[>, which just shifts

T. by -csym?/as . For this reason one uses in general only the symmetry breakir
expression:

RaM=-V?(Q)E-K\)y (3-11)

In order to minimise the total free energy it has to be rewritten in the compdng¢nasd
IV2I
i+ 2s(KP+Kr)+ Rs(hxI*+hyf )-

(3.12)
I 7 S T R

R*kl KI -y™ (KI -KIJ
Here 3= Ri+l% and $#= B,+3cos(2(<M>y)).By minimising the free energy with respect to
ITkI, \X\\, m and (z(% one obtains four coupled equations for the equilibrium state. Tt
magnetic term is assumed to be constant in the superconducting state, because the m
is nearly saturated. The two superconducting phases can be characterised by a norm:
order parameter. The stable phases of eq. 3.12 are the (1,0) phase with| atifferieht
from zero and the (l,ai) phase where both amplitudes are nonzero and have a rel:

phase<M>y=n/2. A double superconducting transition is found oy 3, y> 0 with the
following solutions:

(1,0) phase: TS =T, + ~N— (3-13)

AR LHRS T, <T< T, (3.14)
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S’
(I,cci) phase: Bi Im (3.15)

r<7r (3.16)
= _io_ly-_\
2R,
. R A
where r,*=r,+ (3.17)
R2 «S,

The thermodynamical step in the specific heat divided by temperature can be derived f
the free energy by A(c/7)=%R/9T® for both transitions. The steps are relative to the
normal state, because we considered the free energy with respect to the normal state
calculated steps are:

Anac(7H)Ir"
B+ (3.18)

cco
3,

Experimentally the ratid%/3i is determined from the ratio of the relative steps in the
specific heat. In URtthe ratiol3,/3i is close to the weak-coupling estimatef3gf3i=I/2. In
chapter5 and 6 we will compare the splitting of the superconducting transition predicted &

&m<("6)i

equations 3.13 and 3.15 with the measured splitting, by making use of:

2
. B, +Rym (3.19)

- cce

A disadvantage of the Ginzburg-Landau expansion is that it is only valid near the ph:
transition. This means that the description breaks down wherbek®mes too large. A
limitation of the Ginzburg-Landau expansion up to fourth order is that it does not descri
the temperature dependencectl. The theoretical clIT is constant as function of T with
steps atT." and T~. In order to account for the temperature dependence of the specific
as function of temperature, the free energy should be expanded to higher order terms. T
are however four independent sixth-order terms, and also aRi ead have higher order
temperature corrections. The large amount of parameters which are not accessible
experimental verification make higher order models difficult to interpret.

Model calculations of the specific heat with one extra sixth order term, of the forr
Ne(hxPhyf+hxfhyP)" were performed by Thalmeier [18]. With this extra term
nothing changes for the (1,0) phase. However the transition to the (l.cci) phase occurs
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FiEHrc?3.2 Lefiv Temperature dependencef the normalised squared components
hx,yNo2 of the superconducting order parametéfl,’ =aJ. /2B,j. 7%evalwe* cfcwen
/or ffe mode/ parameters are &l 1213,=0.53; 82/8,=0.5;yn12/a3()7; =0.034;
5/8, =1.0atd6 r,=0.53K.

fagAf; Sl?e«y*c Aear,(c/T)/(cJ/T:), as afunction of temperature calculated
for the same model parametersas above (g =a%J. /R,). Tlie dashed linesin both
pictures represent the solutions without sixth order correction (=

reduced F. Below T~ thetemperature dependenas |T]x[* and h,lz are nolonger
linear. Forlarge™ athird re-entrant superconducting phase transititg, occurs. Below
T3 the (1,0)phaseis found again. This re-entrant phase transitim in the model
calculations accompanieldy alarge peakin thespecific heat. Thalmeier suggested ttiee
peak in the specific heatof UPt at 18 mK [19]could be explained by a re-entrant
superconducting transitionlt is however very dangerouto apply this Ginzburg-Landau
expansionin suchalarge temperature range, becatkemodelled specific heat ha®t the
correct temperature dependenaedalso entropy conservatiois violated in the model.
Moreover, specific heat measuremeris a magnetic field abovethe critical field [19]
indicate that the anomalat 18 mK doesnothaveasuperconducting origin.

We also performed calculations addirge sixth order term, 5|3, to the free
energy. Thedetails of these calculationgan befound in Appendix | and theresultsfor
some reasonable valuesf the model parametersare shown in figure 3.2. Thelinear
temperature dependenad clTobserved experimentallin UPt; can not beeproduceddy

this model calculationpbut thecompleteset ofsixth order correctionsnaylead to abetter

description.
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So far, wehave discussed onlyhezero field propertiesln anapplied magnetic field
the order parameteis nolonger uniform,sothat thefree energy analysis must includhe
contributions from gradient®f theorder parameterThefield term of thefree energy, Fg,

for a twodimensional order parametef the hexagonal B groupisgiven by [20]:
Fo = K\DA\W  +]8yiiy|?) +2(IDeri f - +|2)TK[?) +

Ks(Dyr)xD* 1\, +D T\ Dy +c.c.)+ (3.20)

A4 (ID iy |2+6 4iiy ) +1B2/87t
where Dj =dj - L4, with A the vector potential and theapplied magnetic fieldis
normalisedby <Jjo27i (wherey, is thequantumof flux). Thelinearised solutionof equation
3.20 areanisotropicanddepend stronglyon theassumptions madéor theorder parameter.
In themost simple casdheordered moments assumedto bealways perpendiculato a
field in thebasal planeThesolutions of this model have been workedut byHesset al.
[20], whomakesuse of alifferent definition for thecoefficients K. After transformingthe
coefficients AT, toours,thelinearised solutiongor theupper critical fieldfor B_L care:

AOaS({TC+'T)

1,0) phase: B
(L0 phase:  Ba L jens

hoee (T. M)

ynt

a*

where

The (1,0)and the (0,Iphase corresponto theexperimentalA- andC-phase, respectively.
A critical point only exists whenK\> K,. However the model predicts that therés no
tetracritical pointfor B||c:

Kso(To™-T)

1,0) phase:
(1,0)p Be2 2% AKAK

e, as (17*-T)

e Bt Ap - (W

This is notinagreement withtheexperimental observation thahetetracritical point exists
for all field directions. AlthoughthephenomenologicalGL theoriesareformally the same
for any of the 2Drepresentationsthepredictionscandependon thesymmetry of the Fermi

surface and theCooper pair basis functionsThe /sT;-term of equation 3.20 prevents a
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crossingof the twoB(T) curvesfor BJ|c. Sauls[21] and Yin andMaki [22] suggestan
order parametefor which the mixing-term, K3,vanishes. Sauls chooses oddparity Ei,
order parameter witlthe spin projection alonghec-axis (d(k)=d,z) forwhich K]= K= 0
if oneassumes cylindrical symmetry.in andMaki consideran Ei order parameter which
is a d-wave axial stateso that K3 vanishes. Both representatiorsan describe the

superconducting phase diagram wéletracritical pointfor all directions.

3.2.5.3 AB-model

The AB-model is in several aspects very simildo the E-model. In the E-model the
componentsof a 2D order parameter couplto each other, whilein the AB-model the
coupling of two nearly degeneratéD order parametergs assumedThefree energyin this
caseis given by [23]:

r- | 12 | 12 1, |1 |4 1, |1 14

AN« AHAI +aghg| +PAjI1A] +-BgM  (B29
Rihatlg|?+-B2 (T1AT1g)%+(T1AT1%)%]
Here aag = as (T-Tap) where TAand % are thetransition temperature§T > Tg) for
the ID order parametersT|A and rg. The first four terms of the free energyare the
conventional termgor both order parameters, wheitg, (x> 0. Theterms with i and32
are responsibldor thecoupling betweertheorder parameters. Also hetke model can be
described by a vector n=(rjA"3) with complex componentslt is even possibleto
transform the free energyof the AB-model into the free energyof the 2D-model. The
parameter rangdor a double superconducting transitiois 3,>0, BAg> Br32=R3-and
<PABB=n/2. For this parameter rangéhe minimum of thefree energyhas thefollowing
stable solutions:
(1,0) phase: I=Ta (3.24)
2 ?%s |/
hal?=-BA(r a-:r) T~<T< T (3.25)
hs|* = 0
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1,cci) phase:
(1,cci) phase c R.-R- (3.26)
11 ol ; .
BaBe-B T<T: 3.27)
11 ol ;BABB'B'
where ZI—BB;SA-Z—I’B (3.28)
g-R-

The step in the specific heat divided by temperature can be derived from the free energy &
A(c/7)="F/dT* for both transitions. The steps are relative to the normal state, because we
considered the free energy with respect to the normal state. The calculated steps are:

Anac(r/rt =

Bs (3.29)
’ BA+BB'28,,

O RaRg-R-

In an applied magnetic field the order parameter is no longer uniform, so that the free
energy analysis must include the contributions from gradients of the order parameter. The
field term of the free energygFfor two coupled ID order parameter of the hexagonrgl D

AneC(T-)/IT:

group is given by:
Fe=*a|D1TIA|?+/S:;s|DLTlg|? +
(3.30)

Ka\D,AA  +Kg\D7T]g\ +B?/8n
where Dj= dj - iAj with A the vector potential and the applied magnetic field is
normalised by <y2n (wherde is the quantum of flux). The difference between the E-model
and the AB-model is that there is not a mixing term in the AB-model like iersf for
the E-model shown in equation 3.20. The AB-model is therefore invariant under field
rotation in the basal plane. All kinds of order parameters are allowed, the parity of the order
parameter is not important. It is even possible to have two order parameters of opposite
parity. However it is assumed that one of the order parameters belongs to the A
representation and the other to the B representation. When both order parameters belong
the A-representation or both belong to the B-representation additional gradient terms
should be added. Additional mixing terms can avoid crossing of the phase lines like in the
2D-model. One then has to apply the same arguments as for the 2D-model in order to le
the mixing terms vanish. The linearised solutions of the upper critical field for the

AB-model for B+ cis given by:
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(110) phase: B =N " A n T)
AA<

(0,1) phase: £=-~ VvV B (3.31)

The (1,0) and the (0,1) phase correspond to the experimental A- and C-phase, respecti
A critical point can only exist wheKaKa > KgKg. The upper critical field for Bj| ¢ is

given by:
(110) phaSEZ B.=" A CANT
2% Ka
popnese Rl 3-32)

The phase diagram for the AB-model is qualitatively the same as for the 2D-models
Sauls [21] and Yin and Maki [22]. The only distinct difference between the two models ce
be found in the pressure dependence of the phase diagram. The p-T phase diagram c
AB model has the same topology as the B-T phase diagram. The p-T phase diagram t
tetracritical point where the superconducting A, B and C-phase meet with the normal ste
In the E-model however there is a bicritical point where the B and C-phase meet with t
normal phase. In order to understand this difference one has to keep in mind that in the :
model a symmetry breaking field is needed. The degeneracy between the component
restored at a critical pressure, because the SBF is suppressed. In the AB-model both o
parameters are suppressed under pressure, but with different rates. This means that b
the critical pressureTa>Tg while above the critical pressures>TT,. This leads to a
crossing of the order parameters, while in the 2D-model they merge. A direct consequer
for the B-T phase diagram above the critical pressure is that in the 2D-model the B and
phase always meet at a bicritical point, while in the AB-model the C-phase is the mo
stable phase at high pressures. Sound velocity experiments [24] which indicate ti
presence of a tetracritical point support the AB-model. A tetracritical point is also inferrec
from theEhrenfestrelation by varDijk et al. [25]. However, specific heat experiments by
Sieck [26] seem to indicate the absence of a tetracritical point.

Besides the E-model discussed in the previous section and the AB-model discussed
this section, there are several variations of these models. For example (i) the AE-mod
which has a mixed ID and 2D representation [27,28], (ii) the super conducting glass sta
[27], which is a model based on thg Eepresentation with the order parameter oriented
randomly in the basal plane, (lii) In the next section we will discuss the ID representatior
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model proposed byMachida and Ohmi. In this model the spin degeneracy is lifted by a
symmetry breaking field.

3.2.5.4 ID-rep with odd parity

Recently, much attention has been focused on the Ginzburg-Landau models that en
the triplet pairing state as advocated by Machida [29], because détMRdexperiments

reported by Touet al. [30, 31] present strong indications for a triplet pairing state. A
symmetry class for the pairing functions the ID-representation of ghegrbup with odd

parity are considered. When spin-orbit coupling is absent, this representation is desct
by a three-component order parameter(n;, rf,, r\;) whose components label the spins of
the Cooper pairs. In the first models of Machida and Ozaki [29,32] an ordered mom
m= (m, 0, 0) that lies in the basal plane, pointing along the hexagonal x-axis, was assL
to act as symmetry breaking field. In their most recent models [33,34] Machida and Ol
assume antiferromagnetic fluctuations characterised by a triple-q vector with qi= (1/2,(
and its equivalent positions @nd g. The three fluctuation modes give rise to an exira

term to the free energy:

3

f'sM=-5%|r )2 (e

with e> 0. e, is proportional to the amplitude of the antiferromagnetic fluctuatighs, n
which is the magnetic intensity measured in the elastic neutron scattering experiment.
equivalency of the three modes is broken by the incommensurate structural modula
observed by transmission electron microscopy [16], such that for instances Bj>Ehe
phenomenologicaGL free energy of the superconducting state in this model is then give
by [34]:

rs =agH? +7B H* +|Ry| 2| -e|x-Tif -alz-TIE  (3.34)

Here a =asdT-T.) and e=ee,>0 and g”~x. The last termA|z-r|f, which is
somewhat ad hoc, expresses a weak anisotropy of the order parameter in spin space.
term reflects the fact that the Knight shift changes belgorTB- 0.2 T parallel to the
c-axis [31]. The free energy can be written as:

As= A(T-THWNN +hir\® +ho\A? (3.35)

T—Y V1
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with r = T.+E/ ago >Tc = Te+X/ as; > T/ for e>X>0. Below T =T the A-phase
is characterisedby rj,*0 andriy,=0. Thesecond transition fronthe A-phaseto theB-phase
is characterisedy ri,-,*0 and r) -0, with aphase difference betweeaty and r} of nil. It
can beproven thatthethird transitionat T= 7/ isnever realisedn zero field. Minimising
the free energy lead® thefollowing solutions:

(1,0,0) phase:  J=T

()
Ri+B: T <T< T (3.36)
0;
z X
(1,04i) phase: (;L=Bsrc -R3.7;
2P1

rc -90fir-T)
=0 Kf-A(r;n

r LOX-IX .
2

The thermodynamical steip thespecific heat dividedy temperaturecan bederived from

T<T; (3.37)

where

the free energyy A(c/7> -6°F/37 for both transitionsThe expressionsfor the specific
heat stepareexactlythesameas for theE-model (seeequation 3.18).

The calculationsso far arevalid in zero field only.In an applied magnetic fieldhe
order parameteis no longer uniform, so that the free energy analysis must includiee
contributions from gradientsf theorder parameterThefield term of thefree energy,Fg,
for a onedimensional representation witdddparity is given by [29,34]:

Fe= X MVY(|6xriv]%|Dyi|?)+/s%" DT |* +
VY2 (3.39)

|
AXP|B.TI|-

where Dj =3.- L4, with A the vector potential, 1/2A/k is the difference of the
susceptibilitiesin thenormal andsuperconducting statend theapplied magnetic fields
normalisedby <$>0/2n (wherefa is thequantumof flux). The oddparity stateis characterised
by a nonvanishing spin susceptibility, which leatls B terms whicharequadraticin r|. In
contrastto the 2Drepresentation model theis nomixing of thethree components), in

the ID representationsothat thetetracritical pointis notwashedout. There are twokinds
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of gradient termg(tf," and K5). Becauseof the antiferromagnetic symmetry breaking these
terms differ according to:
KAK -, Ki=K Z,n,
Kj=K +"m\ Ki=K o+ 5,1, (3.40)
Ki=K[ +~nf, KI=K' ;-m\
The linearised solutions for the upper critical field are [34]:
Biz

C2~AAr (CZ1)

00«So(?;%-n
271 AKFKA

Bllz

21C fff

B~Tn  TI 9
Z_% " (W-n
0-—

21C K?
where TJ(B) = 7/ -jxpZ?%. Thus under the conditionk”K* ~ K]KI > K\K\ thephase

lines for B | z meet in atetracritical point, while undethecondition K\ > K( ~/sTithe
phase lines for Bl meetin atetracritical point. The phase diagraimschematically plotted
in figure 3.3. For the superconducting A-phase ofifyisnon-zero. For the B- and C-phase
the order parameter dependsithe field orientation. FoB | x the C-phases characterised
by TU and the B-phasés characterisedoyTiyx+ifi,z. The phase transition fronTi,x+iii,z to
ilxx+ifiyy isnever realised. For Bfthe C-phasescharacterised by\, andin the B-phasea
rotation of the d-vector occursn low fields from Tix+ir|,z to Tix+ir|yy at|Axp5,,; =X.
Under pressureheantiferromagnetic fluctuations disappear aboaeritical pressure
Per- Thetopology of thesuperconducting phase diagram abopg is important for the
verification of this model. In theE-model thereis a bicritical point wherethe B and
C-phase meet witthenormal phase.The p-Tphase diagramof Machida and Ohmi's
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co™
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Figure 3.3 Schematic phase diagram of Byd plane forBLc and
B\\c. The components of the d-vector are indicated for each phase.
The dotted line for Blc represents the non-stable 7jX+i*yy phase. At
the dashed line for B\\c a rotation of the d-vector occurs.

model has the same topology as for #hB model. Which means that the p-T phase
diagram has a tetracritical point where the superconducting A, B and C-phase meet w
the normal state. Sound velocity [24] and dilatation [25] experiments indicate the presen
of a tetracritical point, but specific heat experiments by Sieck [26] seem in favour of .
bicritical point.

In spite of all experimental and theoretical effort since 1984, when superconductivit)
in UPt; was discovered [35], the nature of the unconventional superconducting state is n
completely understood. Knigavoko ambsenstein[36] proposed recently the existence of
magnetic skyrmions in URt There exists a class of solutions in Machida and Ohmi's
model where the vortices carry two units of magnetic flux: the magnetic skyrmion. The
main issue in almost all old and new Ginzburg-Landau models stays the same: tt

symmetry of the superconducting order parameter.
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3.3 The principles ofSR

In section 2.3 we presented the experimental aspects of the JuSR technique is prese
From the intensity versus time histogram one can reconstruct the time dependencé of th
depolarisation function, G(t), which reflects the spatial and temporal distribution of th
magnetic fields at the muon site. An important issue is how to interpret the depolarisati
function. In the following sections the muon depolarisation function is examined for th
most important cases. In section 3.3.1 we will discuss the depolarisation functions for Ze
field USR, in section 3.3.2 for Longitudinal field USR and in section 3.3.3 for Transvers
field nSR. For a more extensive theoretical description we refer to the book of A. Schen
[37]. For a review of magnetic materials studied by USR see refs. 38 and 39. An overvie
of heavy fermion materials studied by liSR can be found in refs. 39 and 40.

3.3.1 Zero field |iISR

In a zero field (ZF) USR experiment one measures the time dependence of the polarisat
of themuonsin a sample under the action of internal magnetic fields. These local fields ar
either of electronic origin or caused by the nuclear magnetic moments of the atom
Nuclear dipole fields are usually static in the time window of USR (fluctuation time
x> 10"s), while electronic fields may be of static or dynamic nature. If all the muon spins
precess in the same static magnetic field, oriented at an angle 0 from the initial muon sg
direction, S®, the Larmor equation is:
G{t) = cog 0 + sirf 6¢cos(oy) (3.43)

with Qr=27uy”, where y" is the gyromagnetic ratio of the muon and 5,, is the magnetic
field at the muon site. Equation 3.43 is one of the basic equations of the USR techniqu
For a polycrystalline magnet the spatial average of equation 3.43 has to be calculated. If t
spatial distribution is isotropic (no texture) the result is:

G0):31+-§os(oy) (3.44)

The oscillating component reflects the magnetic order in the sample. We suppose here tt
there is only one type of muon localisation site and that for all these site##® same. If
there is disorder, i.e., if there is a distribution of the local fields, then the oscillation can be

strongly damped and even disappear.
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Figure 3.4 The fluctuating-rate dependence of the dynamical Kubo-Toyabe
function. The numbers indicate the fluctuating rate in unité.ofThe static Kubo-
Toyabe function corresponds to the curve labelled with O.

Another common case is that of an isotropic Gaussian distribution of internal fiel

with an average zero field given by:

y,Sro.

- ! = 3.45

f\N 271 A exp 2A2 (I X’yiz) ( )

where ATYH = (B ) represents the second moment of the field distribution along on
Cartesian axis (the second moment of the three dimensional field distribution
Mi= 2A NYH ). This kind of distribution is, for example, found for static nuclear magnetic
moments or in a dense spin glass system. In this case an analytical formula has &

derived for G(t), the so called Kubo-Toyabe functi@XT(0-
G(t) =Gkr(0 =1 +| (I - Akrr2)exp(-i Ar’] (3.46)
GKT(0 has a minimum for t=-J31A and saturates if fA is large enough to a value of 1/.

The initial time dependence is well approximated by the parabolic f6#T(0= 1-A%?%, or

a Gaussian formGKT(0= exp(-Ar?).
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Figure 3.5  The magnetic field dependencelef longitudinal depolarisation
function derivedfor a static isotropic Gaussian field distribution. The numbers
indicate the magnetic field in units of Ay The Kubo-Toyabe function
corresponds to the curve labelledth 0.

In fluctuating fields, the Kubo-Toyabe function is modified to the so called dynamical
Kubo-Toyabe function G”(t,v), which, with the exception of some limiting cases, canno
be calculated analytically, see figure 3.4. These fluctuations are characterised by
fluctuation rate v. The dynamics is calculated using the strong collision model, whict
means that every fluctuation destroys completely the correlation between the fiel
distribution before and after the event. The form of G”° (t,v) depends strongly on v. Fo
slow fluctuations (V/A« 1), only the 13 term of equation 3.46 will be modified to
I/3exp(-2/3vf). If v/iA is sufficiently large the depolarisation function is given by:

G(t) = exp(-2K? | v)= exp(-Xf) (3.47)

This is the motional narrowing limit. If the motion is fast enough, themil experience
the average field leading to a field distribution which is narrower than the real field
distribution.
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3.3.2 Longitudinal field (iSR

In zero field studies it is not always possible to distinguish between static or fluctuating
fields. However, by measurements in a longitudinal field (LF) configuration it is in most
cases possible to identify whether the field is fluctuating or static. By appBdngarallel

to Sn=(0,0,9 and choosin®B.x much bigger than the internal fields, any static distribution
of internal fields will not influence the time evolution of the muon polarisation. This is
called the decoupling of the muon spin from static internal fields. For internal fields that

are Gaussian distributed, f)Bin equation 3.45 will be replaced by:

A ):er-l-exp< Yu(5,-5exty (3.48)

Hayano et al. [41] have derived the depolarisation functionr@®.But) as a function of

applied field, which has the form:
22 AP

Gur(tBex) = 1--7-+ 2" cos Yi
Yt (Yif ud)

2A3 P s f%*,, \

(3.49)

Figure 3.5 demonstrates th@tcrt'Axt) for the static case is strongly field dependent and

gradually removes the time dependence of the polarisation. On the other hand fas
fluctuations of the internal fields will lead to a depolarisation even in a large longitudinal
field. For a fast dynamical process the relaxation of the muon spin leads to an exponentic

depolarisation characterised by equation 3.47 with a slightly reduced value for 1.

