Broad-band spectral evolution of GRB afterglows

Published in:
Astronomy and Astrophysics Supplement Series

DOI:
10.1051/aas:1999305

Link to publication

Citation for published version (APA):
Broad–band spectral evolution of GRB afterglows

N. Masetti1, E. Pian1, E. Palazzi1, L. Amati1, T.J. Galama2, L. Nicastro3, P.M. Vreeswijk2, F. Frontera1, and J. van Paradijs2

1 Istituto Te.S.R.E., CNR, via Gobetti 101, I-40129 Bologna, Italy
2 Astronomical Institute “Anton Pannekoek”, Kruislaan 403, 1098 SJ Amsterdam, The Netherlands
3 I.F.C.A.I., CNR, via Ugo La Malfa 153, I-90146 Palermo, Italy

Received December 29, 1998; accepted April 21, 1999

Abstract. Quasi-simultaneous Spectral Energy Distributions (SEDs) at different epochs of four among the most intensively observed Gamma-Ray Burst (GRB) afterglows have been constructed in order to investigate and compare the temporal evolution of their multiwavelength emission. The data suggest that generally the peak frequency moves toward lower frequencies with time. SED local maxima in the optical/IR range are present in some cases, possibly due to dust absorption within the host galaxy.

Key words: methods: data analysis — gamma-rays: bursts

1. Introduction

The evolution of the physical parameters (Sari et al. 1998) of Gamma–Ray Burst (GRB) afterglows is of crucial importance in the knowledge of these phenomena, and can be analyzed by means of the radio-to–X–ray Spectral Energy Distribution (SED) observed at various epochs. By studying multiwavelength spectral variability and in particular the change of the frequency at which the SED maximum occurs, the powering mechanism of the afterglow, as well as its hydrodynamic evolution, may be clarified. To this aim, we have studied eight GRB afterglows which have been promptly pointed by the BeppoSAX NFI and for which both an X–ray and optical transient have been detected. Here we report only on four of these for which well sampled SEDs are available at least at two epochs.

2. The SEDs

We have collected the X–ray to radio data and upper limits of the four GRB afterglows of 970228, 970508, 980329 and 980703, and we have then constructed the multiwavelength spectra at various epochs for each case (Fig. 1). When known, the host galaxy contribution was subtracted from the optical and infrared (IR) measurements, if significant with respect to the OT magnitude. Dereddening for foreground Galactic absorption was made with the law of Cardelli et al. (1989). The photometric flux calibration was taken by Fukugita et al. (1995) and by Bersanelli et al. (1991) for the optical and the IR data, respectively.

In the following we will discuss the four GRB afterglows separately.

GRB 970228. In order to determine the optical and IR magnitudes of the OT of this GRB we subtracted from the available measurements the following host galaxy magnitudes: \(B \sim 26.5 \) (extrapolated), \(V = 25.75, R = 25.3, I = 24.45 \) (Fruchter et al. 1998), \(J = 24.0 \) (interpolated), \(H = 23.2 \) and \(K = 22.8 \) (Fruchter et al. 1998); next, we dereddened and compared the temporal evolution of their multiwavelength spectra at various epochs for each case (Fig. 1). When known, the host galaxy contribution was subtracted from the OT magnitude. Dereddening for foreground Galactic absorption was made with the law of Cardelli et al. (1989). The photometric flux calibration was taken by Fukugita et al. (1995) and by Bersanelli et al. (1991) for the optical and the IR data, respectively.
X–rays), Palazzi et al. (1998; V, R) and Rhoads et al. (1998a; I). The second SED was constructed with observations by Djorgovski et al. (1998; R), Metzger (1998; K), Smith et al. (1998; mm) and Taylor et al. (1998; radio), made about 8 days after the burst. No host galaxy contribution has been subtracted, since its brightness is uncertain. Correction for foreground Galactic absorption $A_V = 0.4$ (Palazzi et al. 1998) was applied to the optical and IR data. We note that the revision of the I band photometric measurement on March 29.9 (Rhoads et al. 1998a) suggests a very sharp and narrow local spectral peak. If true, this would be inconsistent with a single optical-to-X–ray emission component. The change of the continuum spectral slope occurring in the optical has been tentatively explained as Lyman-α absorption up to $z \approx 5$ (Fruchter 1999).

GRB 980703. Two SEDs for this GRB afterglow were constructed using the X–ray data by Vreeswijk et al. (1999), the optical data by Bloom et al. (1998), Vreeswijk et al. (1999) and Rhoads et al. (1998b) and, for the first epoch, the radio data by Frail et al. (1998b). Host galaxy magnitudes $V = 23.04$, $R = 22.58$, $I = 21.95$, $J = 20.87$, $H = 20.27$ and $K = 19.62$ (Vreeswijk et al. 1999) were subtracted from the measurements. A foreground absorption $A_V = 0.019$ (Vreeswijk et al. 1999) was taken into account. The optical/IR bump could be accounted for by intrinsic extinction in the OT environment at the source redshift ($z = 0.966$; Djorgovski et al. 1998b).

3. Results and discussion

From this GRB afterglow sample we find that in general, at early epochs after the GRB (≤ 2 days), the SED exhibits a maximum in the X–rays. However, due to the lack of data in the far and extreme ultraviolet range (100 to 3500 Å), and to the large uncertainties on the X–ray spectral slope, we cannot exclude that the SED peak is located between the optical and the X–rays. While the afterglow of GRB 970508 exhibits a smooth and continuously curved spectrum from the radio to the X–ray frequencies, which might suggest the presence of a single emission component (presumably synchrotron radiation; e.g., Sari et al. 1998), the other cases reported in Fig. 1 show local maxima (visible on the reported SEDs as “humps”) in the optical/IR range. If intrinsic, these would imply that at least two emission components build up the afterglow radio-to-X–ray continuum. However, they could be the signature of gas and dust absorption within the host galaxy, which increases toward the ultraviolet frequencies. Although, due to the scarcity and irregular sampling of the data, it is extremely difficult to follow in detail the temporal evolution of the SED maximum, the data suggest that for most GRB afterglows the peak moves toward lower frequencies with time. The timescale of this displacement is hard to assess; it could be estimated for future GRBs by simultaneous monitoring in many bands, on long time intervals.

References

Djorgovski S.G., et al., 1998a, GCN 41
Frail D.A., et al., 1998b, GCN 141
Fukugita M., Shimasaku K., Ichikawa T., 1995, PASP 107, 945
Metzger M.R., 1998, IAU Circ. 6874
Metzger M.R., et al., 1997, IAU Circ. 6631
Morris M., et al., 1997, IAU Circ. 6666
Rhoads J., et al., 1998a, GCN 157
Rhoads J., Downes R., Christensen J., 1998b, GCN 144
Soifer B., et al., 1997, IAU Circ. 6619
van Paradijs J., et al., 1997, Nat 386, 686
Vreeswijk P.M., et al., 1999 (this volume)
Yoshida A., et al., 1997, IAU Circ. 6593

Fig. 1. SEDs of GRB afterglows at various epochs after the γ burst. For each GRB we define $\Delta t = t_{\text{obs}} - t_0$, where t_{obs} is the epoch of the observation, in days, referring to a specific epoch of the observation, in days, referring to a specific