3.3.3 Transverse field p,SR

In the transverse field (TF) configuration the external magnetic field is applied

perpendicular to the initial muon polarisation S The arrangement of the set-up is
described in chapter 2.2. The local magnetic field at the interstitial sites of the implanted
muon can be determined from the Larmor precession frequency. One expresses th

measured frequency or frequencies in the form of a Knight shift:

BH -|Bext] (CO)

Prat 0



Theory 51

where Qo= Yext- Here, we consider only metals in the paramagnetic state that are expo
to a magnetic field. The local magnetic field, B*, at the interstitial site where the muc
comes to rest can in general be written as follows:

BM = Bey + Bp +Bcon + AXmZB«, + Baa (3*h

Bdip represents the dipolar fields of the localised lattice spins. The third and the fourth te
are called the direct and the indirect hyperfine contact field, respectively, and are conne
with the presence of the mudself. The direct hyperfine contact field {B results from

the spin density at the muon site which is induced by the polarisation of the conducti
electrons. In the paramagnetic state this polarisation is induced by an externd. figkl.
proportional to thePauli susceptibility Xpeui of the conduction electrons and is usually
assumed to be temperature independent and isotropic in contrast to the other contributi
The indirect contact field is due to the RKKY interaction between localised moment ar
the muon. The effective contact coupling constagt i& temperature independent, so that
the indirect contact field is proportional to the susceptibility tensor?"c.the applied
magnetic field. The last contribution of equation 3.51 is due to the diamagnetic response
the electron cloud screening the muon charge. The diamagnetic screening produces ol
very small contributionBgj,, to the local magnetic field. For materials with enhanced
effective electron massesfnthe small diamagnetic contribution is reduced by a factor
mJiriM. For heavy-electron compounds the diamagnetic contributions are therefc
negligible.

In order to separate the different contributions to the local magnet field th
experimental Knight shift is usually compared to the calculated one. If the principal axes
the crystal structure are chosen as a co-ordinate frame, the dipolar field contribution car
written as:

B"p = AapJcB” (3.52)

where the dipolar tensor g4\ is given by:

4p(U)=Ss*"-01J (353)

The dipolar field at site r* is determined from the sum over all f moments at positions
r=r I -{x\"2/c-i)={x,y,z),r=\r\_andQ; is Kroneckers symbol. In order to calculate this finite
sum, the following trick has to be used: define a so called Lorentz sphere with fadius
and separate the sum into a part inside the sphere and a part outside the sphere. |
chooses the radius large enough, the summation over the outer region can be approxin
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with an integral. The magnetic field resulting from this integral yieltise Lorentz field
B_=I/3noM and thedemagnetisation fieldByer=-NM. WhereM is themagnetisatiorand
N is thedemagnetisation tensor relatedtheshapeof thesample. Note thabr asphere
iV=I/3, sothat 5+5dem=0.

The issueis now todecomposethe different Knight shift contributionsn order to
compare experimental data with calculations. Experimental Knight shift resartbe
easily correctedor demagnetisatiomndLorentz fields. Thereforeve omit these termin
the following discussionThe Knight shift is relatedto the susceptibility tensor (whicis
diagonal) accordintp:

A=A ontb. (Agxb) (3.54)

where b =B/|Bxt| is theunit vector parallelto the applied magnetic fieldK¢.4 is the
Knight shift due to thedirect contact fieldand Ay = AN +Aq, is thetotal hyperfine
coupling tensor.In contrast to K. and %, the contribution from the localised
/-electronic moments will exhibia strong temperature dependenkgqp canthereforebe
determined fromthe experimental dat&”(%) by extrapolatingto %-">0. The elementsof
A,ox can bedetermined experimentally fromie Knight shift anisotropyfor theprinciple
axes.TheKnight shift is simply givenby

K, = A% (3.55)
With the knowledgeof ft the tensor element&" can bedetermined fromthe observed
Knight shift K, Becausé\; is the sum of #@raceless dipolar tens@nd ascalar contact
part, A can be decomposed using H=I/3 Tr(A,n). By comparison of the
experimentally determinedidip with the theoretical values calculated withe use of
equation3.53 it isoften possibleto determinethe actual muon stopping sité. a sample
orders magnetically belowhe ordering temperaturand themuon stopping sités known,
thenit is easyto calculate fromthelocal field in theordered state, measurbg zero field
uSR, thesizeof the ordered moment.
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Chapter 4

Neutron diffraction study

Neutron-diffraction  experiments have been carried out on a series of heavy-elect
pseudobinary U(PtiPd)s single crystals (x<0.05). The small-moment antiferromagneti
order reported for pure UPtj is robust upon doping with Pd and persists till at leas
x= 0.005. The ordered moment grows from 0.018+0.002 \XB/U-atom for pure UPYj
0.048+0.008\if3/U-atomfor x= 0.005. TheNéel temperature, TN, is approximately 6 K and,
most remarkably, does not vary with Pd contents. The order parameter for the sm
moment antiferromagnetism has an unusual quasi-linear temperature variation. F
x> 0.01 a second antiferromagnetic phase with much larger ordered momdotsnds For
this phase at optimum doping (x= 0.05) T" attains a maximum value of 5.8 K and |1
ordered moment equals 0.63+0.05 \is/U-atom. ™) for the large-mome
antiferromagnetic order follows a Doniach-type phase diagram. From this diagram w
infer that the antiferromagnetic instability in U(RBdJ)z is located in the range 0.5-1
at.%Pd.

4.1 Introduction

It has been recognised, for more than a decade now, that the heavy-electron compc
UPt3 is close to an antiferromagnetic instability. Evidence for the proximity to a magne
instability is provided by pronounced spin-fluctuation phenomena at low temperatures

and incipient magnetic ordering [2], which can readily be made visible by chemic
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substitution. The low-temperature thermal, magnetic and transport properties of pure L
demonstrate the formation of a strongly renormalised Fermi liquid at low temperatul
[1-3]. The coefficient, y= 0.42 J/mofiof the linear term in the specific heat, c(T), is very
much enhanced with respect to a normal metal, which gives rise to a Fermi-liqt
description with a quasiparticle mass of =200 times the free electron mass. The Ic
temperaturePauli susceptibility, %0=%(T-"0), is equally enhanced. Upon raising the
temperature%(T) exhibits a maximum at T 18 K, which indicates the stabilisation
antiferromagnetic spin fluctuations below T”. From the electrical resistivity, p(T), data,
follows that the coherence regime sets in near 10 K, while the Fermi-liqGicegie is
attained afT< 15 K. The coefficient A is enhanced by two orders of magnitude over that
a normal metal, which is a general rule in heavy-electron compounds. Measurements of
thermal and transport properties in a magnetic field [1,3] provide further evidence that 1
electron correlations are primarily of antiferromagnetic nature.

Inelastic neutron-scattering experiments have put the evidence for antiferromagne
spin fluctuations on firm footing4-6]. The fluctuation spectrum is quite complex as
different energy scales are present. Spin-polarised neutron-scattering data
polycrystalline material [4] yield a quasi-elastic contribution centred at =10 meV, which i
related to the fluctuating local f-moment. The size of the fluctuating moment is of the ord
of 2 ixg/U-atom, which is not far from the value of the effective moment deduced from th
high-temperature Curie-Weiss constarftieg= 2.6+0.2uVU-atom) [1]. Subsequent
polarised and unpolarised neutron scattering measurements on single-crystalline sam
[5] revealed a response centred at 5 meV, which is consistent with antiferromagnetic shi
range order between nearest neighbour uranium atoms located in adjacent basal pl:
(UP has a hexagonal crystal structure). The antiferromagnetic correlations disapps
above rp,, While in-plane ferromagnetic correlations persist till about 150 K. At yet a
lower energy (0.2 meV) a second type of antiferromagnetic in-plane correlations was fou
at Q= (0.5,0,1) [6]. Surprisingly, at the same Q-vector, weak magnetic Bragg reflectio
were detected. This then provided evidence that, in pures;, Usthall-moment
antiferromagnetic order (SMAF) develops belaviléeltemperature of =6 K [6]. The size
of the ordered moment is unusually small, m- 0.02+08WU-atom. It is directed along
the a -axis in the hexagonal basal plane. The magnetic unit cell consists of a doubling
the nuclear unit cell along the a*axis. More recently, another type of correlations we
observed near Q= 0 (forward direction) at low energies in a time-of-flight experiment [7]
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These ferromagnetic correlations near Q= 0 have been interpreted in terms of the effec
low-lying fermion quasi-particles in the presence of strong spin orbit coupling.

Incipient magnetic order in UPivas first detected by substitution studies [2]. By
replacing Pt by isoelectronic Pd, pronounced phase-transition anomalies appear in
thermal and transport properties. Notably, the X-lke anomaly in c(T) and the Cr-ty|
anomaly in p(7) give evidence for an antiferromagnetic phase transition of the sp
density-wave type. Neutron-diffraction experiments [8] carried out on a single-crystallir
sample with optimal doping, U(Ptg@0.05 (7N,MK= 5.8 K), confirmed the
antiferromagnetic order. The ordered moment equals 0.6xA2aiom and is directed
along the a -axis. By plotting thééel temperatures, deduced from the ¢(T) and p(7) data
as functions of the Pd concentration, the border of the antiferromagnetic phase could
delineated [3]. Anomalies observed in the thermal and transport data restricted
antiferromagnetic order to the concentration range 2-7 at.% Pd. More recently, microscc
techniques, like neutron diffraction (this work) and [xXSR [9], have extended the lower |
concentration limit to =1 at % Pd. We have termed this magnetic order large-mome
antiferromagnetic order (LMAF) in order to distinguish it from SMAF observed in pure
UPt. The magnetic instability in Ufttan also be triggered by substituting Th for U
[10-12]. Remarkably, the magnetic phase diagrams for the (UgllgRd U(Pt,Pd)
pseudobinaries are almost identical. This shows that the localisation of the uranit
moments is not governed by the unit-cell volume of these pseudobinaries (the unit-c
volume decreases upon Pd doping, while it increases upon alloying with Th). Long-ran
magnetic order also shows up when 4JBtdoped with 5 at.%\u, while substituting 5
at.% Ir,Rh, Y, Ce or Os, does not induce magnetic order [13-15]. This indicates that &
shape effect, i.e. the change in the c/a ratio, is the relevant control parameter for

occurrence of magnetic order.

The pronounced spin-fluctuation phenomena and the incipient magnetic ord
unambiguously demonstrate the proximity to a magnetic instability of. WRerefore, it
came as a great surprise that the strongly-renormalised Fermi liquid is also unstable age
superconductivity [16]. In the past decade many experiments have demonstrated t
superconductivity in URtis unconventional [17]. The most important manifestations of
unconventional superconductivity in Pdre (i) the observation of power laws in the
temperature variation of the superconducting properties, rather than the standard B
exponential laws, (i) the splitting of the superconducting transition in zero magnetic fielc
and (i) the existence of three superconducting vortex phases in the magnetic fiel
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temperature plane. In the past years, a number of phenomenological Ginzburg-Lar
models have been worked out in order to understand the observed field and pres
variation of the three vortex phases [18]. The model which received the most attentior
the so-called E-representation model, which is based on the coupling of a two-dimensic
superconducting order parameter to a symmetry breaking field (SBF) [19]. The underlyi
mechanism is that a weak SBF lifts the degeneracy of the order parameter, which resul
two superconducting phases in zero field. The key issue of the E-model is to identify
SBF and to prove that it couples to superconductivity. A natural candidate for the SBF
the SMAF, which was found to coexist with superconductivity [6]. Within the E-model
the splitting of the superconducting transition temperafife=T* -T~ is proportional to
the strength of the symmetry breaking fiekd*. °c e, or in case that the SMAF acts as the
SBF,Ar; C 1t

In this chapter we report neutron-diffraction experiments conducted to investigate t
evolution of magnetic order in the U(Pt,Pdgries. The aim of these experiments was to
answer the following questions: (i) what is the connection between the SMAF observed
pure UPt and the LMAF observed in the doped compounds, (i) how does the LMAF
emerge upon Pd doping, (iii) is the SMAF stable with respect to Pd doping and does
couple to superconductivity, and (iv) is the SMAF influenced by annealing the samples.
order to address these questions we have carried out neutron diffraction experiments
single-crystalline UfPti.JPd” with x8.001,0.002, 0.005, 0.01, 0.02 and 0.05. For all
concentrations x<0.01 we were able to detect SMAF, while for x>0.01 LMAF was
observed. This chapter is organised as follows. In section 4.2 we focus on the experimel
details, like the sample preparation process and the relevant information regarding f
neutron scattering experiments. Section 4.3 is devoted to the calculation of the magne
moment. In sections 4.4 and 4.5 our neutron diffraction results for the SMAF and tt
LMAF compounds are presented. In section 4.6 we constitute the magnetic phase diagt
and in section 4.7 we discuss the connection between SMAF and superconductivity.
section 4.8 we discuss the results. A preliminary account of part of this work was present
in Ref. 20.

4.2 Experimental

Polycrystalline material was prepared by arc-melting the constituents in a stoichiometr
ratio in an arc furnace on a water-cooled copper crucible under a continuously Ti-getter
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argonatmosphere (0.5 bas starting materials we used natural uranium (JRCE#2))
with a purity of 99.98%, and platinum and palladium (Johnson Matthey) with a purity o
99.999%.Polycrystalline material with low Pd contents (x< 0.01) was prepared by usin
appropriate master alloys (e.g. 5 at.% Pd). Single-crystalline samplez=ni902, 0.01,
0.02 and 0.05, were pulled from the melt using a modified Czochralski technique in a ti
arc furnace under a continuously Ti-gettered argon atmosphere. Single-crystals wi
x=0.001 and 0.005 were prepared in a mirror furnace (NEC-NSC35) using the vertic
floating zone method. In order to anneal the samples, they were wrapped in tantalum f
and put in water free quartz tubes together with a piece of uranium that served as a ge
After evacuating(p< 10° mbar) and sealing the tubes, the samples were annealed at 950 ¢
during four days. Next the samples were slowly cooled in three days to room temperatu
In the case of the samples with x= 0.001 and x= 0.002, neutron-diffraction data wel
collected before and after annealing. In all cases, the volume of the measured samples
of the order of 0.15 cin

In order to characterise the samples the resistivity was measured on bar-shay
specimens spark-cut along the crystallographic a-and c-axis. The residual resigfivity, p
and paq, values are listed in Table I. For pure YRe obtain residual resistance ratios
(RRR) of =460 and =720 for a current along the a-and c-axis, respectively. Upon alloyin
with Pd, poa increases smoothly with Pd content at a rate of 11.3 ui2cm/at.%Pd (*< 0.0:
which shows that palladium is dissolved homogeneously in the matrix. Also the
superconducting transition temperat@." ) varies smoothly with Pd content, while the
width AT* stays about the same (see Table J).iSTsuppressed at a rate 0.79 K/at.%Pd,
and the critical concentration for the suppression of superconductivity equals 0.7 at.%Pd.
Several crystals were investigated by Electron Probe Micro Analysis (EPMA), but the

Table | Some characteristic properties of the annealed single-crystalline
U(Pti-Pd)} samples. The residual resistivity,and po,, the uppersuperconducting
transition temperature T*, and its width 7.~ as determined by transport experiments
[21], the superconductingplitting, ATc= % - T~, determined by the specifieat, and

the magnetic momentat T*.

X po,a(|*cm) pcc(Ifcm)  JT(K) A7 (K)  Are (K) m(rc")

c-axis (ug/U-atom)
0.000 0.52(5) 0.18(3) 0543 0.006(1) 0.054(4) 0.018(2)
0.001 1.6(2) 0.75(6) 0437 0.009(1) 0.082(4) 0.024(3)
0.002 2.5(2) 1.02(9) 0.384 0.007(1) 0.108(55) 0.036(3)

0005  6.2(5) - 0.126 - 0.048(8)
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concentration of Pd is too small to arrive at a quantitative composition analysis. In t
following sections the value of x is taken as the nominal composition.

The neutron-diffraction experiments were carried out at three different react
facilities. AtSiloé (CEA-Grenoble) the samples wikr 0.01,0.02 and 0.05 were measured
in the temperature range8-10K, using the DN1 triple-axis spectrometer. At the Institute
Laue-Langevin in Grenoble the samples with x=0.002, 0.005 and 0.01 were measure
the temperature interval 0.1-10 K, using the IN14 triple-axis spectrometer. Finally, at t
Laboratoire LéonBrillouin (CEA-Saclay) experiments were carried out on the sample:
with JC=0.001 and 0.002 in the temperature range 0.1-10 K on the 4F2 triple-ax
spectrometer.

For all experiments a pyrolytic graphite PG(002) analyser was set to zero-ener
transfer in order to separate the elastic Bragg scattering from possible low-energy magr
excitations. To suppress the second order contamination a 10 cm long Be-filter and/or
cm long pyrolytic graphite (PG) filter was used (see TdbJe A vertically focusing
PG(002) monochromator was used in all cases. The incident wave vector and
collimation of the different instruments are listed in Tdkl&he four different collimation
angles refer to: (i) the collimation of the neutrons incident on the monochromator, (|
collimation before the sample, (iii) collimation before the analyser and (iv) collimatior
before the detector.

UPt3 crystallises in a hexagonal closed packed structure (MgCd3-type) with spa
group PO3Immc[22]. The lattice parameters are given by5aZ64A and c= 4.899. The
atomic positions in the unit cell are given by:

suar 1 1E)1 1 E\
S 34)u' 3 A
| z, 2z, -J (22, z, -jfz, z, -] 4.2

3V 3V _ 3
2,22, — 22,2,— 2,2, —

where the ideal value of z equals 5/6. The Bragg positions are labelled using recipro
lattice units, where a*=b*=4rc/(aV3) =1.268" and c*= 2idc = 1.283A'". In order to

TableH  Specificationf thespectrometersised in the experiments.

Facility Kk (A') collimation filters
Siloé 2.66 open-30-60-60' PG
ILL 148 34'-40-4040' Be & PG

LLB 148 open-open-60'-60' Be & PG
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facilitate a quantitativeanalysis, the samples were always mounted with the c* axis vertica
i.e. perpendicular to the scattering plane. In the case of the samplesWitb05 and 0.01
additional data were taken with the reciprocal (1,-2,0) axis vertical, i.e. with the a*c* plar

as the scattering plane.

4.3 Calculation of the magnetic moment

The neutron-diffraction experiments on pure JJP6] and the doped compounds
U(Pto9Pdo.05)3 [8] and (UgpThy.o5)Pt3 [12] show that the SMAF and LMAF have an
identical magnetic structure. The magnetic unit cell corresponds to a doubling of tl
nuclear unit cell along the a*axis (with the moments pointing along the a*-axis). Thi
magnetic structure is schematically shown in figluk In figure 4.2 we have indicated the
positions of the corresponding magnetic Bragg peaks in the reciprocal basal plane
observed by neutron scattering. The magnetic Bragg peaks corresponding to the dorr
with propagation vector gi= (1/2,0,0) are located at e.g. Q= (1/2,1,0), (3/2,-1,0), (-1/2,-1,

o~
*0
0-
~0
O*

Figure 4.1 Magnetic structure df(Pt,Pd)s. The open and closed circles
indicate U atoms in adjacent hexagonal planes separated by a lattice
spacing c/2. The arrows indicate the magnetamentswhich are directed
along the a*-axis. The dotted and solid line delineate the nuclear and

magnetic unitell, respectively.
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. 0-—py *—-a fV

3

Figure 4.2 Reciprocal lattice (a -b plane) of U(RRd)3. The open
symbols indicate the positions where magnetic Bragg reflections are
observed by neutron scattering. The three magnetic domains (assuming a
single-q structure) are indicated by qi (O), g2 (O) and qj (A). The closed
symbols indicate the positions of the nuclear (1,0,0) (>J and (I,1,0)-type  (9)
of reflections.

and (-3/2,1,0), as indicated by the open circles in figure 4.2. Neutron scattering meas
the projection of the Fourier component of the moment on a plane perpendicular to
scattering vector Q. For reflections such as (x1/2,0,0) this companents parallel to Q
and the intensities vanish. There exist two other symmetry-related domains, g2 and
obtained from qi by a rotation of 120° and 240°, respectively. Assuming a single
structure, gi, g and g3 describe the three antiferromagnetic domains. In the absence of
in-plane magnetic field one expects, in general, to measure the same intensity for
magnetic Bragg peaks of the three domains. In this case the antiferromagnetic Fot
component, rrig, becomes equal to the U magnetic moment, m. We will comment on
possibility of a triple-q structure later.

A proper determination of the size of the (tiny) ordered magnetic moments across
U(Pti,Pd); series is not an easy task. Therefore, we have chosen to measure the var
samples under the same experimental conditions and also to use the same procedure f
calibration of magnetic intensities. In order to determine the size of the magnetic mome

the cross sections of the magnetic and nuclear Bragg peaks have to be compared. Wz
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0.20

0.15-

0.10

€ 0.05

0.00
0.820 0.825 0.830 0.835 0.840

Figure 4.3 Calculated intensities of the nuclear (1,0,0) (solid line) and

(1,1,0) (dashed line) Bragg peaks as function of the position, z, of the Pt
atoms in the unit cell. From the measured ratio of the intensities for the
(1,0,0) and the (1,1,0) Bragg peaks we find®8253or z= 0.8370, instead

of the ideal value z= 5/6 (indicated by the dotted vertical lines).

the integrated intensity from longitudinal (6-28) scans. The integrated nuclear FN an

magnetic F intensities are calculated from [23,24]:

Pn(Q) =cLO)I"] e ‘e’ (4.2a)

. HQ'-R;j -Wj
Pu(Q) = cLO)pKjfiwe e (4.2b)
where the sum is taken over all tBeavaislattices of the nuclear unit cell. Ry denotes the

position of the nuclei in the cell, L(6)=I/sin(29) is the Lorentz factor with 0 the Bragg
-Wi

angle, e is the Debye-Waller factor, bj is the scattering length of the nucleus at sitej,
fi(Q) is the magnetic form factor, the symbol 1 denotes the projection on the plane
perpendicular to the scattering vector Q, p= 0.2696XIGm, and c is a normalisation

constant depending on the experimental conditions. For scattering in the basal plane the
are two types of nuclear peaks which could be used for calibration, i.e. the (1,0,0) an

(1,1,0)-type peaks. However, the intensity of the (1,0,0) reflection is very sensitive to
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deviations from the ideal Pt position z= 5/6 in the unit cell (see figure 4.3). Actually, th
measured ratio of the (1,0,0) and the (1,1,0) nuclear peaks indicates that the proper z-v
is 0.8253 or 0.8370 instead of 5/6 (see figure 4.3). We have chosen to use the (1,1
nuclear peak for calibration as its intensity depends only weakly on the z-value. By th
procedure we possibly introduce a systematic error in determining the ordered mome
However this error is the same for all samples, so that a meaningful comparison betwe
the moments of the samples can be made. The systematic error is not included in the e
bars of the ordered moment for the different samples. Note that the variation of the latti
parameters a and c fa 0.05 is almost negligible. The a parameter remains constan
within the experimental accuracy and the c-parameter decreases at a relative rate
0.7x10"perat.%Pd[3].

4.4 Small-moment antiferromagnetic order for 0 < 0.01

Neutron-diffraction experiments have been carried out in the temperature range 0.1-10
on annealed IKPti"Pd"b single-crystals wix0.005 and 0.01 and unannealed crystals
with x= 0.001 and 0.002. The samples with 0.001 and 0.002 were remeasured in the
temperature interval .8-10K after annealing. In figure 4.4 we have plotted the temperature
variation of the maximum intensity of the magnetic Bragg peak at Q= (1/2,1,63 tb01

after subtracting the background. Let us first focus on the data of the annealed sampl
represented by open symbols. In this case, absolute valuésirolunits of |a* have been
plotted using the calibration procedure presented in section 4.3.

The behaviour ofn (7) for the various samples as shown in figure 4.4 is quite unusual.
Figure 4.4 clearly demonstrates that the small-moment magnetism is robust upon alloyit
with Pd. The size of the ordered moment increases gradually with Pd concentration, bt
remarkably, SMAF invariably sets in neag=6K for Jc<0.01. For all samples with
x< 0.005,m (T) has an unusual form. The value &fstarts to rise slowly belowyF 6 K,
then a quasi-linear temperature dependence follows from =4 K dowi (6.1F0.4 K, see
Table 1). Below T the magnetic intensity saturates. The absolute values of the ordere
moments have been calculated using integrated intensities. We obtain m{T*)~ 0.024+0.0C
0.03610.003 and 0.048+0.008 Hu/U-atomxer0.001,0.002 and 0.005, respectively, in the
annealed state (see also Table I). For comparison figure 4.4 shows{alsdor pure UPY,
as reported by Haydeat al. [25]. The value for m(I) was estimated irRef. 25 at
0.03+0.01HR/U-atom. Because of the relatively large uncertainty in this value we have
calibrated?(T) for pure UPswith help ofarecent measurement by VBik etal. (Ref. 26).
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Following the same calibration procedure as for the doped compounds we arrive at the val
m- 0.018+0.002 w/U-atom for pureUPt3.This is identical to the value reported recently by

Isaacset al.(Ref. 27).

UPt Pd)
V'o1lx X

3

4
"(K)

Figure 4.4 Temperature variation of m' derived from the intensity of the
magnetic Bragg peak for annealed (open symbols) and unannealed (closed
symbols) U(PtPd,);. For x=0.001 (O), 0.002 (U), 0.005 (A) data are
taken at g= (1/2,1,0) and for x= 0.01 (0) at Q= (1/2,0,1). In the case of
x= 0.00 we have reproduced the data BEf. 25 (dashed line) after
normalising them to the moment deducedRél. 26 (V). The solid lines are

guides to the eye.

The effect on annealing was investigated for the x= 0.001 and 0.002 samples. In th
limit T-"Tc" m equals 0.019+0.003 and 0.038+0.00gUratom in the unannealed state,
for x=0.001 and 0.002, respectively. This shows that the size of the ordered moment is ni
changed (within the experimental accuracy) by our annealing procedure. Also the temperatu
variation of i(T) does not change upon annealing. This is illustrated by the comparison o
the data for the annealed and unannealed samples shown in figure 4.4, where the mome
for the unannealed sample have been multiplied by a factor 1.26 and 0.95, for x= 0.001 ar
0.002, respectively, for normalisation purposes (assuming that in theTrit> T* mis the

same for annealed and unannealed samples).
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Figure 4.5 Longitudinal scans of the magnetic Bragg peak Q= (1/2,1,0) for annealel

1.70

Chapter 4

U(PtogedP0h.00i)3 at temperatures 1.6< T< 6.2 K as indicated. The solid lines are fits tc

the data using a Lorentzian convoluted with the Gaussian experimental

resolution. TI

width of the A/2 peak without Be filter is shown in the lower part of the figure togethe

with the experimental resolution (dashéute).

1200

.-. 1000
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Figure 4.6 Longitudinal scans of the magnetic Bragg peak Q= (1/2,1,0) for annealed
U(P1,.99sPdo.002)3at temperatures 1.7< T< 5.3 K as indicated. The solid lines are fits t

the data using a Lorentzian convoluted with the Gaussian experimental

resolution.
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In order to investigate the effect of annealing on the magnetic correlation length, "
we have scanned the magnetic Bragg peak at Q= (1/2,1,0) at several selected tempera
for *= 0.001 and 0.002 before and after annealing. Typical data sets, taken on the anne:
x=0.001 and 0.002 samples, are shown in figure 4.5 and figure 4.6, respectively. By fitti
a Lorentzian profile, convoluted with the Gaussian experimental resolution, we were ak
to extract the correlation length along Q. Note that the width ofMhgeak, measured
without the Be filter, is not a correct estimate for the experimental resolution on th
spectrometers used here (see figure 4.6). For x= 0.001 we obtain £,= 570#1®D
£m=710+150A before and after annealing, and for x= 0.0G2,=700+150A and
"n=610+130 A before and after annealing. Thus no effect of annealing on £,, is observ
within the experimental error. This is consistent with the recent conclusion reached |
Isaacset al. [27], who investigated the effect of annealing on the correlation lengths alon
a and c for pure URtSince the size of the ordered moments and the values of the
correlation lengths are within the experimental error the same before and after anneali
we conclude that strain has no significant effect on the SMAF.

4.5 Large-moment antiferromagnetic order for 8.01

In this section we report our neutron-diffraction results on the annealed,RujRti.
single crystals withk=0.01,0.02 and 0.05. We have plotted the temperature variation of
the maximum intensity of the magnetic Bragg peak at Q= (1/2,1,0) (backgrounc
subtracted) fox= 0.02 and 0.05 in figure 4.7 and for 0.01 at Q= (1/2,0,1) in figure 4.8.
Absolute values of min units of u* have been obtained using the calibration procedure
presented in section 4.3. The temperature variatitfT)nfor x= 0.02 and 0.05 is rather
conventional compared to the quasi-linear temperature variation observed for the SMA
compounds (Figure 4.4). The order parameter follow@)°c(l-(777x)3)%%, with the values
a=19+0.2 and 1.8+0.1 and [3=0.50+0.05 and 0.32+0.03 for x= 0.02 and 0.05,
respectively. These values ®fre not too far from the theoretical valge 0.38 for the 3D
Heisenbergnodel [28]. The phenomenological parameter a reflects spin-wave excitations
In a cubic antiferromagnetic system a is predicted to be 2 [29]. To our knowledge n
predictions are available for a hexagonal system. In the limit T-* 0K, we obtain
m= 0.35+0.05 and 0.63+0.05g/&-atom for x= 0.02 and 0.05, respectively. The size of the
ordered moment obtained fee 0.05 is in excellent agreement with the value reported in
Ref. 8. For the LMAF compounds the magnetic Bragg peaks are resolution-limited.
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Figure 4.7 Temperature variation of “nfor annealed U(PtiPd)i derived from the

intensity of the magnetic Bragg peak Q= (1/2,1,0) for x= 0.02 (D) and 0.05 (O) and at
Q= (1/2,0,1) for 0.01 (0). The solid lines represent fitaxfgT)oc(l-(T/T)** (seetext).

12 | |
UPt Pd
04 10.0 Y 0.99 0.0123 "
o g % Q=(1/2,0,1)
=1 o .
6 0 -
X %
co
o *+ ®

(1)
7'(K)
Figure 4.8 Temperature variationof m measured at the magnetic Bragg peak

Q= (1/2,0,1) for annealed U(PtRd,); with x=0.01 (0). The sharp increase in the
intensity near 1.8 K indicates a crossover from SMAF to LMAF.
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1500

1.41 1.42 1.43 1.44 1.45
Q(A-1)
Figure 4.9 Longitudinal scans of the magnetic Bragg peak Q- (1/2,0,1) for
annealed U(P1%.99Pdo.oi>3 at temperatures0.08< T< 3 K as indicated. The
solid lines are fits to the data using a Lorentzian convoluted with the
Gaussian experimental resolution. The horizontal arrows show the total
width (FWHM) of the peak.

The temperature dependence of the magnetic Bragg intensity of the sample wi
x= 0.01 is quite intriguing: AGT) starts to rise slowly belowyZ 6 K, grows rapidly below
=2 K, and then saturates below =0.5 K. The rapid rise near 2 K suggests a cross-over fr
the small-moment to the large-moment state, with an estimatg=ofL8 K for the LMAF.
For T-> OK, m reaches a value of 0.11+0.03fM-atom. This value is obtained for both
Q= (1/2,1,0) and Q= (1/2,0,1). We emphasise that the width of the magnetic Bragg pec
does not change in the temperature range 0.08-3 K (see figure 4.9), which ensures that
unusual /A(T) curve is not due to an increase of £, upon lowering the temperature. The
interpretation of a cross-over to the LMAF state is consistent with recent USR experiment
on U(Pto.99Pdo.0i)3 [9], which show that the LMAF gives rise to a spontanebus u.
precession frequency below¥'1.8 K.

In the case ofx=0.01, the transition to the LMAF state does not show up in the
thermal and transport data, in contrast to data for x= 0.02 and 0.05, which exhibit clee
magnetic phase transitions at=T3.5 and 5.8 K, respectivelyf2,3]. Careful resistivity

measurements down to 0.01& on a polycrystalline sample with composition
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U(Pto99Pdo.oi)3 did not reveal any signature of a phase transition [30]. This was taken
evidence that th&léel temperature for the LMAF drops to zero between 1 and 2 at.% Pd
However, the present neutron-diffraction data show that the lower bound for LMAF i

actually between 0.5 artl at.% Pd.

4.6 Evolution of magnetism in the U(RRd,)s pseudobinaries

Our neutron-diffraction results show that all tRd(Pu,T?d)3 compounds (x<0.05)
order antiferromagnetically. In figure 4.10 we plot téel temperatures of the different
samples versus Pd concentration. For samplesxwith01 SMAF invariably sets in with a
Néel point of =6 K. Most likely this phase line extends horizontally to higher Pd
concentrations, but for joO.01 it becomes more and more difficult to discriminate
experimentally between SMAF and LMAF. A closer inspection of the data for x=0.02
(figure 4.7) shows that indeed some magnetic intensity is visible in the temperature ran
3.5-6 K. However, a careful measurement of the background signat @02 is needed in
order to put this on firm footing. LMAF emerges in the concentration range 0.5-1 at.% Pc
The optimum doping for LMAF is 5 at% Pd. This compound has the laM&sit
temperature,Ty= 5.8 K, and magnetic moment, m- 0.63+0.05AXatom. For x= 0.10 no
LMAF has been observed in the thermal and transport properties. However, at th
moment, we cannot exclude LMAF with a reducgdad observed for *8.01.In order to
investigate the Pd rich side of the phase diagram, neutron-diffraction or uSR experimer
would be most welcome. On the other hand, one should keep in mind that additional line
in the x-ray diffraction patterns indicate that the MgGge of structure is lost for x> 0.15
[3]. 7\ for the LMAF follows a rather conventional Doniach-type phase diagram [33]. The
compound withx= 0.01 occupies a special place in the phase diagram as we have assign
two Néeltemperatures to it. The SMAF which emerges near 6 K develops into LMAF near
18 K.

The size of the ordered moment, measured .Atag function of Pd concentration is
plotted in figure4.11. The moment first increases slowly from 0.018+0.09ZJatom for
pure UPt to 0.036+0.003+H3/U-atomfor 0.5 at.% Pd. For higher Pd concentrations the
moment rises much more rapidly. The change in slope of m(x) between x= 0.005 ar
x= 0.01 is consistent with LMAF emerging in this concentration range.
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4.7 Interplay of magnetism and superconductivity

Recently, we have measured the specific heat and electrical resistivity at tf
superconducting transition of single-crystallifg= 0.0, 0.001, 0.002 and 0.005) and
polycrystalline (x= 0.0025, 0.003, 0.004, 0.006 and 0.007);URped with small amounts

of Pd [34,35]. The main findings can be summarised by {(i)isr suppressed linearly with

Pd content at a rate of 0.79+0.04 K/at.%Pd, (ii) T~ is suppressed at a faster rate
1.08+0.0&K/at.%Pd, and as a results (i) the splitting . Aincreases at a rate
0.30+0.02 K/at.%Pd. This shows that upon alloying with Pd, the high-temperature low
field A phase gains stability at the expense of the low-temperature low-field B phase. Tt
data in figure 4.4 show that the increaséift is accompanied by an increase in the size of
the ordered moment. This provides additional support to the idea that the SMAF acts as
symmetry breaking field. The Ginzburg-Landau E-representation scenario [19] predic
ATc ni. However, this proportionality relation is only valid f&TJTg «1, which no
longer holds for the Pd-doped samples. At =0.3 at.% Pdbégomes of the order of.T
Insteadm grows more rapidly than AT Substantial evidence for the SMAF as the
symmetry breaking field has been obtained by neutron-diffraction [25] and specific-hes
[36] experiments under pressure. It was found that botanthAT: are suppressed quasi-
linearly with pressure and vanish at a critical pressure /v=0.35 GPa. Interestingly, we fir
a smooth variation of Adas function ofrn when we collect both the pressure and Pd
doping data [35]. This establishes a firm link betweery &7d M. Only for small
splittings is AT °cm  (Ar.< 0.050 K). For enhanced splittings a more sophisticated
Ginzburg-Landau expansion (with terms beyond 4th. order) should be elaborated.

The critical Pd concentration, for the suppression of superconductivity is =0.7 at.%
Pd [35]. The value ofdalls in the range where LMAF emerges. It would be of interest to
know whether the suppression of superconductivity coincides with the emergence
LMAF. USR experiments aimed at probing the LMAF in this concentration range are ir

progress.
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UPt Pd)
Voo1x x'3
SuU
SMAF
2 4 6 8

Pd concentration (at. %)

Figure 4.10 TheNéel temperature, TN, versus Pd concentration for U(RRd,))i alloys
as determined from neutron diffraction (O) and specific heat experiments (\3) (Refs. 2,
3, 31, 32). SMAF and LMAF denote small-moment and large-moment antiferromagnetic
order, respectively. In the lower left corner the upper superconducting transition
temperature T as determined by resistivity experiments is given [T denotes the

superconducting phase.

2 4 6 8 10
Pd concentration (at. %)

Figure 4.11 Uranium ordered moment at T* as function of Pd concentration in
single-crystalline U(Ptjd,); alloys. The line is a guide to the eye.
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4.8 Discussion

Our neutron-diffraction dataunambiguously show that the unusual small-momen
antiferromagnetic order observed in pure dUBtstable upon Pd doping. Indeed, we find
that Pd doping leads to an enhancement of SMAF as the ordered moment grows
increasing Pd content. The reverse behaviour was observed in the neutron-diffrac
experiments under pressure carried out on purg [2Bf. The moment decreases under
pressure and vanishes completely .at(@35 GPa. A quite remarkable observation is tha
both data sets, obtained by Pd doping and applying pressure, showy te#ins a
constant value of =6 K. This, together with the gradual increas&®j below ~6 K, could
indicate that the transition to the SMAF state is not a true phase transition.

The origin and nature of the SMAF are still subjects of lively debates. Unravelling t
nature of the small moment is hampered by the fact that, till today, it has been pro
convincingly by neutron-diffraction (Refs. 6, 25-27 and this work) and magnetic X-r:
scattering [27] experiments only. The analysis of both neutron-diffraction and magnetic
ray scattering data [27], lead to the conclusion that the SMAF is quantitatively the sam
the bulk and near surface of annealed;UPte only difference is the somewhat smaller
correlation length along a* and c* obtained in the case of magnetic x-ray scatteri
Ca=85+13Aand .= 113+30A at 7~0.15 K. These values should be compared t
Ca=280+50A and ~»= 500113@ at T- 0.57 K in the case of the neutron diffraction
experiment.

The possibility that the small moment is caused by magnetic impurities, defects
sample inhomogeneities can safely be excluded. Firstly, rather high impurity concentrat
would be needed, for instance, =1000 ppm of magnetic impurities with moments gf 0.6
in order to obtain the same magnetic signal as for the small moment ofg0$2candly,
impurities will not contribute to Bragg peaks of the type (1/2,0,0), since randon
distributed impurities or defects would give Q-independent scattering, while orde
imperfections would give rise to new satellite Bragg peaks close to the nuclear peaks.
same arguments are valid for stacking faults, observed in polycrystalline materials
transmission electron microscopy and x-ray diffraction measurements [37], and wi
could locally change the crystal symmetry and give rise to magnetic moments on ce
uranium atoms. On the other hand, one can imagine that there are sizeable sample r
(clusters) where large magnetic moments develop, which are perfectly ordered wi
propagation vector of (1/2,0,0). This in principle could give rise to the observed Brz
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peaks.Due to the finite size of these clusters (100-8)0the magnetic correlation length

is limited. These clusters would form 0.1% of the sample volume and would be separat
by large regions of non-magnetic GRtowever, the minor influence of annealing on the
SMAF, and the fact that the better samples (as determined by the degree of crystallograr
order) all exhibit a magnetic moment [38], strongly suggest that SMAF is an intrinsi
property.

At this point it is important to note that recent zero-field uSR studies on
polycrystalline [8] and single-crystalline [39] UPfailed to detect the small magnetic
moment (except for the \xSR study reportedRef. 40, but this result has not been
reproduced). In the course of a detailed investigation [9] of the evolution of magnetism |
U(Pt,Pd) by the USR technique, we found that LMAF gives rise to a spontaneous u
precession frequency. However, we did not observe any signal of the SMAF i
polycrystalline samples with x=0.000, 0.002 and 0.005. A possible explanation for this i
that the muon comes to rest at a site where the magnetic dipolar fields cancel due to
magnetic ordering. However, this is highly unlikely as SMAF and LMAF have an identical
magnetic structure and we have been able to detect the LMAF (in samples with x= 0.0
0.02 and 0.05). It is also unrealistic to expect a change of the stopping site at these low
concentrations. The uSR technique is sensitive enough to detect a static moment of |
order of 0.02 ji- One possibility is that the small moment fluctuates at a rate (f> 10 MHz)
too fast to be detected by uSR, but on a time scale which appears static to neutrons anc
rays. This then also solves the long-standing problem of why the small moment 0f UPt
cannot be seen BMMR, while its signal should fall well in the detection limit as was
concluded from experiments on U(ERd} (x<0.05) which successfully probed the
LMAF [41]. Fluctuating moments are also in line with the hypothesis that there is no true
phase transition at yTfor SMAF. The invariance of 7y and the cross-over-type of
behaviour suggests that the small moment is only a weak instability of the renormalise
Fermi-liquid whose properties hardly change at these low Pd concenti@gof<905).

In the Ginzburg-Landau analysis [19], which makes use of the symmetry breaking fielc
scenario, it is generally assumed that the SMAF forms in a single-q structure. However, th
existing neutron scattering data are compatible with a triple-q structure as well. The
guestion whether the magnetic order corresponds to a single-q or a triple-q structure
crucial for the understanding of the unconventional superconductivity because a single-
structure breaks the hexagonal symmetry, while a triple-q does not. The single-q and triple
g structures can be distinguished by applying a magnetic field. For example, in the case ¢
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a strong magnetic field applied along the b-axis, one expects to re-orient all domains :
the a -axis or in the terms of figure 4.2, qi is expected to increase a factor 3 due t
depopulation of gand g. Experiments carried out up to 3.2 T [42] and 12 T [26] did nc
show any redistribution of magnetic domains, so a triple-g structure for the SMAF cat
be excluded. However, it is possible that a field of 12 T is not sufficiently strong to cha
the domain population of moments as weak as :0ZHe SMAF itself is very stable to a
magnetic field. T is suppressed by only 0.7 K and 0.4 K for a field of 10 T applied alo
the a and c-axis, respectively. In the case of the LMAF the magnetic structure is sing
Neutron-diffraction experiments [43] carried out on U(Pto.95Pdoasb)function of an
external field applied in the basal plane showed the formation of a single-domain samy
5T.

The magnetic phase diagram of the U(PHj; pseudobinaries (Figure 4.10) is quite
unusual because of the distinction between SMAF and LMAF. The differences betweel
SMAF and LMAF can be outlined as follows: (i) the order parameter for the SMAF
unusual and grows quasi-linearly, while the order parameter for the LMAF is conventic
and confirms a real phase transition, Tty for the SMAF does not change with Pd conten
while 7N of the LMAF compounds follows a rather conventional Doniach-type pha
diagram, (iii) the SMAF is not observed in zero-field uSR experiments in contrast to
LMAF. This demonstrates that the SMAF and LMAF are not directly connected.

While the origin of SMAF in UPt3 remains unclear, the emergence of LMAF in t
alloyed systems is a general feature of heavy-fermion systems. The magnetic instabil
normally explained in terms of a competition between the on-site Kondo effect and
inter-site Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction. However, in the case
the U(Pt,Pd) system a clear-cut identification ofc Tand Trkky iS not at hand [44].
Moreover, since UPt3 is very close to a magnetic instability, the variatiop a&fdl 7Ry
before magnetic ordering occurs is small. Better documented systems in this respec
(Cei"La™RuySi2, where magnetism sets in at x=0.07 [45] &eC"-jAu”, where
magnetism sets in at x- 0.1 [46]. In these systems the magnetic instability is reached
critical hybridisation, which results from expanding the lattice. In the case of UGhEd)
occurrence of LMAF can be parametrised, to a certain extent, by the reduction of the
ratio upon alloying (and not by a volume effect, as the volume decreases). The applic:
of pressure has the opposite effect, since pressure increases the c/a ratio due |
anisotropy in the linear compressibilities (Kcg K3], These effects are however small anc
a satisfactory quantitative analysis is hampered by the limited accuracy in the values ©
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lattice constants and compressibilities. Pressure experiments, carried out on the 5 an
at.% Pd samples show that dopihgt.% Pd corresponds to an external pressure of about -
0.33 GPa [47]. In the case of 5 at.% Pd it was demonstrated by specific-heat experime
under pressure [48] that the LMAF state was fully suppressed at =1.6 GPa, therel
recovering the situation of pure YPt

Currently, much attention in heavy-fermion research is focused on the occurrence
non-Fermi-liquid effects at the critical concentration for the suppression of magnetism. |
the case of U(Pt,Pg)we expect that the border line magnetic/non-magnetic is close to
0.7 at% Pd, which is also the critical concentration for the suppression of
superconductivity. Resistivity and specific-heat experiments performed so far did not sho
any signature of non-Fermi-liquid phenomena. However, the quantum critical point has nc

been probed in full detail yet.

4.9 Summary

Neutron-diffraction experiments, carried out on a series of heavy-electron pseudobinar
U(P&JPd,} single crystals (x<0.05), show that two kinds of antiferromagnetic order,
termed small-moment antiferromagnetic  order (SMAF) and large-moment
antiferromagnetic order (LMAF), are found in the phase diagram. The small-moment
antiferromagnetic order, first reported for pure 4J# robust upon doping with Pd and
persists till at least= 0.005. The ordered moment grows from 0.018+0.0g®-atom for

pure UPj to 0.048+0.008Ja/U-atomfor x= 0.005. TheNéel temperature of 6 K, does not
vary with Pd contents. The order parameter for the small-moment antiferromagnetism he
an unusual quasi-linear temperature variation and points to a cross-over phenomenon ratt
than a true phase transition. The small moment is not observed by uSRM&hd
experiments. This could indicate that the moment is not static, but fluctuates at a rate larg
than 10 MHz. For x> 0.01 large-moment antiferromagnetic order is observed. At the
optimum doping (x= 0.05) T attains a maximum value of 5.8 K and the ordered moment
equals 0.63+0.05 uyU-atomy(X) for the large-moment antiferromagnetic order follows a
Doniach-type phase diagram. From this diagram we infer that the antiferromagnetic
instability in U(Pt],Pd} takes place for Pd concentrations 0.806< 0.01.
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Chapter 5

HSR study of U(Pt,Pd)

We report \xSR experiments carried out on a series of heavy-electron  pseudobing
compounds U(PtiPd)3 (x< 0.05). For x<0.005 the zero-field muon depolarisation is

described by the Kubo-Toyabe function. However the temperature variation of th
Kubo-Toyabe relaxation rate Afcr(T) does not show any sign of the small-mome
antiferromagnetic phase witlTrf= 6 K (signalled by neutron diffraction), in contrast to
previous reports. For 0.01<x<0.05 the muon depolarisation in the ordered state i
described by two terms of equal amplitude: an exponentially damped spontaneo
oscillation and a Lorentzian Kubo-Toyabe function. These terms are associated wi
antiferromagnetic  order with substantial moments. The Knight-shift measured in
magnetic field of 0.6 T on single-crystallineU(Pto.9sPdo.05)3in the paramagnetic state
shows two signals for B-L c, while only one signal is observed for B\\ c. The analysis of tl

Knight shift points to the presence of one muon localisation site (0,0,z).

5.1 Introduction

The heavy-fermion material UPt3 continues to attract a great deal of attention, because
its unconventional magnetic and superconducting properties. The low-temperature norm
state of UPt3 [1,2] presents an exemplary strongly renormalised Fermi-liquid, with
quasiparticle mass of the order of 200 times the free electron mass, as evidenced by
large coefficient of the linear term in the specific heat, y= 0.42 J/fmalid the equally
enhanced Pauli susceptibility, Xo(T—»0). The magnetic properties of this hexagonal
material are quite intriguing. The magnetic susceptibility %(T) has a broad maximum
?max~ 18 K for a field in the hexagonal plaiB—»0), which is attributed to the

stabilisation of antiferromagnetic interactions bel@m”. For T< Tyax the magnetisation
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a(B) exhibits a magnetic transition at a fidkf= 20 T (Bl ¢). This continuous phase
transition has been termed pseudo-metamagnetic and is interpreted as a suppression
antiferromagnetic interactions. The most striking magnetic property gfi&JBbdoubtedly
the small-moment antiferromagnetic order (SMAF) which develops belowNés
temperature & 6 K [3]. The ordered momemh= 0.02 (¢/U-atom is unusually small and
is directed along the a axis in the hexagonal plane. The magnetic unit cell consists ¢
doubling of the nuclear unit cell along the a axis. This weak magnetic order has be
documented extensively by neutron diffraction [3-7] and to a lesser extent by magne
x-ray scattering [8]. It has not been observed reliably in the standard thermal, magnetic
transport properties, even not by employing sensitive measuring techniques.
Substitution studies have demonstrated that; ibPtclose to an antiferromagnetic
instability [2,9]. By replacing Pt by isoelectronic Pd pronounced phase transitio
anomalies appear in the thermal and transport properties. NotabKxlikeeanomaly in
the specific heat and the chromium-type anomaly in the electrical resistivity give evider
for an antiferromagnetic phase transition of the spin-density-wave type. At optimal dopi
(5 at.% Pd) ymax= 5.8 K and the ordered moment equals 0.6xg12-atom [7, 10]. In
order to distinguish this phase from the SMAF of pure; Wt have termed it the large-
moment antiferromagnetic (LMAF) phase. The magnetic structures of the SMAF al
LMAF are identical. The magnetic instability can also be triggered by substituting Th for
[11-13]. Remarkably, the magnetic phase diagrams for the (UgltgRd U(Pt,Pd)
pseudobinaries are almost identical. This shows that the localisation of the urani
moments is not governed by the unit cell volume of these pseudobinaries (the unit
volume decreases by Pd doping, while it increases by alloying with Th). Long-ran
magnetic order also shows up when JJiBtdoped with 5 at.%\u, while substituting 5
at.% Ir,Rh, Y, Ceor Os, does not induce magnetic order [14-16]. This indicates that
shape effect, i.e. the change in the c/a ratio, is the relevant control parameter for
occurrence of magnetic order.

Recently, a neutron-diffraction study has been carried out in order to investigate
evolution of magnetism in U(Pti*Pd"]7] (see chapter 4). The diffraction experiments
have been carried out on single-crystalline samples for x< 0.05 and the principal results
summarised as follows. The SMAF reported for pure;Wsrobust upon alloying and
persists till at least x= 0.005. The ordered moment grows from 0.018+0.002 |VU-atom
x= 0 to 0.048+0.008 jiu/U-atom for= 0.005. A= 6 K and, most remarkably, does not vary
with Pd contents. Near ;t= 0.01 LMAF emerges. The ordered moment of this phase gr
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rapidly with Pd content and attains a maximum value of 0.63+0¢08-¢lom forx= 0.05
where alsoTy= 5.8 K is maximum. J(x) for the LMAF follows a Doniach-type phase
diagram [17]. From this diagram it has been inferred that the antiferromagnetic instak
in U(PtiPd,); is located in the range 0.5-1 at.% Pd.

Superconductivity (F 0.5 K) in UP{ is unconventional, as evidenced by the
multicomponent superconducting phase diagram in the B-T plane [18-21]. In orde
explain the phase diagram a number of phenomenological Ginzburg-Landau models
been proposed (s&f. 22 and references therein). The models which currently receive f
most attention are the 2D E-representation model and the ID odd parity model. In |
models the degeneracy of the superconducting vector order parameter is lifted |
symmetry breaking field, thus giving rise to two different superconducting phases in z
field. The splitting of the superconducting transition temperat& =T, - T—~is
proportional to the strength of the symmetry breaking field, “Ae. The natural candidate
for the symmetry breaking field is the SMAF, in which casg<Am?. Neutron-diffraction
experiments [3] have demonstrated that SMAF and superconductivity coexist. Substa
evidence for SMAF as symmetry breaking field has been deduced from neutron-diffrac
[4] and specific-heat [23] experiments under pressure. It was found thamnbatid A7;
are suppressed quasi-linearly with pressure and vanish at a critical pregsquB5pGPa.
Another route to explore the correlation betweerand AT¢ is by Pd doping. Specific-heat
experiments on pseudobinary L"Pt Pd” single crystals with x< 0.005 show that
increases at a rate 0.30 K7at.%Pd [24]. Correlating the valug3ofvith the values of the
ordered moments as deduced by neutron-diffraction [7] (see chapter 4) establishes ¢
link betweenATc andm [24] (see chapter 6).

In this chapter we report a USR study of the evolution of magnetism in URPTR)
work was carried out in parallel with the neutron-diffraction study [7] (see chapter 4). (
main objectives were: (i) to investigate the evolution of the weak magnetic order
function of Pd content in order to correlate m{x) with, (& and (ii) to investigate the
connection (or possible coexistence) between SMAF and LMAF. The motivation of us
the USR technique stems from the extreme sensitivity to magnetic signals. Besides
muon acts as a local probe, which permits to discern magnetically inequivalent sar
regions. For recent reviews of uSR experiments on heavy-electron systems and ma
materials we refer to Refs. 25 and 26.

Our work was in part inspired by the early USR experiments on polycrystalli
(Vi4Thj:)Pt3 reported by Heffneet al.[27]. For undoped URthese authors observed small
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increases of the Kubo-Toyabe relaxation ra&te], and the transverse field Gaussian
relaxation rate('G, below =6 K. These increases were attributed to weak static magneti
with a magnetic moment of the order of %00 ixg/U-atom. This discovery in fact
preceded the detection of SMAF by neutron diffraction. Bg®5Th.05Pt3,which orders
antiferromagnetically at \F 6.2 K with a large magnetic moment (=0.§'U-atom),
spontaneous “uoscillations at frequencies of 2 and 8 MHz were detected bglpwhile

for Uo99Tho.oiPt3no spontaneous oscillations were obselifed 4.2 K).

Subsequent ISR experiments on {ptedominantly deal with the superconducting
phases. Most of these experiments were carried out on single-crystalline material. Broh
et al. have measured the anisotropy and temperature dependence of the magnetic-
penetration by muon spin relaxation [28]. The observed power-law temperatt
dependence of the penetration depth could be accounted for by a superconducting
function with line nodes in the basal plane and axial point hodes.dtuMe[29] report on
an increase of the internal magnetic field below the lower superconducting transition,
which was attributed to a superconducting state with broken time reversal symme
However, the increase of the internal field below T~ was not confirmed in [at
experiments carried out by Dalmdes Réotier et a[30].

In our USR study we concentrate predominantly on the normal-state properties of
doped compounds. One of the principal results is that we, quite unexpectedly, could
resolve the SMAF in the zero-field experiments carried out on polycrystalline U(8.APd
with x= 0, 0.002 and 0.005. Also Dalmde Réotier et affailed to detect the SMAF by
ISR in their high-quality single-crystalline samples [30]. These results are at variance w
the data reported iRef. 27. For higher Pd concentrations (;t=0.01, 0.02 and 0.05) w
observe spontaneous” precession frequencies, similar to those reported for Th dope
UPt [27].

This chapter is organised as follows. Section 5.2 is devoted to the experimental det:
like the sample preparation process, the characterisation of the samples and some rel
parameters of the experimental set-up. In sections 5.3 and 5.4 we present the results ¢
zero-field (ZF) and low transverse field (TF=0.01 T) measurements on the SMAF a
LMAF states, respectively. In section 5.5 we present TF(= 0.6 T) experiments on sing
crystalline U(Pto.95Pdo.05)3. carried out in order to determine the angular and tempera
dependence of the Knight shift. In section 5.6 we analyse the Knight shift and discuss
possible muon stopping sites. In section 5.7 we discuss our results, while the summar
presented in section 5.8. Parts of these results were presented in Refs. 31 and 32.
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5.2 Experimental

The U(Pti,Pd)3 pseudobinaries crystallise in a hexagonal closed-packed structu
(MgCd3-type) with space group P63/mmc. The lattice parameters for x= 0 are given
a=5.764A and c= 4.899\. The lattice parameter for the a-axis %8t 0.05 is independent

of x within the experimental accuracy, while the lattice parameter for the c-axis decrea
at a rate of 3xI0"A per at.% Pd. This results in a minute reduction of the c/a ratio.

We have prepared polycrystalline material with 0.000, 0.002, 0.005, 0.01, 0.02 and
0.05 by arc-melting the constituents in a stoichiometric ratio in an arc furnace on a wat
cooled copper crucible under a continuously Ti-gettered argon atmosphere (0.5 b
Samples with low Pd conten{g< 0.01) were prepared by using appropriate master alloy
(e.g. 5 at.% Pd). As starting materials we used natural uranium (JRG&eQ,with a
purity of 99.98%, and platinum and palladium (Johnson Matthey) with a purity o
99.999%.For annealing, the samples were wrapped in tantalum foil and put in water fr
quartz tubes together with a piece of uranium that served as a getter. After evacual
(p< 10° mbar) and sealing the tubes, the samples were annealed at 950 °C during se
days.Next the samples were slowly cooled in three days to room temperature: :66
a single crystalline sample was pulled from the melt using a modified Czochrals
technique in a tri-arc furnace under a continuously Ti-gettered argon atmosphere. T
single-crystalline sample was annealed in a similar way as the polycrystalline material.

Four thin slices (thickness 0.8 mm, area 6x10°mwere cut from the annealed
polycrystalline buttongx= 0, 0.002, 0.005, 0.01, 0.02 and 0.05) by means of spark-erosio
The surface layer, defected by spark-erosion, was removed by polishing with diamo
paste (grain size 0.3 u.m). The samples were glued on a silver support by General Elet
varnish as to cover the desired area for the [aSR experiments: 12x20 mm . The sin
crystalline sampléx= 0.05) was glued to a silver rod, which served as sample support.

Parts of the polycrystalline batches were characterised by electrical resistivi
measurements. In agreement with the data presenief.iB3, the upper superconducting
transition temperature T amounts to 0.533 and 0.389 K, for x- 0 and 0.002, respectiv
Also the residual resistance,, vas found to increase linearly with Pd contents (x< 0.005),
which indicates that Pd dissolves homogeneously in the matrix. We obta@ups of
0.88, 2.49, 6.2 and 12licm for x= 0.000, 0.002, 0.005 ard01,respectively. For higher
Pd concentrationsgpises more rapidly because of the spin-density-wave type of magneti
order. TheNéel temperatures of the 2 and 5 at.% Pd polycrystalline sample determined |
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resistivity amount to 4.0 and 6.3 K, respectively. These values are slightly higher tl
measured previously on other batches (3.6 and 5.8 K) [2].

The USR experiments were performed at the Paul Scherrer Ing¥iilligen), using
the u+SR-dedicated beam-liiéM3. ZF and TF data were collected at the General Purpos
Spectrometer (GPS) usind'te flow cryostat{T> 16 K). Here also the angular variation
of the Knight shift was measured using an automated stepping motor device. Additiona
and TF data were taken at the Low Temperature Facility (LTF), which is equipped witl
top-loading®He-"He dilution refrigerator (Oxford Instruments) with a base temperature
0.025 K. By changing the operation mode of the dilution refrigerator temperatures uy

=10 K can be reached.

5.3 (ISR experiments on SMAF compounds (x< 0.005)

Zero-field uSR experiments have been performed on polycrystalline ,B@p8.. samples

with x= 0.000 in the temperature (T) interval 2.7-7.0 K, with x= 0.002 in the "-interv
0.9-8.0 K and with x= 0.005 in the “-interval 0.03-10 K. Some typical muon depolarisati
curves, taken on the x=0.005 compound at 7= 0.1 K and 9.0 K, are shown in figure
For x< 0.005, the muon depolarisation for T<10K is best described by the stand

Kubo-Toyabe function:

Grr(Akrf) =- +-(I-A%rr?)exp(--A%rr?) (5.1)

Here A<T:yt|v<Bz> is the Kubo-Toyabe relaxation rate, with Yh the muon
gyromagnetic ratio (YH2Ti= 135.5 MHz/T) and B? > the second moment of the field
distribution at the muon site. The Kubo-Toyabe function describes the case of an isotr
Gaussian distribution of static internal fields centred at zero field. The solid line in fig
5.1 presents a fit to the Kubo-Toyabe function Xer0.005. In figures 5.2, 5.3 and 5.4
AKT(7) is plotted for x= 0.000, 0.002 and 0.005, respectively. We conclude ¢hahaws

no significant temperature dependence. The average valuékT oéare 0.065+0.005,
0.058+0.009 and 0.083+0.004 u.s"er 0.000, 0.002 and 0.005, respectively. Additional
data for x= 0.002 were taken in a transverse field (perpendicular to the muon s
direction) of 0.010 T. Best fits were obtained using a Gaussian damped oscillati
G(0=cos(2ra+<t>)exp(-//2(6?f). The Gaussian linewidiBiTs,equals 0.081+0.007 jisAnd

is temperature independent as well (see figure 5.3).
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Figure 5.1 Typical zero-field spectra measured for  polycrystalline
U(Pto99sPdo,00s)3-The solid line represents a fit to the Kubo-Toyabe
function. The muon depolarisation is the same above and below the
antiferromagnetic transition (7v=6 K).

Surprisingly, our data for polycrystalline UPt3 are at variance with the results report
by Heffner et al.[27] who observed a doubling ofcf from 0.06 jxs*just above 6 K to
0.12|As" in the limit T—> 0 K. As the doubling ofAKT was attributed to the presence of
weak magnetic order (according to neutron diffraction SMAF), we conclude that the we
magnetic order does not show up in the ZF (J.SR signals for x< 0.005. Is does also not sl
up in the TF=0.010 T data. At this point it is important to realise that the neutrol
diffraction experiments [7] show that for x< 0.005 SMAF invariably sets inyat 6 K,
while the ordered moment grows with Pd content: m- 0.018+0.0g&J{atom,
0.024+0.003 g/lU-atom and 0.048+0.008 iVU-atom for x=0.000, 0.002 and 0.005
respectively. One could argue that the occurrence of SMAF is related to the sing
crystalline nature of the samples used for neutron diffraction. However, the single a
polycrystalline samples were prepared using the same high-purity starting materials ¢
also the po-values are about the same. Our unexpected result is in agreement with re

experiments on high-purity single-crystalline YRarried out by Dalmasle Réotier et al.
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<* 0.04

Figure 5.2 Zero-field Kubo-Toyabe line widthKT, far polycrystalline
UPts. The solid line indicates the average value.

[26, 30]. These authors did not detect SMAF in their ZF USR data, while neutrc
diffraction measurements carried out on parts of the samples show that SMAF is pre
with the usual characteristics. Two explanations for the absence of SMAF in the L
signals are conceivable: (i) thmuons stop at sites where the dipolar fields due to the
SMAF cancel, and (ii) the antiferromagnetic moment fluctuates at a rate >10 MHz, i.e.
fast to be detected by ixSR, but slower than the time scale of the neutron-diffrac
experiment = 0.1 THz. We come back to this most important issue in section 5.7.

The zero-field data for x< 0.005 (Figures 5.2-5.4) can be attributed entirely to |
depolarisation of the muon due to stafitPt nuclear moments. For pure Pand

U(Pt.998Pdo.002)3 experiments in a small (0.010 T) longitudinal field (along the muon s

Table | The calculated Kubo-Toyabe linewidth@\KT, of UPts in the
polycrystalline limit for axial symmetric sites. The first column

gives the multiplicity and the Wyckoff letter of the particular site.

site AKT (Us')
2a 000 0.061(1)
2b 00 14  0.081(1)
4e 00 18  0.073(1)
4 2/3 130 0.046(1)
2d  2/3 13 U4 0.079(1)
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Figure 5.3 Zero-field Kubo-Toyabe line width (O) and transverse field

0.02 h

(0.01 T) Gaussian line width (9) for polycrystallindJ(Pto.99sPdo.002)3-The

solid lines indicate the average values.

direction) confirmed the static origin. We have calculated A" due to nuclear momen
using the expression [34, 35]:

N lv, (U .V 5-3co0(9.)

KT="X/Pt('p,+1)(INY,YP,AJ ApA (5-2)

Here, the sum is over alf®®t nuclei (abundance 33.7%) with spin /pt=l/2 and
gyromagnetic ratioy (Yp/27t= 8.781 MHz/T), which are located at a distance rj from the
muon localisation site at an anglg with respect to the muon sp{kXQ is the permeability of
free space). For the most probable muon localisation sites the calculated valags of
range between 0.05 and 0.08 'uee Table 1). These calculations were performed for pure
UPt;, but for small amounts of Pt substituted by Pd, which has no nuclear moment, tt
corrections can be neglected. Since the measured valu@&Tohlso fall in the range
0.05-0.08 us" one cannot determine the stopping site from the depolarisation due to
nuclear moments. The problem of determining the stopping site is addressed in more de

in section 5.6.
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Figure 5.4 Zero-field Kubo-Toyabe line width for  polycrystalline
U(Pt0.99sPdo.005)3The solid line indicates the average value.

5.4 LMAF probed by \xSR experiments for x> 0.01

Zero-field u,SR experiments have been performed on polycrystalline RBf. samples
with x= 0.01 in the ~-interval 0.03-3 K, with x= 0.02 in the ~-interval6-8.0K and with
JC=0.05 in the T-interval 3.0-10 K. For all samples we can identify a magnetic phas
transition temperature, where below a spontanecuprecession frequency appears. This
phase transition, which takes place at 1.8, 4.1 and 6.2 K for x= 0.01, 0.02 and O0.(
respectively, is to the LMAF state. This is confirmed by the neutron-diffraction study o
single-crystalline U(Pti*PdJ from which it follows that théNéel temperature equals 1.8,
3.5 and 6.2 K, and the ordered moment equals 0.11+0.03, 0.35+0.05 and 0.68£Q0105
atom, for;t= 0.01, 0.02 and 0.05, respectively [7].

Since we do not expect the magnetic behaviour to vary strongly for 0.01< x < 0.05, v
have attempted to fit the \iSR spectra of the three LMAF compounds with one and t
same expression. Good fits can be obtained using the following depolarisation function:

G(t) = A, -exp(-Air)cos(27Wr + <) + -exp(-A40
V3 3 ) (5.3a)

+A22CKL(M"KL?) + A3Gkr(AkTO
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where
1 2
GKL(*KL? = - + -(1-?2t%_Oexp(-X«.0 (5.3b)

The first term of eq. 5.3aA\Gft), is the standard depolarisation function for a
polycrystalline magnet an@&KL"KLO is the Lorentzian Kubo-Toyabe function. In the
paramagnetic state A A,=0 and we only retain the standard Kubo-Toyabe function
GTCT(AKTO> just as for the SMAF compounds (x<0.005). The resulting valuéof is
comparable to the values reported in figures 5.2-5.4. ForyTwe find A\= A, whereas
As= 0. This suggests that half of tmeuonsstops at sites where the dipolar fields cancel,
while the other half stops at sites with a net local dipolar magnetic field. The analysis witl
help of eq. 5.3 yields a more consistent description for the various Pd concentrations, wh
compared to the slightly different analysis of the zero-field data preliminary reported in
Refs.31 and 32, respectively.

In order to show that the first two terms in eq. 5.3a account for the LMAF state we
have plotted in figure 55 and figure 5.6 the spontaneous frequency Vi(T) and th

depolarisation rate of the Lorentzian Kubo-Toyabe functiX¢i(T), respectively. For the

Table Il Fitting parameters for the LMAF state, determined from the zero-field
temperature dependences of mg,Xand V/, described by the relation
f(T)=F(0)(I-(T/Ty)?. The subscript ND refers to parameters determined
from neutron-diffraction experiments, while the subscripts KL and V;

refers to the parameters determined from the \i.SR data (see eq. 5.3).

X m(0) (uB) ?N,ND (K) OCND PND
0.01 0.11(3) 1.6(2) - -
0.02 0.34(5) 3.5(2) 1.9(2) 0.50(5)
0.05 0.63(5) 5.8(1) 1.8(1) 0.32(3)

X AKL(0) (us')  TNKL (K) OCKL RKL
0.01 0.76(5) 1.58(8) 1.9(4) 0.85(30)
0.02 3.9(3) 4.16(6) 1.9(2) 0.36(5)
0.05 9.3(9) 6.35(12) 2.0(5) 0.36(6)

X Vi(0) (MHz) TNV (K) CM Rvl
0.01 4.7(2) 1.75(9) 1.5(4) 0.48(9)
0.02 7.9(1) 4.15(1) 2.0(2) 0.39(2)

0.05 8.1(1) 6.21(1) 2.1(3) 0.39(2)
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LMAF state we found that the order parameter m(T) as measured by neutron diffrac
could be described WI{T*)=f[0)(I-(T/T\)?. The same expression, with almost identical
values of a an, yields a proper description ®fi(T) andxkL(T) as well (see solid lines in
figures 5.5 and 5.6). The fit parameters are listed in Table Il. For x- 0.02 and 0.05
values off3 are close to the theoretical valGe 0.38 for the 3DHeisenbergmodel [36].
The phenomenological parameter oc reflects spin-wave excitations. In a cul
antiferromagnetic system a is predicted to be 2 [37]. To our knowledge no predictions
available for a hexagonal system. A point of concern is that for a simple polycrystalli
magnet one expects the spontaneous frequency Vi(0) to scale with the ordered mon
which is clearly not the case here, as follows from the data in Fabt®wever, XKL(0)
scales with the ordered moment. We comment on this point in the next paragraph.

In order to demonstrate the relative contributions of the first two terms in eq. 5.3a
the total depolarisation function we have plottegt)Gand GKL(*KL0 in figure 5.7 for a
typical USR spectrum in the LMAF state, taken on U(Pto.99Pdo.di)3 &1 K. In figure 5.8
the concentration dependence qftfsand GKL(AKLO is shown. Whereas GKLCMKLO varies
smoothly with Pd contents, () is almost identical for x= 0.02 and 0.05. If both signals
were to originate from the same ordered moment, A@nand V| should both increase
proportionally to the ordered moment. A possible reason for the absence of scaling of
frequency with the ordered moment is that the expression {ty iSonly valid when X\«
co=27tVi. Such a situation is describedRief. 38 for a Gaussian field distribution. When X\
is of the same order &4, large systematic errors can influence the fit parameters(tf G
Since we deal with heavily damped spontaneous oscillations this is in part the case.
temperature dependence of X\ is plotted in figure 5.9, which shows that X\ is alm
constant below 7N for x=0.02 and 0.05, with average values of 5.2+0.5 us~ &
6.120.5 U$ respectively. The fit to eq. 5.3a results in valWeso=0.1. Using the
procedure as described Ref. 38 we arrive at a correction ¥} of only = 10%. This small
correction cannot explain the absence of scaling between \j and the ordered moment.

remaining fit parameter X\ is plotted in figure 5.10.
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Figure 5.5 Temperature variation ofy for polycrystaline  U(PtlPd,)3

with x= 0.01, 0.02 and 0.05 (see eq. 5.3). The solid lines represent fits to the
function f(T)=f(0)(I-(T/Rff (see text).
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Figure 5.6 Temperature variation ofKLfor polycrystalline  U(PtjPd)3
with x=0.01, 0.02 and 0.05 (see eq. 5.3). The solid lines represent fits to the
function f(T)=fiO)(I-(T/T)% (see text). X« (T) scales with the ordered
moment.
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Figure 5.7 Typical zero-field spectrum measured for poly crystallingto.99Pdo,oi)3at
T- 0.1 K. The lines represent the different components of the fit (see eq. 5.3).
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Figure 5.8 Contributions to the muon depolarisation function (see eq. 5.3) in the
ordered state for polycrystaline U(RRd,)3 with x= 0.01, 0.02 and 0.05. Upper frame:
Lorentzian Kubo-Toyabe function. Lower frame: exponentially damped oscillating
component.
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Figure 5.9 Temperature variation of'k\ for polycrystalline  U(FRD)3
with x=0.01, 0.02 and 0.05 (see eq. 5.3).
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Figure 5.10 Temperature variation of V\ for polycrystalline U@Pdk)3
withx=0.01, 0.02 and 0.05 (see eq. 5.3).
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5.5 Transverse fieldi,SR

5.5.1 Knight shift

In the transverse field configurationthe external magnetic field,Bey, is applied
perpendiculato theinitial muon polarisationS” Thelocal magnetic fieldat theinterstitial
site of theimplanted muorcan bedetermined fronthe Larmor precession frequencihe
Knight shift is therelative frequencyor field shift and isdefinedas:

|But| Bm Qé

where (Oo= Ymext- Here,we consider only metali theparamagnetic state thateexposed
to amagnetic field. Neglectinghe Lorentz and thedemagnetising fieldsaswell assmall
diamagnetic contributionsye canwrite theKnight shift as

KA=K gortb-(Algpdb) (5.5)

where b= Bgi/#ext is theunit vector paralleto theapplied magnetic fieldandKcgg is the
Knight shift due to thedirect contact field inducetly thepolarisationof the conduction
electrons.Kon is proportional to thePauli susceptibility %0 of the conduction electrons,
which is usually assumetb betemperature independeandisotropic. Thesecond parbf
the Knight shiftis proportionalto theatomic susceptibility tensoo, and A\ is thetotal
hyperfine coupling tensoiK.,, can bedetermined fromthe experimentalK”x) databy
extrapolating 7 °°, where %= Xo- The elements of A\x can be determined
experimentally frontheKnight shift anisotropylf the principal axesf the Knight shiftare
chosenasco-ordinate frametheKnight shift A} for B|i is simply givenby

K,= A% (5.6)

With the knowledgeof % thetensor elementd" can bedetermined fromthe observed
Knight shifts AT, The total hyperfine coupling tensas the sum of thelipolar and the
indirect contact contributionA,,; = A® + Ao The indirect contact fieldis due to the
RKKY interaction betweerthe localised momentsand themuon. The indirect contact
interaction is independentof the orientation of the external magnetic field,so that
Acos=AcosE, Where E is the unit tensor. Becaugky is the sum of draceless dipolar
tensor and a scalar contact part,A,; can be decomposed usingthe relation
A\, =1/3 Tr(Aty ) E. Thedipolar coupling tensoA), is givenby:
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Table HI  Calculated dipolar tensor components for several

axial symmetric sites (AN = A" ).

interstitial A

site (molicm 3) (mol/cm?)
000 0.0037 -0.0075
00 18 0.0039 -0.0078
0014 0.0041 -0.0082
23183 0 00717 0.144
2318 18 -0.0215 0.0430
23183 14 00128 0.0256

aipuy S4 7 5.7)

The dipolar field at site r* is determined from the sum over all f moments at positions r
r=rj-r y={x\*C2")={x,y,z), r=\nn and 8y is Kronecker's symbol. By comparing the
experimentally determined A \ with the theoretical values, calculated with help of eq. 5.7
it is often possible to determine the actual muon stopping site.

O - (0,0,0)
(2/3,1/3,0)
Pt . (2/3,1/3,1/4)

Figure 5.11 The crystallographic unit cell of UPts (space group P6s/mmc).
The axial symmetric sites (0,0,0), (2/3, 1/3, 0) and (2/3,1/3,1/4) are indicated.
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In figure 5.11 we show the unit cell of U(Pt,Rdnd the possible high-symmetry
muon localisation sites. In figure 5.12 we show the projection of the magnetic structure
determined by neutron diffraction. The calculated dipolar tensor components for axi

symmetric sites are listed in Table Ill.

5.5.2 Results for U(PtegRdo.05)3

In this section we report on \iSR experiments carried out on single-crystalline
U(Pto.95Pdo.05)3 in a transverse field of 0.6 T. The sample was shaped into a cu
(dimensions 5x5x5 mM) with edges along the principal crystallographic directions. The
temperature variation of the Knight shift was measured between 10 and 250 K for the fie
along the a-axi¢AT) and the c-axis (¥, while the angular variation was measured for a field

in the (a,c) plane at T- 10, 20, 150 and 250 K. Parts of these results were preseRééd in

Figure 5.12  Projection of the crystallographic structure of U@Pi,)3 on the
ab-plane. The large (small) circles indicate the U (Pt) atoms. The open and closed
circles represent atoms in adjacent hexagonal planes. The arrows indicate the magnetic
moments (along a ) at theU-atoms. The dotted and solid lines delineate the
crystallographic and magnetic unit cell, respectively. The crosses denote the (0,0,0) site
where the dipolar fields cancel.
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uEpt Pd. )
0.95 0.05'3
T= 10 K, TF=0.6T

Background
signal
QQ INO& X
80.5 81.0 81.5 82.0 82.5

Frequency (MHz)
Figure 5.13 Fourier transforms of the spectra measured at 10 K in a
transverse field of 0.6 T for single-crystallineJ(Pt,_od2do.05)3: solid line
B\\a, dotted line B\\c. The arrow indicates the background signal.

32. Our preliminary analysis indicated: (i) the presence of only one frequency component ir
the Knight shift, (ii) an unusual crossing of, lknd K near 140 K, and (iii) an unusual
angular variation. Afterwards, similar experiments were carried out on undoped UPt:
[39, 40]. Because these experiments were carried out at the GPS (TF= 0.6 T) using MOR
(Muons On REquest, see chapter 2) and at the LTF in transverse fields up to 2 T, the da
have a better resolution. These high resolution data yield the following important
conclusions: (i) for B+ c the Knight shift consists of two closely spaced frequency
components with equal amplitudes, (i) above 115 K slow muon hopping occurs, and (iii)
the angular dependence in the (a,c) plane follows a norm&ll@es With this in mind, it is
conceivable that part of the preliminary results reportedRéf 32 are to be attributed to
the limited resolution. In addition, demagnetising effects hampered the interpretation of the
angular dependence of the Knight shift.

Motivated by the results obtained for pure WPF39,40], we next analyse the
transverse-field data of the U{PBPd0.05)3 compound in the same way. In figure 5.13 we
present the Fourier transforms of the spectra at T= 10 K and TF= 0.6 Bfffra and

Bexd| C. Besides the background signal at 81.55 MHz, which is duauons stopping in
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05
UPt Pd )
V. 0.95 0.05'3

300

Figure 5.14 Temperature dependence of the Knight shifi 0]
U(Pto.9sPdom)r-(+) one componentfitfor B\ a, (M, *) two component fit
fwy, voJ for B\\ a, and(0)B\\ c. The solidesare to guide the eye.

the silver sample support, we observe two signals §gif & and only one signal 8| c.
This is in very good agreement with the results reported for pure [3P{40]. For
T>10K, the two signals in the Fourier transform fagt|Ba are no longer observed.

Instead, a single but always asymmetric peak is observed. We have analysed the spectr

Bexd| @ with the following three-component depolarisation functiqt)G
G4f) = A,e™" cos(2nv,f+ (p) + Ae™ cos(2nyt + (p)
+Ane " COS(2n¥%g?+ (0)

The first two components account for the USR signal from the sample and the thi

component is the background signal. Although the first two signals are not resolved in tl

frequency domain, it is possible to fit both components in the time domain by fixing

A,= A, In eg. 5.8 the envelops of the oscillating functions are exponentials. We also trie

Gaussian damping, but it was not possible to discriminate between exponential or Gauss

damping terms. The resulting frequenciésand v are almost not influenced by the choice

of the envelop function.
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05
U(PtO.QSPdO.OS)'3
0.0
-0.5
6-1-0
1.5
Bl a (v1)
-2.0
Bl a (v2)
s BIIC
0.00 005 010 015 020  0.25

X (cm®*mol)

Figure 5.15 Clogston-Jaccarino plot forU(Pto.95Pd,05)3: (*) one
component fit for B\ a(M, ¢) two component fit (W,.y for B\\ a, and
(0)B\\c.

In figure 5.14K,(T) and K(T) are plotted. For &|| a we show K~T) obtained by
fitting a one and a two-component function in addition to the background signal. The o
follow a Curie-Weiss behaviour in a limited T-range (50-100 K) only. For T>100 K th
difference between the two signals, \j-Wecomes smaller and above 150 K the data ca
only be fitted with one frequency. This is consistent with muon diffusionTferl15 K,
reported for pure UR{40]. As the muon diffuses, it experiences an average local magne!
field.

Next we compare the Knight shift with the susceptibility (measured on a differe
crystal) using a SQUID magnetometer. Hor 30 K %(T) follows a modified Curie-Weiss
law, %=%0+C/(T-Q). The results are in excellent agreement with measurements repor
Ref. 41. In figure 5.15 we present the Clogston-Jaccarino déa), with the temperature
as an implicit parameter. The Clogston-Jaccarino plot shows several remarkable featt
(0 "a0Ca) deviates strongly from the expected linear behaviour, wh{&o)Kis
approximately linear, and (ii) the direct contact contribution to the Knight shift (r-> °°
Kcoa Seems to be strongly anisotropic, while the unrenormaksedi susceptibility %is
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not. This strongly suggests that the local and bulk susceptibilities differ, which hampers 1
use of eq. 5.6 to determine the components of the dipolar tengprin Ahe next section
we follow a more straight-forward method to determine the stopping site, by making use
the Knight-shift data only. This analysis for 0.05 parallels to a large extent the analysis
reported for pure UR{40].

5.6 The muon localisation site

It turns out that the Knight-shift data follow a modified Curie-Weiss behaviour accuratel
albeit in a rather limited temperature range. The lower temperature limit is about 30
which is the temperature below which x(T) deviates from the Curie-Weiss law because
the stabilisation of antiferromagnetic interactions, while the upper limit (= 100 K) i
determined by muon diffusion. Therefore we write:

Ki(T) = K'coatAioC/(T-8) (5.9)
with C=AAMOPef3'B and the coupling constamy = Agy +A'gp. In figure 5.16 we show
Kj(T) where the solid lines present fits to eq. 5.9. In this way we can detekhige, Alq C

0.0

095 0.05'3
B=06T
50 75 100 125

r(K)
Figure 5.16 Knight shift ofU(Pto.9sPdo.o5)3between 30 and 100 K:
(U, «; frequency components;(w,) for B\\ a, and (O) B\ c. The solid
lines represent fits to eq. 5.9.



\JLSRstudy of U(Pt,Pd)} 103

Table IV Parameters deduced from a fit of the Knight shift WfPto.9sPd.05)3
to the modified Curie-Weis law (see eq. 5.9). For B\ a the

parameters for the two different signals are labelled by V; and v

' -Cn(ppm)  A',C(K-) 9,(K)

Blla(vi)  -21(30)  -0.074(4) -66
Blla(w) -537(128) -0.100(15) -66
Bljc 568(43) -0.315(20) -100

and O-. The fit results for K and Ay C are listed in Table IV, where we have taken 9;
equal to 100 K and 66 K, for the a and c-axis, respectively, as determined from tt
analysis on URt [40]. Next we have evaluated (A and A,, for the electronic
configurations! (U*"),f (U*) andf (U*") with effective moments Y= 3.62, 3.58 and
2.54 (j-B/U-atom, respectively. The results for B|| a (frequency compon&ntand v) and

B|| c are listed in Table V. Using the data of Table V we have calculated aitl the
results are presented in Table VI. Finally we comparg, #ith the calculated values for
axial symmetric sites, listed in Table JR. For the f' anddnfigurations we find a very
good agreement if the stopping site is (0,0,z). It should be noted that smal? free-ion
effective moment values differ from the vallékfr~ 2.8 ur/U-atom determined from the
modified Curie-Weiss fit t@(T). This indicates that the local susceptibility differs from the
bulk susceptibility. A second, more direct way to arrive at the (0,0,z) stopping site follow:
from the isotropy of the Knight shift in the basal plane [40], which requires a diagona
dipolar tensor. This in turn means that the muon stopping site is of axial symmetry an
because A} <0 the stopping site is restricted to (0,0,z) (see Table Ill). The calculatec

values of the dipolar tensor for these sites are very close to each other.

The analysis of the zero-field experiments on the LMAF compounds, however, seen

to indicate two different stopping sites in the ordered phase, where each site is related

Table V Ay andA,, of U(Pto.9Pd,.osh calculated from A[C (as listed in Table IV) for
the electronic configurationsf ' (U*), # (i) andf (U*). The two different
signals for B\ a are labelled by V; and.V

U C Aa,v| Aa,VZ Ac Av< A v 2

v ° Atot Aot not Acon Acon
(cm*molK) (mol/cn®) (molicn®) (mol/cnt) (molicnt) (molicnt)

3+ 20.60 -0.0036  -0.0049  -0.0153  -0.0075 -0.0083

4+ 20.14 -0.0037  -0.0050  -0.0156  -0.0077 -0.0085

5+ 10.14 -0.0073 -0.0099 -0.0311 -0.0152 -0.0169
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Table VI Dipolar tensor components gA'of U(Pto.gsPdo.os)Jor the
electronic configurations' (U%"),F (U*") andf  (U*).

T 4" v, 4C,V, .a,\v .C,Vo
u ~dip ~dip ~dip Adip
(mollcn?)  (mollen®)  (mol/len®)  (mol/cn?)
~3+ 0.0039 -0.0078 0.0034 -0.0070
4+  0.0040 -0.0080 0.0034 -0.0071
5+  0.0079 -0.0158 0.0068 -0.0141

one of the two components of the muon depolarisation function (eq. 5.3a). The first tel
with amplitude A\ signals a stopping site with a fairly large local dipolar field which
amounts to 0.10-0.28 T/(J.B, as the spontaneous frequencies range from 4.7-8.1 MHz
x= 0.01-0.05. The second term with amplit¥desuggests the presence of a site where the
local dipolar magnetic fields cancel or are at least smaller than DWQR%s follows from

the measured Lorentzian Kubo-Toyabe linewidth. Since A\=Ai both terms have equ
weight. In figure 5.17 we have plotted the calculated dipolar field along (0,0,z) and alor
(2/3,1/3,2) for the antiferromagnetic structure (assuming an ordered morntefit3pfof the
U(Pt,Pd} compounds. The dipolar fields for (0,0,z) and (2/3,I/3,z) range between 0O ar
0.023 T/(*8 and between 0.26 and 0.67 T/U,B, respectively. By comparing the measured :
calculated (see figure 5.17) local dipolar magnetic fields, we conclude that the Lorentzi
Kubo-Toyabe term is associated with the (0,0,z) stopping site, which is consistent with t
analysis of the Knight shift. The presence of the spontaneous frequency term can poss
be attributed to a second axial symmetric stopping site along (2/3,1/3,z). However, for tt
site A"p >0 which is in conflict with the analysis of the Knight shift.

5.7 Discussion

One of the unexpected conclusions from the present work is that $X4AG.005) is not
detected in the zero-field uSR experiments. A first natural explanation of this result is th
the SMAF is not present at all. However, this is contradicted by neutron-diffractior
experiments. A second explanation is offered by’ alocalisation site where the dipolar
fields due to the magnetic structure cancel. The most probable (axial symmetric) site
then the (0,0,0) site (see figure 5.17). The measured valudRTadre consistent with
depolarisation of the muon due to Pt nuclear moments. A comparison of the measured
calculated values ofKT for axial symmetric stopping sites (Table I) is not inconsistent
with the (0,0,0) stopping site. A third explanation for not observing the SMAF could b
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0.8
(2/3, 1/3, z)-sites
U= 04 -
o0
0.2
0.0

0.020 (0, 0, z)-sites
0.015

0.010
Do’
0.005

0.000-—' * ' ' <«
0.00 0.05 0.10 0.15 0.20 0.25

Figure 5.17 Calculated locadipolarfieldfor (0, 0, z) and2/3, 1/3, z) sites.

that the antiferromagnetic moment fluctuates at a rate >10 MHz, i.e. too fast to be detect
by u,SR, but slower than the time scale of the neutron-diffraction experiment =0.1 TH:
This explanation is particularly appealing because it also could clarify the absence of
signature of the SMAF ilNMR experiments [42, 43]. Kohogt al. [42] carried out*Pt

NMR on the U(Pti"Pgs; system. For compounds with LMAF (e.g. x= 0.05), zero-field
experiments showed that the transferred hyperfine field does not cancel at the Pt site.
simple calculation showed that the internal field originating from SMAF for Jt= 0 should
have been observed as well, however, this turned out not to be the case. Since
symmetry argument for cancellation of the dipolar field does not hold for the Pt sites, th
most probable explanation for the absence of the SMAF is the one of the fluctuatin

moment.
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Recently, it appeared that in a transverse field the situation is different. Experimen
carried out on URtsingle crystals in the field range 0.6-2 T and temperature range
0.1-200 K do show signatures of the SMAF [39]. Notably aroihcan additional Knight
shift is observed. The Knight shift consists of two closely spaced signals for B+ ¢, whil
only one signal is observed for BJ|| c. For Bx ¢ a peculiar temperature variation of tt
amplitudesAi andA-i of the (Gaussian and exponentially damped) frequency components
observed. For 2 K < ¥ 10 K, A\>Ai with a maximum difference A\-Ai around T"- 6 K,
while for T< 2 K andT> 10K A\= A2- On the other hand, the analysis of the Knight shift ir
the temperature interval 30-115 K indicates the presence of only one stopping site (0,C
[40]. The presence of two frequency components and only one stopping site, provid
strong evidence for two spatially distinct regions of different magnetic response up to
least =115 K. Whether the different magnetic response originates from macroscopica
separated regions (e.g. domains) or is periodic in nature (e.g. a structural modulation [4
remains an open problem.

For x> 0.01 the LMAF is clearly observed in the zero-field uSR data. The muor
depolarisation in the ordered state is described by two terms of equal amplitude:
exponentially damped spontaneous oscillation and a Lorentzian Kubo-Toyabe functio
However, it is not understood why the spontaneous frequinicyloes not scale with the
ordered moment, while the linewidthyXdoes. The analysis of the Knight shift, measured
in a transverse field of 0.6 T, indicates the presence of one single axial symmetric stoppi
site (0,0,z). The data in Table IV show that the splitting of the TF-signal for B in the bas
plane predominantly arises from the different values Kgf, The local atomic
susceptibilities are the same since the values of C and 0, are the same. The fact that the
signals in the paramagnetic state and in the ordered state have the same ratio (Al-
indicates that the two signals in the ordered state are also associated with the site (O,(
The observation of two contributions, i.e. one term with large spontaneous frequencies |
the range 4.7-8.1 MHz) and a second term described by the Lorentzian Kubo-Toya
function, is possibly related to the vastly differéfy,,. At the moment we cannot offer an
explanation how A% and the spontaneous dipolar fields beloywniay be connected to
each other, but the absence of scaling of the spontaneous frequency with the orde
momentm might be another indication for an unusual muon depolarisation mechanisn
High-resolution transverse-field experiments are needed to clarify these issues.

The USR and neutron-diffraction studies demonstrate that SMAF and LMAF in the
U(Pti,Pd)3 pseudobinaries are not closely connected. The differences between SMAF a
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LMAF are: (i) Tn(X) attainsaconstantvalue of = 6 K for SMAF, while J(x) of the LMAF
compounds follows a Doniach-type phase diagram, (i) the squared order paraf(iEter m
for the SMAF, as measured by neutron diffraction, grows in an unusual quasi-line
fashion, while the order parameter for the LMAF is conventional and confirms a real pha
transition, and (iii) SMAF is not observed in zero-field USR experiments in contrast t
LMAF. The latter point we attribute to the fluctuating nature of the small ordered momen
which is consistent wittNMR data [4243]. This strongly suggests that the SMAF does
not present a true phase transition, but rather is a crossover phenomenon. The USR
neutron-diffraction studies both show that LMAF is presentxfed.01, while it is no
longer observed for x= 0.005. This implies that the antiferromagnetic instability for th
LMAF is located in the concentration range x= 0.005-0.01. uSR experiments on samp
with intermediate Pd concentrations are underway in order to determine the critic
concentration fot MAF, x.. Of particular interest here is to investigate whether this critical
concentration coincides with the critical concentration for the suppression o
superconductivityx.= 0.007 [33]. This would provide strong evidence that LMAF and
superconductivity compete. On the other hand, SMAF interacts with superconductivity :
the size of the ordered moment controls the splittidg T~ [24] (see chapter 6).

Although SMAF and LMAF appear not to be connected, there are close similarities i
the transverse-field signals, as measureat$od andx= 0.05. For both compounds: (i) two
signals contribute to the Knight shift for Bl ¢, while only one contribution is observed for
B||c, (i) for Bl ¢ the amplitudes of the two contributions in the paramagnetic state ari
almost equal, and (iii) the analysis of the Knight shift indicates the presence of only or

stopping site (0,0,2).

5.8 Summary

ISR experiments have been carried out on a series of pseudobinary polycrystalline hea
electron U(PtIPd,} compounds(x< 0.05). For x< 0.005 SMAF is not observed in the
zero-field signals, whereas neutron diffraction shows that SMAF is stable upon alloyin
and |(x)~6 K. The uSR spectra for 0.005 are consistent with depolarisation of the
muon due to nuclear moments. For 0.8%<0.05 LMAF is clearly observed in the zero-
field (JSR data. The muon depolarisation in the ordered state is described by two terms
equal amplitude: an exponentially damped spontaneous oscillation and a Lorentzian Kub
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Toyabe function. The depolarisation rate of the Lorentzian Kubo-Toyabe function, \KL(
was found to scale with the ordered moment m(T) as measured by neutron diffraction.
presence of two terms in the ZF data seem to indicate two different stopping sites,
(0,0,2) and (2/3,l/3,z) site. The Knight shift measured at 0.6 T on single-crystallir
U(Pto.95Pdo.05)3 in the paramagnetic state shows two signals for Bt ¢, but only one si
for BJ| c. The analysis of the Knight shift points to the presence of only one stopping ¢
(0,0,2).High-resolution transverse-field experiments are needed to elucidate the problen

the determination of the stopping site further.
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Chapter 6

Superconductivity in U(Pt,Pd)

The effect of Pd doping on the superconducting phase diagram of the unconventiona
superconductor URthas been measured by (magneto)resistance, specific heat, thermal
expansion and magnetostriction. Experiments on single- and polycrystalline Rgp8.

for x< 0.006 show that the superconducting transition temperatures of the A phase, T
and of the B phase, T~ both decrease, while the splitting iAdreases at a rate of
0.30+0.02 K/at.%Pd. Tire B phase is suppressed first, near x= 0.004, while the A phase
survives till xz0.007. We find that AJx) correlates with an increase of the weak
magnetic moment m(x) upon Pd doping. This provides further evidence for Ginzburg-
Landau scenarios with magnetism as the symmetry brealfiedd, ie. the 2D
E-representation and the ID odd parity model. Only for small splittingsod¥m (T* )
(ATc<0.05K) as predicted. The results at larger splittings call for Ginzburg-Landau
expansions beyond 4th order. The tetracritical point in BA€ plane persists until at least

x= 0.002for Bl c, while it is rapidly suppressed for B\\c. Upon alloying the A and B

phases gain stability at the expense of the C phase.

6.1 Introduction

The superconducting instability in heavy-electron compounds [1,2] continues to attract &
great deal of attention. In the past years much research has been directed towards the clc
connection between superconductivity and magnetism in heavy-electron materials [3]. Th
principle research issues which have emerged are: (i) spin-fluctuation versus phono
mediated superconductivity, (i) the symmetry of the superconducting gap function, and
(iii) the interplay of magnetic order and superconductivity. Among the heavy-fermion

superconductors URt with a superconducting transition temperaturg 0.55 K [4], is
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regarded as exemplary. The low-temperature normal state is characterised by pronot
antiferromagnetic spin-fluctuation phenome(f#= 20 K) and incipient magnetism [5],
which give rise to a strongenormalisatiorof the effective mass, of the order of 100 times
the free electron mass. Neutron-diffraction experiments have shown that superconduc
in UPt coexists with antiferromagnetic order, which develops beldvéeltemperature of
7N=6 K [6]. The antiferromagnetic order is unconventional in the sense that the orde
moment squaredh (7) grows quasi-linearly with temperature. Moreover, the size of th
ordered moment is extremely small m(0)= 0.02+0.04Ueatom. The superconducting
ground state is difficult to reconcile with strong magnetic interactions and, therefore, it |
been suggested that superconductivity is mediated by antiferromagnetic interactions r:
than by phonons [7]. However, decisive experimental evidence for this is still lackir
More recently, it has been argued that superconductivity is a more general propert
heavy-fermion antiferromagnets close to a quantum critical point [8]. In the casezof U
the quantum critical point might be reached by doping [5], but the concurrent non-Fer
liqguid behaviour has not been signalled so far. In the past decade, evidence
accumulated that superconductivity in bJit truly unconventional, i.e. the symmetry of
the superconducting gap function is lower than that of the underlying Fermi surface |
Evidence for this is in part presented by the power-law temperature dependence of
electronic excitation spectrum below, ihdicating point nodes and/or line nodes in the gar
[10]. The discovery of a multicomponent superconducting phase diagram with three vor
phases in the field-temperature plane [11-14], and the subsequent explanation within
Ginzburg-Landau theory of second order phase transitionsRfeel5 and references

therein) is in general considered as hard proof for unconventional superconductivity.

UPt; is the only known superconductor with three different superconducting vorte
phases. In zero magnetic field two superconducting phases are found, the A phase b
T* =0.54 K and the B phase belo#' = 0.48 K. In a magnetic field the A phase is
suppressed, while the B phase transforms into a third phase, labelled C. The three pt
meet in a tetracritical point. The phenomenology of the phase diagram has been stu
extensively using Ginzburg-Landa(GL) theory, where the free energy functional is
derived exclusively by symmetry arguments (the symmetry group fog iSHDs). A
number of GL models have been proposed [15-22] in order to explain the zero-fiel
splitting ATc = 7.-7" [11] and the topology of the phase diagram in magnetic fiel
[12-14] or under pressure [23,24]. Most of B& models require an unconventional
superconducting order parameter. The most plau€iblenodels which have been worked
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out tounderstand the phase diagramf UPt; fall into three categories: (i) the degeneranfy
a two-dimensional (2D)even or oddparity order parameteris lifted by a symmetry
breaking field [16-19], (ii) the spin degenera®f aone-dimensional (ID) odd parity order
parameterislifted by asymmetry breaking field under the assumptiof aweak spin-orbit
coupling [15, 20], and (iii) therds anaccidental degeneracpftwo nearly degeneratéD
representations [19, 21]. Howevenoconsensushasbeen reachedaseach of thethree
models only partially describeshefield andpressure variationof the superconducting
phases.As regards the first two scenaricakey issueis toidentify the symmetry breaking
field (SBF). Experimental evidence thatheanomalous weak antiferromagnetic order,
which setsin atry= 6K, actsasthe SBFis athand [25]. Another candidate for the SB&
the incommensurate structural modulation whidhasbeen detectedby transmission
electron microscopy [26], However, its precise role remains unexplored.

In this chapterwefocus onthe GL models withthe degeneracy liftedby aSBF [15-
20]. More specifically weinvestigate therole of thesmall-moment magnetismas SBF.
Within the model (seesection 6.2), thesplitting of the superconducting transition
temperatureis proportional to thestrength of the SBF 0iA7><: e, where e<m . Direct
evidence for thecoupling betweenATc and tn was deduced from specific-heat [28hd
neutron-diffraction [25] experiments under hydrostatic pressdtavas observed that both
AT, determined by specific heat,andn/T,), measuredby neutron diffraction under
pressure, vary linearly with pressure and vanshacritical pressure g= 3kbar. We utilise
another routeto verify thecoupling betweenATc and m, namely by doping UP$ with
small amountsof Pd.

Vorenkamp and co-workers [27] carried out specific-heat experimentson
polycrystalline samplesof IKPti.JPd" (x< 0.002) andshowed thatAr.almost doubles
with respectto pure UP¢ for the x=0.002 compound. This then directly promptede
question whether the enhancemeaf AT" isdue tothe increaseofthe ordered momentn.
Since it wasknown thatfor 0.02<x<0.07 pronounced phase-transition anomalinaghe
thermal andtransport properties signahnantiferromagnetic phase transitioaf the spin-
density-wave type[5], we conducted a neutron-diffraction studyon single-crystalline
samplesin order to investigate m asfunction of Pdcontent overa wider range of x,
including the region wheréATcisobservedtoincrease. These results are reported Ref.
28 and the conclusions amsfollows. The small-moment antiferromagnetic order (SMAF)
is robust upon doping witlPdand persists untilatleast x=0.005. The ordered moment
grows from 0.018+0.0021"/U-atomfor pure UP§ t00.048+0.008 p/U-atom for x= 0.005.
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For the SMAF T~6K and does not vary with Pd contents. For x> 0.01 a secon
antiferromagnetic phase is found, for which at optimum dogi¥g0.05) T attains a
maximum value of 5.8 K and an ordered moment of 0.63+0483-atom. For this large-
moment antiferromagnetic order (LMAF)(X) follows a Doniach-type phase diagram.
From this phase diagram it is inferred that the antiferromagnetic instability in UgP3i~Pd
is located in the range 0.5-1.0 at.% Pd.

In this chapter we present a study of the superconducting properties of U(Rti"Pd
The main objectives of this work are: (i) to determine(Tby means of specific-heat
experiments, (i) to test the SBF model by relating(@To the ordered moment m(x), and
(iii) to investigate the effect of Pd doping on the superconducting phase diagram in the E
plane by means of magnetotransport and dilatometry experiments. The chapter is organ
as follows. In section 6.2 we review the basic relations for the SBF scenario. In section |
we concentrate on the sample preparation process and the characterisation of the san
by means of electrical resistivity. In section 6.4 we present and analyse the specific-heat
U(Pti,j;Pd)3 in the vicinity of the double superconducting transition. In sections 6.5 and 6.
we present the magnetoresistance, thermal expansion and magnetostriction data an
section 0 we construct the phase diagrams in the B-T plare 002. In section 6.8, we
extract the Ginzburg-Landau parameters, while the SBF model is tested in section 6
Finally, we present the concluding remarks in section 6.10. Parts of these results have b

reported in a preliminary form in Refg9-31.

6.2 The SBF scenario

The SBF scenarios, discussed in chapter 3, can be divided into two categories: (i) |
degeneracy of a 2D even or odd parity order parameter is lifted by a SBF [16-19] and (
the spin degeneracy of a ID odd parity order parameter is lifted by a SBF under t
assumption of weak spin-orbit coupling [15,20]. The irreducible representations for th
superconducting gap with the appropriaté Bymmetry of URthave been tabulated by
Yip and Garg (Ref. 32). We first concentrate on the 2D representation called the E-
representation model. For a 2D representation with even pagjtyr E2;, or odd parity,

Ei, or £2o the superconducting gap function is given BK)AE TLEL(K) + rprey(k),
where i, and Ty are the basis functions for the relevant 2D-representation. The comple
vector r|= (g, r))= (Irue™: |r1,jel<f'>) determines the order parameter. The free energy

functional can be written as the sum of three terms [15-20]:
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F=FstFy+F sy (6.1)
Here Fs is the free energy functional of the superconductor

Fs=as(r-re)|ic|2+|R| To|*+iB5| Ti%)? (6.2)

where the coefficients ;a Bi and 3, are stability parameters. The contribution from the

magnetic order to the free energy is given by

Fy=aw (r-r n)m?+ Rym?* (6.3)

where m= (m,0,0) is the small ordered moment oriented along a principal axis in the b
plane(T< Ty) and og and (3, are stability parameters. The mixing term of magnetic ord

and superconductivity can be written as [16-19]:
FsM=-Vri4(T\I-1\%) (6.4)

where £=ym is the symmetry breaking field. By minimising the free energy it follows tt
the single superconducting transition asplits into two transitions al " and T~, where

ATc=T:-T:=gKh£Kn2 (6-5)
«s 3z

Here g= 1 for the E-model. The rat{®i+32)/32can be determined from the measured
stepsizes in the specific heat gt ahd T~

wyr\;.h 66)

AC(T)IT; P,
Here the steps in the specific heat are measured relative to the normal state. The v
coupling value forf3/3i is 0.5.

The ID representation model with odd parity yields very similar expressions. The thi
component order parameterTis (Tly, )y, '\,)= (\r\**\e™, \r\\e"", IriJé™ and the gap function
is given by [20]:

AK)= 2X/(K)Xy (6.7)

X=x,y,z
with ix=i0"yOx, where theo's denote thePauli spin matrices. The complex coefficients r|
are characterised by a spin index X. The orbital part, Z(k), belongs to the ID represente
Mu, B\, or B,- The free energy functional is expressed as in the E-model using equatic
6.1-6.3. The coupling term of the magnetic and the superconducting order parame
consists of three components and equation 6.4 now reads:

ASM=-Y " 2(2T1%-riJ-T1,%) (6.8)
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For the ID model Afis given by equation 6.5 with g- 3/2, while the expressior3fsi
is the same as in the E-model (equation 6.6). Note tfefir20 an incorrect expression is
given for T~ in which3i and[3; are interchanged in the numerator.

As it is our purpose to verify equation 6.5 by experiments, one also needs, bes
values for A¢ and3/R3i, which can be deduced from the specific-heat data, and the va
of m, which follows from the neutron-diffraction experiments [28], an estimate for the ra

[vjccs-We comment on this in section 6.9.

6.3 Experimental

The data reported in this chapter have been taken on annealed polycrystalline 0< 0
and single-crystalline samples (x< 0.002). Polycrystalline material was prepared by |
melting the constituents in a stoichiometric ratio in an arc furnace on a water-cooled co
crucible under a continuously Ti-gettered argon atmosphere (0.5 bar). As starting mate
we used uranium (JRC-EGeel)with a purity of 99.98%, and platinum and palladium
(Johnson Matthey) with purity 5N. Polycrystalline material with low Pd coniewrt9.01)
was prepared by using master alloys (e.g. 5 at.% Pd). Single-crystats=v@ttand 0.002
were prepared in a mirror furnace (NEC-NSC35) using the vertical floating zone meth
A single-crystalline sample witk= 0.001, was pulled from the melt using a modified
Czochralski technique in a tri-arc furnace under a continuously Ti-gettered arg
atmosphere. For annealing, the samples were wrapped in tantalum foil and put in a w
free quartz tube together with a piece of uranium that served as a getter. After evacu:
(p< 10°mbar) and sealing the tube, the samples were annealed at 950 °C during 4
Next the samples were slowly cooled in 3 days to room temperature. Several samples
investigated by Electron Probe Micro Analysis (EPMA), but the concentration of Pd is t
small to arrive at a quantitative composition analysis. In the following, the value of x is
nominal composition. Samples with appropriate dimensions and weights were obtainec

means of spark erosion.

In order to characterise the prepared materials the electrical resistivity, p(7), v
measured on bar-shaped samples. The results for the polycrystalline Jamiile6.0025,
0.003,0.0035, 0.004 and 0.005) are reportecRif. 30. The data abov@." are well-
describz'd by the Fermi liquid expression Pe+AT? (T< 1 K). The residual resistivity,gp
is extracted by extrapolating the Aerm to T= 0. Forx= 0, the residual resistance ratio
RRR=/?(300K)//?(0)= 1000, indicating a high quality of the pure compound, whil
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T* = 0.57 K. Upon alloying, po increases linearly with x at a rate of 9.6+0.2 uX2cm/at.%Pd
which ensures that palladium dissolves homogeneously in the matrix. Also T* varie:
smoothly with Pd content and the critical concentration for the suppression of
superconductivity isxsc~ 0.007. In case of the single-crystalline materials, p(7) was
obtained for a current, |, along the a and c-axis. The residual resistivity,apmunts to
0.52, 16 and 2.5 ul2cm, whiley,p amounts to 0.18, 0.75 and 1.0Rcm,for x= 0, 0.001

and 0.002, respectively. For pure YRte obtain RRR values of =460 and =720 for I|| a
and 1|| ¢, respectively. T is suppressed at a rate 0.77 K/at.%Pd. In the following section
we compare the resistively determined with the bulk value determined by the specific

heat.

6.4 Specific heat of U(Pti.,P<U

The specific heat, c(T), of a series of U(PtipDRdsamples was measured using the
relaxation technique. Experiments have been carried out on annealed single-crystallir

samples with x= 0.000, 0.001 and 0.002 and on annealed pstgltine samples with

Figure 6.1 Specific heat divided by T versus T of Uf)); for x- 0.000, 0.001 and
0.002 (single crystals) and for x= 0.0025, 0.003, afd04 (polycrystalline samples). The
solid lines represent ideal transitions determined from an equal entropy construction.
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Table | Parameters deduced fronthe specific heatof U(Pti«Pd,)3. Theratio RBa/l3is
calculated with helpof equation 6.10. Thesuperscripts s and p refer to single- and

poly crystalline samples respectively.

T; T; Arc  Anac(T)77 AnsC(re)lre- AnsC(T7)ITi- R/Ri

@ (K (K) (K) (I/mol K?) (I/mol K3 (I/mol K3

0.0 0.560(3) 0.506(3) 0.054(4) 0.23(1) 0.34(1) 0.14(1) 0.60(6)
0.00 0.543(3) 0.489(3) 0.054(4) 0.26(1) 0.35(1) 0.13(1) 0.50(5)
0.10 0.437(3) 0.355(3) 0.082(4) 0.21(1) 0.26(1) 0.12(1) 0.57(7)
0.2C° 0.384(3) 0.276(4) 0.108(5) 0.17(1) 0.19(1) 0.10(1) 0.58(8)
0.25 0.362(3) 0.236(4) 0.126(5) 0.18(1) 0.18(1) 0.08(1) 0.44(9)
0.3 0.313(4) 0.163(5) 0.150(6) 0.13(1) 0.09(1) 0.06(1) 0.46(11)
0.4C¢ 0.222(5) - - 0.07(1) - - -

x=0.000, 0.0025, 0.003and0.004. Thetypical sample massvas 80 mg. Thessultsare
shown in figure 6.1 in aplot of clTversusT. At least three interesting features stritke
eye: (i) T* and g arewell resolvedfor x< 0.003, whilefor x= 0.004 only T* is resolved
(T>0.1K), (ii) both T* and ¢ decrease smoothly withPd concentration, whilé\7¢
increases,and (iii) theoverall heightof thejumpsin cIT at ¢* and §' decreases with
increasing x. Theresults for the single-crystalline samples (x< 0.002are in good
agreement with those obtainday Vorenkampet al. [27] on polycrystalline materialln
order to determinetheideal valuesfor the jumpsin thespecific heatwehave madeuse of
an equal entropy constructicaitthe NA andAB phase boundarie heideal transitionsare
representedby the solid lines in figure 6.1. Theresulting valuesof T.", T~, AT,
ANAC(re)I TN Anc(T~)T~, Aagc(7;")/7;"andR2/Riare collectedn Tablel. Herethe
subscriptsNA andNB refer to thestep sizes measured with respeatthenormal statelT
value, whilethesubscriptAB refers to thestep size measured with respeotthe clTvalue
in the Aphase. Belowr." c(T)= Yo+oT? down to thelowest Tmeasured (0.1 K)TheaT?
term shows thatthe superconductinggap function has aline node [9]. For T—>0K
considerable residualo valuesareobserved whichis attributedto impurity broadeningof
the line node[33].Just as is thecasefor pure UP${ [11,12], figure 6.1 shows thatthe
superconducting state entropy exceéldeentropy of the normal state (assumir@N=JNT).
The extrapolated entropy unbalander O<T<T* is slightly sample dependenin
U(Pti«Pd} andranges from 6 to 12% of thenormal state entropyThe entropy
discrepancycan beesolvedby either anincreaseof CN/7" or adecreaseof ¢/T below 0.1K.
The most plausible explanatidior theentropy imbalances offered by thepresenceof an
anomaly at0.018 K in thenormal state specific heat [34Theentropy balancés fulfilled

when this peaks included.
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Figure 6.2 T\ T, and AT of U(Pt,Pd); as a function of Pd
concentration, determined from the specific-heat data. The solid and open
symbols represent single- and poly crystalline data, respectively.

In figure 6.2 T*, T and AT are plotted as function of Pd concentration. Both, T*
and T~ decrease with increasing Pd concentration, but with different ratg¥chd¥
-0.79+0.04 K/at.%Pd and d77/dx= -1.08+0.06 K/at.%Pd, and as a resudt iAGreases at a

rate dAT/dx= 0.30+0.02 K/at.%Pd. The value &/fix= -0.79+0.04 K/at.%Pd measured by

the specific heat is within the experimental error equal to the resistive value
-0.77 K/at.%Pd.

Usually, the ratiol3,/Ri is calculated from the steps Ac/Tat T* andl with respect to
the normal phase (equation 6.6). However, in order to obtain proper valug®/Rifone
should realise that equation 6.6 is only correct for small values gf Wiich is not the
case in the doped samples. Therefore, we use a slightly different relation to edifate
given here below. The steps AclT are derived fromGhefree energy byAcIT-  ~FIdT.
The thermodynamic step in the specific heatsatcan be written as:

AneC(77)/Te- = AnsC(77)/ Te- - AWC(T) T, (6.9)
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Figure 6.3  Schematic temperature dependence of c¢/T at the double
superconducting transition. The solid line represents c/T calculated from the
fourth orderGLfree energywhile the dottedine reflects the observed behaviour.

The temperature dependence of ¢/T at the two phase transitions is shown schematical
figure 6.3. In the 4th ordeBL model ¢/T is constrained to be temperature independer
(solid line), while the measured behaviour shows a clear temperature dependence (d
line). In fact, higher order terms need to be taken into account in order to arrive a
temperature dependent c/T. In order to arrive at a proper estim&8@ofwve use the
directly measured stepaéc(re”) / T~, instead ofAyac(T¢" )/ T—~. This results in:

B, ANAC(77)/7,+

The values of3,/Ri, determined from equation 6.10, are listed in Table I, and are close

the weak coupling limit 0.5. The rati®/3i is within the experimental error independent of

Pd concentration. Note that in a first analysis of the specific-heat data we us
equation 6.6 which led to a steady decreas®/Bi upon Pd doping [29].

6.5 The upper critical field

In order to investigate the effect of Pd doping on the upper-critical &gl), we have
measured the electrical resistivity in field for single-crystalline UgRf)3 with JC=0.001
and 0.002. These experiments were primarily conducted to investigate the presence
kink in Be(T), which locates the tetracritical point in the multicomponent B-T phas
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Figure 6.4 Resistivity ofu(Pt,.999Pdo.00i)3(I\\ a) in constant magnetic
fields B\ a , ranging from O to 1.3 T in steps of 0.1 T. For the most right
curve B= OTand for the most left curve B= 1.3 T.

diagram of pure URt The experiments were carried out on bar-shaped samples with tf
current along the long axis (I|| a). The samples were cut from the same single-crystall
batch as used for the specific-heat (section 6.4) and neutron-diffraction experiments [2
Bc2(T) was determined by resistivity experiments in a transverse constant magnetic field -
Bl|c and Bl c (i.e. B|| a , where a* is taken at right angles to a and c). In figure 6.4 sor
typical results are shown for x= 0.001 (Bl c). In these low magnetic fields (B< 1.3 T) th
magnetoresistance is small (less than 1% pper Tesla). At each applied field T* was
determined by the 50% resistivity criterion, and the width of the superconductin
transition, A7.", was determined by the 10-90% resistivity criterion. The resulting upper-
critical field curves for B1 ¢ and B|| ¢ are shown in figure 6.5, where both axes have be
normalised by dividing by T*. For comparison we have also plotted in figure 6.5 the
resistively determined &T) data of pure URt[35, 36].

For B1 c clear kinks in B(T) are observed (figure 6.5b). This strongly suggests that in
the Pd doped samples (x< 0.002) a tetracritical point is present, as for puyeUpen
doping the tetracritical point shifts towards lower temperatures and higher fields, whic
indicates that the A phase becomes more stable. For x= 0IRg% 0.309(8) K and
Bc= 0.461(8) T, while for x= 0.002 ;¥ 0.225(8) K and B= 0.490(8) (BI c). Thus for
B 1 c the phase diagrams for U(RBd,); (x< 0.002) have the same topology. For B|| ¢ no

distinct anomalies are observed ig(B) of the Pd doped samples (figure 6.5a). However,
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Figure 6.5 The upper critical field of U(Pti.,Pd)s, determined by
resistivity (I\ |a), in a plot ofB.,/T. as afunction ofT/for (a) B\\c and (b)
B\ a*. T, = T, is 0.547(5) K, 0.466(5) K and 0.420(5) K for 3000,
0.001 and 0.002, respectively. The arrows mark the tetracritical points. The
data of pure UPts are taken from Refs. 35 and 36.

for pure UPt a weak kink in B(T) was reported [36], locating the tetracritical point at
Ter= 0.45(2) K and B 0.60(2) T. In the following section we study the phase diagrams fc
B 1 c and Bj| c in more detail by dilatometry.

A closer inspection of the data in figure 6.4 shows that AT* sharpens between 0.4 a
0.5 T. As a matter of fact the kink inBr) for Bl c is also reflected in the values of
Ar." as shown in figure 6.6. At,.BAT:" drops by about 50%. This drop can be explained by
the abrupt increase af3.,/dr upon entering the C phase. An almost smooth variation of

AT¢ through the tetracritical point results when AT* is multiplieddBy/d7".
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Figure 6.6 The width of the resistive (I\\ a) superconducting transition,
AT*, as a function of the applied magnetieeld, for U(Ptj«Pd,)3 with
x-0.001 and 0.002: (a) B\\¢ and (b)B\a*. AT*is determined by the
10-90% criterion. The arrows mark the tetracritical fields.

6.6 Thermal expansion and magnetostriction

In order to determine the superconducting phase diagram of the x=0.002 compou
dilatometry experiments (thermal expansion and magnetostriction) have been perform
The results will be compared with the dilatation experiments on pure UPt3 reported by V

Dijk et al.[37,38].
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6.6.1 Experimental

The U(Pt0.998Pdo.002)3 sample used for the thermal expansion and magnetostric
experiments was cut from the same single-crystalline batch as prepared for the resisti
specific heat and neutron-diffraction experiments. The approximate dimensions of
sample along the a, a and c-axis are 4.0, 5.0 and 3.4 mm, respectively. The sample
mounted in a capacitance dilatation cell machined of oxygen-free high-conductivity copy
Two RUC2 resistors which served as heater and thermometer were glued onto the sal
Length changes along the c-axis of the sample were determined with the three-term
capacitor technique, using an Andeen-Hagerling bridge (model 2500E). The sensitivity
the experimental set-up amounts to 0301The dilatation cell was attached to the cold
finger of a dilution refrigerator. The coefficient of linear thermal expansienl*4UdT,
was measured using a modulation technigfse 0.003 Hz, AT= 5-10 mK). The linear
magnetostriction, X- (L(5)-L(0))/L(0), was measured by sweeping the magnetic field a
relatively low rate (dS/d?< 0.03 T/min) while monitoring the length, L, of the sample. Tt
magnetostriction was measured for a field along the dilatation direction (B]| c) and at ri

angles (B|| a).

6.6.2 Thermal expansion

The zero-field temperature variation of the coefficient of linear thermal expansion alo
the c-axis, Oc(7), of U(P@B8Pdooo2)& shown in figure 6.7, with as ins@g(T)/T. Just as
for pure UPt3,aJT is constant in the normal state, while two clear steps of opposite si
(most pronounced in Oc(T)/T) mark the double superconducting transition. T
superconducting transition temperatures have been determined using an equal-le
construction and the idealised transition is given by the solid line in figure 6.7. F
x= 0.002, T*=0.381(2) K andT~=0.271(4) K. These values are in excellent agreemel
with the transition temperatures T*=0.384(3) K afld~= 0.276(4) K determined by the
specific heat (see section 6.4). However, the valueTof - 0.420(3) K determined
resistively is slightly higher. This has also been noticed for pure UPt3 [12]. The resisti
transition temperature marks the onset of the bulk transitions measured by the specific
and thermal expansion. The difference between the resistive and bulk transition decre
in an applied magnetic field. In figure 6.8, a few exemplary Oc(7)-curves are shown ir
constant magnetic field (B|| c aBfla). Both T* and T~ are suppressed with field, but T*
is suppressed more rapidly than T~, so that they merge at a critical fiel@h® field
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Figure 6.7  The coefficient of linear thermal expansion along the c-axis
(a) of \](Pto.99sPdo.002I3-The solid line represents the ideal transition
determined from an equal-lengtbnstruction.In the inset the same data is
plotted asO.JTvs. T. The transition temperatures af€* = 0.381(2) K and

l;s= 0.271(4)K.

dependence is anisotropic. Bjfa the transitions merge in the field range 0.5-0.6 T, while
for B|| c the transitions do merge at about 10 T, which is close,tatBour lowest
temperature (0.075 K).

Combining the thermal-expansion and the specific-heat data we can determine
uniaxial pressure dependence of the superconducting phase transitions uEhgemifiest
relation:

A=A A - (6.11)

dei  A(cIT)
Here p is the uniaxial pressure along a specific crystallographic @xis, &, c) and
V,=4.24x10° m¥mol is the molar volume. With help of the thermal-expansion data o
figure 6.7 and the specific-heat steps listed in Table 1, we calculate
dT*ldp, = -0.14(1) K/GPa and dT;/dp= 0.06(1) K/GPa. Thus for uniaxial pressure
along the c-axis the splitting, AT T." - T~, decreases at a rate giifi. = -0.20(2) K/GPa.
These calculated pressure dependencies are similar to those determined directly from
pressure dependence of the specific heat for purg WRere dT. /dp. - -0.13(3) K/GPa,
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dT;/dp. = 0.09(3) K/GPa and dAidp. = -0.22(6) K/GPa [39]. Assuming a linear pressure
dependence of ;7 and T~, the A phase vanishes at ©.54 GPa and F 0.308 K for
x=0.002, while for pure URtp, is only 0.25 GPa, because of the much smaller zero

pressure splitting, andcT 0.459 K.

10i 1 1 . 1 A
@
(b)
0.5 \ 0 - 8 T -
. 00
o)
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N 00T
UPt Pd )S$‘] «
-1.0 V. 0998 00023 %, o
AUL ||c \
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-1.5 i i i i

00 01 02

Figure 6.8

0.3 0.4 0.5
V(K)
The coefficient of linear thermal expansion along the c-axis

(a) of U(Pto.998Pdo.002)3in magnetic fields ranging from 0 to 1 T as
indicated, with (a) B\\c and (b) B\\a. The curves in field are shifted
upwards along the vertical axis for the sake of clarity.
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Figure 6.9 Linear magnetostriction along the c-axis () (Xof
U(Pt,.998Pdo.002)&at T=0.075Kfor B\\ a and B\\ c. 77ie dottelthefor B\ ¢
represents thextrapolated normastatemagnetostrictior{seetext).

6.6.3 Magnetostriction

The linear magnetostriction along the c-a¥¢B), at T- 0.075 K is shown in figure 6.9
for fields up to 2 T (B|| c and BJ| a). In addition to the normal state contributigiBipa
superconducting contribution is present below,. BFor Bj||c the normal-state
magnetostriction (B< 2T) is well described by a quadratic field dependence
K(B)=\(0)+b:B . The coefficient of the quadratic termg, bis slightly temperature
dependent and is -1.66xI0T% at T- 0.075 K. In figure 6.10 we show(B) with B|| a at
several temperatures. Here the normal-state magnetostriction also follGviegeBdence
(B< 2T) with hyis -0.46xI0 T? at T= 0.075 K. For B||a the upper critical field,Hs
difficult to distinguish, while the B-C phase transition at B* is visible as a clear kink in th
data. FomB|| c the situation is reversed;,;Bhows up as a clear anomaly on XaéB) curve,
while B. does not. For this field direction, the superconducting signal, obtained aft
subtracting the quadratic background contribution, is show in figure 6.11. Although tt
behaviour observed for= 0.002 is in many aspects similar to the behaviour for purg UPt
two important differences should be noted: (i) for x= 0.002 onlyiBresolved from the
magnetostriction curves f@| c, while for pure URtboth B, and B* are resolved, and (ii)
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Table Il Thermodynamic quantities Aand Axfor x= 0.002 at
the superconducting transitions /Tand T~ in zero

field. The step Axis determined in the limit B—>0.
Tc'(K) T (K)
AOL(10-°KY)  -0.56(2) (NA)  0.14(1) (AB)

Ax (I0V) -0.11(1) (Blla) 0.01(1) (B|| a)
-0.07(1) (B|lc) 0.01(1) (B|lc)

-Axc/Acxc (K/T) -0.20(2) (B||a) 0.07(7) (B|| a)
-0.13(1) (B]|c) 0.07(7) (B|| c)
for x= 0.002 a significant hysteresis is observed for B|| c, which was absent in the data
pure UP%. In figure 6.12 a typical magnetostriction cycle (field sweep up and down) is
shown. In figure 6.13 we show for both field orientations the amount of hysteresis
obtained after subtracting the sweep-up signal from the sweep-down signal. For B|| a tl
hysteresis is negligible, while for B|| ¢ the resulting curve has two peaks. The peak jus
below B, is reminiscent of the peak effect observed in metallic alloys with strong pinning
of the flux-line lattice. Recently, the peak effect was found in the magnetisation of severa
pure UP% samples as well [40,41]. The peak effect is expected to become more
pronounced upon introducing additional pinning centres, e.g. by doping with Pd. The large
low-field peak, observed for x= 0.002 at B=0.1 T, which is most pronounced for B|| ¢ (see€
figures 6.13), has also been reported for pure ;URhis peak, which has a weak
temperature dependence, is not directly related to the superconducting properties as it
also present in the normal state. The origin of this anomaly remains unclear, but it has be

suggested that it is related to a meta-stable magnetic state [42].

With help of the measured discontinuities at the superconducting transitions the fielc
dependence of the transition temperatures can be estimated wHhrengfestrelation:

T\ AxA
— X (6.12)

dB) Aoc.

Here x,=dA,/dSwhere i refers to the principal crystallographic directions. The initial field
dependencies of T* and T~ are determined by the B- 0 thermal expansion data and
extrapolation of Axto R-> 0. The values determined in this way are listed in Table Il and
should be compared to the directly measured slopes of the phase lines of th

superconducting phase diagram of Y{P8Pdo002)3(see section 6.8).



Superconductivity in U(PtJPd,)3 129

0.1
UPt  Pd
0.998 Q.002'3

Figure 6.10 Linear magnetostriction along the c-axis) (Mith increasing
magnetic field ofU(Pto.99sPdo.co2)3arB\\ a. The temperature ranges from 0.10
to 0.35 K as indicated. The arrows mark the BC and CN transitions tesdg

The curves for T>0.15 K are shifted upwards for the sake of clarity.

0.12

0.0 0.5 10 15
B(T)
Figure 6.11 Linear = magnetostriction along the c-axis ) (X of
U(P1,.998Pdo.o02)3foincreasing B\ ¢ at temperatures as indicated. The normal
state contribution is subtracted (sdext).
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R(T)

Figure 6.12 Linear magnetostriction along the c-axis) (et T= 0.075 K

of U(Pto.99&Pdox>02)ifor B\\c. The normal state contribution is subtracted.
The arrows indicate the sweeps up and down of the magfietit The inset
shows a close-up of the irreversible magnetostriction peak just Ebw
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Figure 6.13 The hysteresis in.Xor field sweeps up and dowrfXcwgX.,down) of
U(PtomPdo.002)3 with (a) B\\ a and (b) B\\ c. The peak effect is observed just belgor B
B\\c. The temperatures range between 0.075 and 0.4 Kas indicated.
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6.7 Superconducting phase diagram of U(Pt0.99sPdo.002)3

By locating the anomalies at the superconducting phase transitions determined by
dilatometry experiments in the B-T plane we have constructed the superconducting p
diagrams of U(898Pdo.002)3 shown in figure 6.14. The NA transition is detected by bo
thermal expansion and magnetostriction, while Al transition shows up only in the
thermal expansion. ThRC phase line, which is only found for BJ. c, has a very weal
signature in the thermal-expansion data and was therefore complemented b{Tiheéaba
measured resistively (figure 6.5b). In this field range the resistive and bulk T* are eq
within the experimental accuracy. For B+ c the tetracritical point is located
re= 0.205(4) K ands,= 0.556(8) T. For B|| ¢ the x= 0.002 compound has no tetracritic:

1.50
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1.25 099879 0.0023

1.00
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0.25

0.00

1.25 U(Pt Pd )
Y 0998 0.0023
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0.25

0.00
0.0 0.4

Figure 6.14 Thesuperconductingghase diagram ofJ(Pto.99sPdo.002)3ar
BA. c and B\\ cconstructedrom phase transitions detected in the thermal
expansion (O) andhagnetostrictior(¢). For BL ¢ theCNphase transition

is determinedesistively(A).
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Tablelll Thermodynamic quantitiésr x= 0.002in the vicinity ofthe tetracritical
point (B\\a) atT,= 0.205(4) K and B=0.556(8) T. The phase lines
betweertheA, B, C and N phases are indicated\, NC, ABandBC

NA NC AB BC
dT/dB (KIT)  0.472(8) -0.217(4) -0.086(1)  1.37(6)
AOCCIONK™) -0.18(2)  -0.02(2) 0.06(1) -0.10*
Ax. (10°%1-1) -0.11(2) 0.00(1) 0.00(1) -0.11(1)
-ATC/AOC (K/IT)  -0.61(12) 0.0(5) 0.0(2) 1.1(2)

Determined by the relation A, .~ sg-Anc+2BC-

point (7> 0.075 K), which presents a striking difference with respect tdJstiz

The AB phase line of U(Pt0.998Pdo.002)3 measuredBfbrc shows a clear change of
slope atB= 0.2 T. For purdJPt3, a similar kink was observed, albeit at a lower field of
B= 0.1 T. It has been suggested that this kink arises from a coupling of the superconduct
order parameter to the meta-stable magnetic state [42(Pp898Pdo.oo2)however, the
change of slope does not coincide with the low-field anomaly observed in the
magnetostriction @= 0.1 T, and the origin remains unclear.

In Table HI we compare the measured slopes of the phase lines near the tetracriti
point with the calculated ones using tBhrenfestrelation (equation 6.12). Within the
experimental accuracy the data agree, which demonstrates their internal consistency. N
the tetracritical point the thermodynamic steps should follow the relation
Ana +Ass = Anc HAgc, Where Ais Ac/2', Aa or AX. We have checked that this relation
holds for AT. The thermodynamic stability of a phase diagram with a tetracritical point,
where at least three second order phase-transition lines meet, leads to strict conditions
the slopes of the four phase lines as formulateRein43. In the case of pure UPt3 these
conditions were satisfied [38]. In order to investigate the thermodynamic stability of
U(Pt0.998Pdo.002)3 additional specific-heat measurements in an applied magnetic field &

needed.
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6.8 Ginzburg-Landau parameters of U(Pti,JRd

The temperature derivative of the thermodynamic critical fiel8JdT, near T, can be

estimated from the jump in the specific heat at the superconducting transition in zero field

A =7 68

Here,\JLQ is the permeability of free space. The thermodynamic critical field is related to the
upper critical field by B =V2K5 , where Kis the (isotropic) Ginzburg-Landau parameter
which characterises the superconducting state [44].Gh@arameter is defined &= X%,
where X is the penetration depth a¥tds the coherence length. Since we are dealing with a
hexagonal strongly anisotropic material K, X and \ are anisotropic. In that case, the uppe
critical field is given by B,= <t/ (27tC"J, where Q is the flux quantum and i,j and k

are the principalcristallographiedirections. Assuming that the parameters in the basal

plane are isotropic the following relations betwegpn &d B hold:

B:o=pKsK:Be (6.14)

S:f=V2K B,
Here the superscripts a and c refer to the direction of the magnetic figid&{JK" and
Kc= Xji*. The averagesL parameter is defined asa k= (KMKc )"3.

We have evaluated the vario®l parameters and the temperature derivatives of the
upper critical fields from the measured data. The results for B> 0 are listed in Table IV.
The value of dBJAT for the A phase has been determined using A”ciT*) /T*. The values
of dB.,/dT determined from the step in the magnetostriction and thermal expansion (see

TableE) are in reasonable agreement with the values determined directly from the slope of

the phase diagrams.

Table IV Slopes of the critical fields for the A phase of UfRt)s;, and the calculated
GL parameters and effective mass ratio.
X dBJdT dT/dB*, d77dR%, Ka Ke Kav my/m,
) (TKK) (K/T) (K/T)
00 -0.087(6) -0.241(8)* -0.093(4)* 87(6) 13(1) 46(3) 6.7(6)
0.1 -0.078(6) -0.250" -0.124** 73(6) 18(1) 46(33) 4.1
0.2 -0.071(7) -0.258(6) -0.155(6) 64(6) 23(2) 46(3) 2.7(2)

Data taken from ref 38.
Average value of the entries for the ©.000andx= 0.002 compounds.
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UPt3 is an extreme type-ll superconductor with for pure samples X>A086d
£= 120A so thatk= 50. Upon Pd dopingx< 0.002) K, remains roughly constant, whilg K
decreases and Kc increases (see Table IV). Substituting Pd makes the supercond
properties less anisotropic, which is also reflected in the ratio of the anisotrc
quasiparticle masses, determined by lwm, = (R%/R%)? (see Table IV). The lower-
critical field, B\, is related to the thermodynamic critical field according tc
Bq = B In(K)/(V2~K), from which it follows that3.i is about 6% of Band less than 0.1%
of Zx2 Such small values of Bhave not been probed in our dilatometry experiments.

6.9 Testing the SBF model

One of the main objectives of the specific-heat experiments on the,Bdptisystem was

to determine the superconducting splittid@c as function oik. From the data in figure 6.2
we conclude that Agincreases linearly with x at a rate dAik= 0.30+£0.02 K/at.%Pd.
Within the GL models presented in section 6.2,cA€Tproportional to the strength of the
SBF or assuming that the ordered moment of the SMAF is theASBEC X T¢) (see
equation 6.5; we comment on theefactor (|Y)/cts)(Ri-+B/R32 at the end of this section). In
order to determine (x) we have recently carried out neutron-diffraction experiments [2¢
on single-crystalline samples. The ordered moments”ar@ 0.018(2), 0.024(3), 0.034(6)
and 0.048(8) g/U-atom, for x= 0,0.001,0.002 and 0.005, respectively. It is interesting tc
compare this result witAT,°c mé(p) obtained by the hydrostatic pressure experiments [2!
because doping increasescAihd hydrostatic pressure decrea&ds. A direct comparison
is not possible because of the relatively large uncertainty in the absolute value
m(p=0)= 0.03+0.01 g/U-atom. Therefore, we plotted in figure 6.15(fx;p)/Ar(0,0) as a
function of nf(x,p)/nf(0,0). The error bars for the pressure data correspond to the relati
errors determined by counting statistics, while for the Pd doping these are absolute er
After including the pressure data in figure 6.15, we notice the following three points:
both the Pd doping and pressure data sets collapse onto one curveg i@)aA3mooth
function of m\ T+ ), and (iiij) A7>= m\'T* ) but in a limited range A% 0.05 K. The latter
result shows that the simp&L models presented in section 6.2 break down for splitting:
ATc> 0.05 K. This is not unrealistic because the applied Ginzburg-Landau expansio
only valid for ATJE« 1. Clearly, for enhanced splittings a more sophisticated Ginzbur
Landau expansion with terms beyond 4th order is desired. We conclude that there is a
correlation betweedTq andrm{ T* ), which is in line with the SMAF acting as the SBF.
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Figure 6.15 The variation of the splitting AX,p)/ AT(0,0) as a function
ofnf(x,p)/ m?(0,0) for U(Pti,Pd)s at zero pressure (O) and for UPts under
pressure (O) [25]. For Ad< 0.05 KAT<" m as predicted by th&L model
(dashed line). The solid line is to guide the eye and the arrows indicate the

pressure and Pd concentration dependence.

While verifying equation 6.5 we have assumed thatGhestability parameters % and
3,/Ri and the coupling constagtdo not vary with Pd content. The analysis of the specific-
heat data shows tha®,/Ri is insensitive to Pd doping and equal to =0.5 within the
experimental accuracy. Notice that also in case of the specific-heat experiments un
pressure [23] it was found tha®,/Ri=0.5 independent of the applied pressure. The
parameter a“ is given by «Geh? lilrnl). The penetration depth satisfies
X2 =m* | (Hoc* |(|>.?), where K is the order parameter inside the superconductor, anc
m and e are the effective mass and charge of the superconducting quasipartic
respectively [45]. With K=X/* we obtain og®= (K, Im*)%. Because K is independent of
the Pd concentration (see Table 1V) it is plausible that d> does not change with
concentration. The coupling parameter Y, however, is not accessible to an independ

experimental verification and we assume it to be constant.
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6.10 Concluding remarks

The experimental results reported in sections 6.3-6.6 show that the unconventic
superconducting properties of UR3 are extremely sensitive to Pd doping. First of
resistivity experiments show that the A phase signalled by T* is completely suppresse
a critical concentrationg: of =0.007. Secondly, the specific-heat experiments show the
the B phase, marked by the second transition .atisTsuppressed even more rapidly, at
Xc =0.004. Thirdly, AT increases with Pd contents. One of the main objectives of th
present work was to investigate & model formulated in section 6.2, especially with
respect to whether the SMAF acts as the SBF. Indeed, we find a close correlation betv
Ar(x) and mi( T*). However, only forATc< 0.05 K the proportionality between AZnd
n?, predicted by the SBF model, holds. ForgAD.05 K nf grows more rapidly. The
failure of the model for larger splittings is attributed to the limited applicability of the
simple GL E-representation and ID odd parity models. The 4th order expansioncngar T
only valid for ATJF« 1.

While SMAF and superconductivity coexist, evidence is accumulating that LMAF ar
superconductivity compete. Recent neutron-diffraction [28] and uSR [46] experimer
indicate that the critical concentration for the onset of LMAF is mgfr JeC~0.007
[30]. In order to put this on firm footing, additional uSR experiments are in progress. T
competition between superconductivity and LMAF lends further support for spir
fluctuation mediated superconductivity.

The effects of Pd doping (this work) and hydrostatic pressure [23] on the stability
the A phase are opposite. It is interesting to note that this also holds for the B and C ph
[24, 37, 38], which is most clearly observed for B+ c. By applying hydrostatic pressure, t
tetracritical point in the B-T plane shifts to lower fields. Upon increasing pressure, first t
A phase disappears (a=®.35 GPa), followed by the B phase, so that the C phase is tt
most stable phase under pressure [24, 37, 38]. For Pd doping the contrary takes p
Upon doping the tetracritical point shifts to higher fields, and the A phase gains stability
the expense of the B and C phases. Note that the C phase is completely suppresse
U(Pt0.998Pdo.002)3 in the case BJ| c. The normal-state properties of UPt3 react upon
doping also in an opposite way to hydrostatic pressure. Experiments demonstrate
doping of 1at.% Pd corresponds to an external pressure of about -0.33 GPa [47, 48]. 1
illustrates that the change of the normal-state properties is not governed by the volu
because both Pd doping and applying pressure reduce the unit cell volume. Instead, t
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changes can be explained, to a certain extent, by the change in the c/a ratio. In the ce
Pd substitution A(c/a)/(c/a)= -0.6xMper at.% Pd, while for hydrostatic pressure, becaus
of the anisotropic compressibility (K<) A(c/a)/(c/a)=1.3xI0* per GPa [5], hence,
doping 1 at.%Pd corresponds to an applied hydrostatic pressure of -0.5(2) GPa. For
stability range of the A phase we do not arrive at the same numbers. FOURiGre
dAr/dp=-0.19K/GPa [23], while dAfdx= 0.30 K/at.%Pd. Thus in this case 1 at.%Pd
corresponds to -1.6 GPa.

In analysing the specific-heat data around the double superconducting transition,
have provided further evidence that the antiferromagnetism acts as a SBF. This restrict
choice of theGL models to the E-representation model, which applies for both even a
odd parity states, and to the ID odd parity model. The latter model relies on a weak s
orbit coupling. In zero magnetic field both models give identical results, but they differ
predicting the field and pressure dependence of the superconducting phases. Notab
tetracritical point for all field directions is only possible in the E-model under certai
conditions and certain symmetries {[49] or B, [15]), while no additional constraints are
needed in the odd-parity ID model. As regards, the pressure dependenEemduzl
predicts the B phase to be the stable phase under pressure. A recent refinement of the
parity ID model shows that the C phase is most stable under pressure [50]. This is in
with recent pressure studies [24] and dilatometry experiments [38]. MorddiviRr,
experiments [51, 52] have demonstrated convincingly that (i) the Knight shift does r
change through the normal-superconducting phase transition, and (ii) the effective ¢
orbit coupling is weak. All these studies provide a strong case for the odd pai@y ID
model. It is interesting to note that in the refined ID odd parity model [50] th
antiferromagnetic moment is not static but fluctuates in time. This is consistent with rec
NMR [51], USR [46,53] and neutron diffraction [28] experiments.

In summary, we have studied the superconducting phase diagram ofRd{fj by
(magneto)resistance, specific heat and dilatometry. Our results in zero field show a str
increase of the splitting A7as function of Pd concentration. &) correlates with an
increase of the magnetic momen{x)upon Pd doping. This provides further evidence for
the Ginzburg-Landau scenario with magnetism as the symmetry breaking field. T
tetracritical point in the B-T plane is robust upon alloying for Bi. c, at leastan@l002,
while it is rapidly suppressed f@]|c. In a magnetic field the A and B phases gain stability
at the expense of the C phase upon alloying. In this sense Pd doping and the effect
external pressure are complementary.
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Appendix |

E-model: sixth order correction

The low-temperature properties of UPt3 are determined by both the antiferromagnetic &
the superconducting order parameters. The total free energy with respect to the normal <
consists therefore of three components:

F=Fw+Fs +Fus (1.1)
Here FM and F$ describe the antiferromagnetic and the superconducting contributions ar
FMS is the coupling term of the antiferromagnetic and the superconducting orde
parameters. In the E-model the free energy of the superconducting state is expandec
terms of a vector order parametar, (r\,, )= (Irfe™, |rly| €™), describing the complex
components of a 2-dimensional gap functiong,(E2, E\, Eju)- The degeneracy of the
components of the superconducting vector order parameter is lited by a symmet
breaking field (e). Whith the antiferromagnetic order as the symmetry breaking fiel
e=ynt. In section 3.2.5.2 the fourth order expansion of the free energy is given. There ex
four independent sixth-order terms (e.g® IR | TITi*|2 | Ti?fri[). We performed
calculations adding one sixth order term, &B||to the free energy. In order to minimise
the total free energy it is written in the component #thd x|/

F=FM +as(hxf+KI r 9M* 4 hy| j*B<tKrK|? *
o 6 2 2 2\ 2 2)
Px1” iyl S e 4ty 2B

Here a =as (T-T), RBs=Ri+R2, Rcp RiH32Cos(24B)))) and cc, , Ri and B are the
Ginzburg-Landau coefficients which are positive in the superconducting state. By

(12)

minimising the free energy with respect\td\, \r\\\, m and 4y one obtains four coupled
equations for the equilibrium state. The magnetic term is assumed to be constant in
superconducting state, because the moment is nearly saturategdgmahil) There are
two coupled equations for the equilibrium state:
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2 DI 2 QL ©* s 1* 1 1" 1 A | _
K\ «oeerski +R%(Tly| +3(I'lx| +Hy| *2hx| P1yJ

2 0| ol o7 O I B e VAP
hyl a, +RsK| +ROx| +°(fIx| Ty +°K| FM ]

Hereoct=as * eThe two superconducting phases are expressed through normalised

(1.3)

2 2
| |

parameter components. The phases are the (1,0) phase witii\@ntjifferent from zero
and the (l.cri) phase where both amplitudes are nonzero and have a relative
<$x<py=7i/2. A double superconducting transition is found Ry [, Y> 0 with the following

solutions:

(1,0) phase: T =T (1.4)
*c c 0C<.
. -Rs+VI3*-48a_
K\ =- 25 T, <1< 1 (1.5)
e
(L.oti) phase: Al s (16)
B, «§ «R2
T =T
1 12 /\_Bl +_\JBZ'45a%
= 2% 48, 45"
N ¥ T<T: (L.7)
'ié\; '34'5 AVRi"O«s
Bi eSS
- e (1.8)
Bt

In the limit of 8 0, all equations are the same as in the fourth order E-model.
temperature dependence of the specific heat divided by temperature is derived from th
energy byc/T=-3’F/37. The results for some reasonable values of the coefficients
plotted in section 3.2.5.2 figure 3.2. The analytical calculation of cIT from the free ent
is straight forward, but tedious. As a check we performed the calculation both analyti
and numerically. The analytical expression is given by:
AnaC(DI'= /s 454,
(1.9

&neC(T)/T-- )
VR3?-46c¢
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Summary

For more than a decade now it has been realised that the intermetallic compayiscat/Pt
exemplary system for the study of unconventional magnetic and superconduc
properties. The unconventional superconducting propertiesO(@ K) of UPt are most
clearly evidenced by the multicomponent superconducting phase diagram in the B-T p
Notably in zero-field two consecutive superconducting phase transitions are observed
distance ATc = T*- T~ =0.055 K. The magnetic properties are unconventional in
sense that pronounced antiferromagnetic spin fluctuation phenomena coexist
antiferromagnetic order (#6 K) with an extremely small ordered moment
(m=0.02 w/U-atom). By substituting Pt by small amounts of isoelectronic Pd th
superconducting and magnetic properties are strongly influenced. In this thesis we rep
study of the magnetic properties of the U(PzRystem by means of neutron-diffraction
and USR experiments, while the superconducting properties are investigated
(magneto)resistance, specific heat, thermal expansion and magnetostriction technique
this way we are able to probe the interplay of magnetism and superconductivity in
U(Pt,Pd) system.

Chapter 1 gives a short general introduction, followed by the motivation of o
research. The experimental techniques used to study the superconducting and ma
properties of U(Pt,Pd)are described in chapter 2. The in-house techniques are only brie
presented, while the principles of the [ISR and the neutron-diffraction techniques
discussed in more detail.

In chapter 3 we present the theoretical aspects of our research. This chapter consi:
two distinct parts. In the first part the theory of unconventional superconductivity jrisUPt
discussed, while in the remaining part the interpretation of the muon depolarisat
function as measured in a uSR experiment is presented. As regards unconventi
superconductivity in URBt we predominantly focus on Ginzburg-Landau models. In thes
models the symmetry of the superconducting gap function plays an important role.
Ginzburg-Landau models presented in chapter 3 are: (i) triplet superconductivity w
negligible spin-orbit coupling, described by a ID representation, (ii) coupling of th
components of a 2D superconducting vector order parameter to a symmetry breaking f
(iii) coupling of two nearly degenerate ID superconducting order parameters. In scena
(i) and (ii) a symmetry breaking field (SBF) is required to lift the degeneracy of the spin
the 2D order parameter, respectively. In the case that the weak antiferromagnetic order
as the SBF it is predictedi7oc nt.

In chapter 4 neutron-diffraction experiments on a series of |B@Y; single crystals
(*<0.05) are presented. It was found that the small-moment antiferromagnetic or
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(SMAF), previously reported for pure WR$ robust upon doping with Pd and persists fti
at least x= 0.005. The ordered moment grows from 0.018+0.gQ@%atpom for pure UPt3
to 0.048+0.008HR3/U-atom for x= 0.005. For the SMAF thééel temperature, (J, is
approximately 6 K and, most remarkably, does not vary with Pd contents. The ¢
parameter squared has an unusual quasi-linear temperature variation.0fat a second
antiferromagnetic phase with much larger ordered moments is found. For this pha
optimum doping (x= 0.05)JN attains a maximum value of 5.8 K and the ordered mom
equals 0.63+0.08)-3/U-atom.T~(x) for the large-moment antiferromagnetic (LMAF) orde
follows a Doniach-type phase diagram. From this diagram we infer that the antife
magnetic instability for the LMAF in U(Pti*Pgds located in the range 0.5-1 at.% Pd.

In chapter 5 we report u,SR experiments carried out on a seki§®tfPd)3 samples
with x< 0.05. For x< 0.005 the zero-field muon depolarisation is described by the K
Toyabe function. However, the temperature variation of the Kubo-Toyabe relaxation
AKT(7) does not show any sign of the small-moment antiferromagnetic phase with T"-
in contrast to previous reports. The absence of SMAF in the zerg*8&dsignal provides
evidence that the antiferromagnetic moments fluctuate at a rate >10 MHz, i.e. too fast
detected by u,SR, but slower than the time scale of the neutron-diffraction experil
=0.1 THz. For 0.01<x<0.05 the muon depolarisation in the ordered state is describe
two terms of equal amplitude: an exponentially damped spontaneous oscillation a
Lorentzian Kubo-Toyabe function. These terms are associated with antiferromagnetic
with substantial moments. The Knight-shift measured in a magnetic field of 0.6 T
single-crystalline U(Pto.95Pdo.os)3 in the paramagnetic state shows two signals for |
while only one signal is observed for B|| c. The analysis of the Knight shift points to
presence of one muon localisation site (0,0,z).

In chapter 6 we report the effect of Pd doping on the superconducting phase diagr
the unconventional superconductor Y& measured by (magneto)resistance, specific he
thermal expansion and magnetostriction. Experiments on single- and polycrysta
U(Pti.;Pd)3 for x< 0.006 show that the superconducting transition temperatures T*
T~ both decrease, while the splittiddc increases at a rate of 0.30+0.02 K/at.%Pd. The
phase is suppressed first, near x= 0.004, while the A phase survives till x* 0.007. We
that AT(x) correlates with an increase of the weak magnetic moment m{x) upon Pd doj
This provides further evidence for Ginzburg-Landau scenarios with magnetism as
symmetry breaking field (scenarios (i) and (ii)). Only for small splitings A7% T )
(ATc< 0.05 K) as predicted. The results at larger splittings call for Ginzburg-Lan
expansions beyond 4th order. The tetracritical point in the B-T plane persists until at
x=0.002 for Bl c, while it is rapidly suppressed for B||c. Upon alloying the A and
phases gain stability at the expense of the C phase.
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Samenvatting

De intermetallischeverbinding UP§ wordt beschouwd als een modelsysteem voor he
bestuderen van onconventionele magnetische en supergeleidende eigenschappel
onconventionele supergeleidende eigenschapper0.&¥5 van UPt komen het best tot
uiting in het meervoudige supergeleidende fasediagram in het B-T vilak. Met na
bijzonder is dat vooB= 0 twee supergeleidende faseovergangen worden waargenom
met een splitsing Ar=r.,"- T—=0.055K. De magnetische eigenschappen zi
onconventioneel in de zin dat sterke spinfluctuatie verschijnselen coéxisteren 1
antiferromagnetische ordenin¢7~= 6K) met een extreem klein geordend moment
(m~0.02 Hs/U-atoom). Door kleine hoeveelheden Pt te vervangen door isoelectronisch
kunnen de supergeleidende en magnetische eigenschappen sterk beinvioed worder
proefschrift behandelt de magnetische eigenschappen van U{Pt&al$ die bestudeerd
ziin d.m.v. neutronendiffractieen liSR experimenten. Daarnaast zijn de supergeleidend
eigenschappen onderzocht d.m.v. (magneto)weerstand, soortelijke warmte, thermi
uitzetting en magnetostrictie technieken. Op deze manier is het mogelijk om de wis:
werking tussen magnetisme en supergeleiding in het U(PgiA&teem te bestuderen.

Hoofdstuk 1 geeft een korte algemene inleiding gevolgd door de motivatie van h
onderzoek. De experimentele technieken die gebruikt zijn voor het bestuderen van
supergeleidende en magnetische eigenschappen van U{Ru@&den beschreven in
hoofdstuk 2. De technieken die op het Van der Waals-Zeeman Instituut tot het standa:
instrumentarium behoren zijn beknopt besproken, tedejlUSR en neutronendiffractie-
techniek in meer detail worden beschreven.

In hoofdstuk 3 presenteren we de theoretische aspecten van ons onderzoek.
hoofdstuk bestaat uit twee afzonderlijke delen. In het eerste deel komt de theorie
onconventionele supergeleiding in YPidan bod, terwijl in het resterende deel de
interpretatie van de muon depolarisatiefunctie, zoals gemeten in een [0SR experin
beschreven wordt. De bespreking van de theorie van onconventionele supergeleidin
UPt; richt zich voornamelijk op Ginzburg-Landau modellen. In deze modellen speelt ¢
symmetrie van de supergeleidende gap een belangrijke rol. De Ginzburg-Landau mode
die in hoofdstuk3 aan de orde komen zijn: (i) triplet supergeleiding met verwaarloosbar
spin-orbit koppeling, beschreven met eéD representatie, (i) koppeling van de
componenten van eefBD supergeleidende vector ordeparameter met een symmetrie
brekend veld (i) koppeling van twee bijna ontaatfe supergeleidende ordeparameters.
In scenariogi) en (i) is een symmetrie-brekend veld noodzakelik om de ontaarding val
de spin of de2D ordeparameter op te heffen. In het geval dat de zwakke antiferrc
magnetische ordening het symmetrie-brekend veld is voorspelt de tAgomar?.

In hoofdstuk 4 worden de resultaten van neutronendiffractie experimenten aan ee
reeks U(PtiPd} éénkristallen (j*0.05) gepresenteerd. Het "kleine moment" antiferro
magnetisme (KMAF) gevonden in zuiver YRt ook aanwezig voor Pd doping tot ten
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minste x=0.005.Het geordende moment groeit van 0.018+0.0Q2Udatoom voor zuiver
UPt; tot een waarde va0.04810.008Ufl/U-atoom voor x=0.005.De Néeltemperatuur, \J

is voor het KMAF ongevee8 K en varieert niet met de Pd concentratie. De ordeparame
in het kwadraat varieert quasi-lineair met de temperatuur. Een tweede antiferromagnet
fase met veel grotere momenten is gevonden vodd.f%.Bij optimale doping (x=0.05)
bereikt 7N voor deze fase een maximale waarde 58K, terwijl het geordend moment
0.63+0.05 Hs/U-atoom bedraagtn(X) voor het "grote moment" antiferromagnetisme
(GMAF) volgt een Doniach-type fasediagram. Uit dit fasediagram leiden we af dat
antiferromagnetische instabiliteit voor het GMAF in U(F®id)3 zich bevindt tussef.5 en

1 at.%Pd.

In hoofdstuk 5 rapporteren we USR experimenten uitgevoerd aan een reek
U(Pti_;Pdj)3 preparaten met x<0.05. De nulveld muon depolarisatie kan beschre
worden door de Kubo-Toyabe functie voor @005.De temperatuurafhankelijkheid van
de Kubo-Toyabe lijnbreedteAKT(7) vertoont geen teken van het "kleine moment'
antiferromagnetisme, zoals gevonden in vroegere metingen door anderen. De afwezi
van het KMAF in het nulveld USR signaal vormt een bewijs dat de antiferromagnetis
momenten fluctueren met een frequentie >10 MHz. Dus de fluctuaties zijn te snel or
worden waargenomen met uSR, maar langzamer dan de tijdschaal voor neutro
diffractieexperimenten= 0.1 THz. Voor 0.01<x<0.05 kan de muon depolarisatie in d
geordende toestand beschreven worden door twee termen met gelijke amplitude:
exponentieel gedempte oscillatie en een Lorentzische Kubo-Toyabe functie. Deze ter
kunnen geassocieerd worden met antiferromagnetische ordening met beduids
momenten. De Knight-shift gemeten aan een U(Pto.95Pdo.05)3 éénkristal in een magne
veld van0.6 T bestaatin de paramagnetischestand uit twee signalen voor Bl c, terwijl
slechts een signaal is gevonden voor B|| c. De analyse vdmigét shift duidt op de
aanwezigheid van één positie waar de muon tot rust komt (0,0,z).

In hoofdstuk 6 bespreken we het effect van Pd doping op het supergeleiden
fasediagram vanUPt3, zoals gemeten d.m.v. (magneto)weerstand, soortelijk warmt
thermische uitzetting en magnetostrictie. Experimenten aan één- en polykristal
U(Pti.jpd™y preparaten met*< 0.006 laten zien dat de supergeleidende overgangs
temperaturen T* en T~ beide afnemen, terwijl de opsplitsing tA€neemt met een
snelheid van 0.30+0.02 K/at.%Pd. De B fase wordt als eerste onderdrukt rdh@04
terwijl de A fase stabiel is tolCH0.007.AT,(x) correleert met de toename van het zwakke
moment m(x) voor Pd doping. Dit vormt aanvullend bewijs voor Ginzburg-Land:
modellen met het magnetisme als het symmetrie-brekend (eddnarios (i) en (ii)).
Slechts voor kleine waarden van AfATc< 0.05K) vinden we dat A7>= Af T*), zoals
voorspeld. De resultaten voor grotere splitsing duiden op de noodzaak voor een Ginzb
Landau ontwikkeling met termen hoger dan vierde order.tetedkritischepunt in het B-T
vlak blijft bestaan tot ten minste 3002 voor Bl c, terwijl het snel onderdrukt wordt
voor B|| c. Door substitutie van Pt door Pd neemt de stabiliteitdeaA en B fasen toe ten
koste van de C fase.
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