Concentrations of human immunodeficiency virus type 1 (HIV-1) RNA in cerebrospinal fluid after antiretroviral treatment initiated during primary HIV-1 infection

Published in:
Clinical infectious diseases

DOI:
10.1086/319602

Citation for published version (APA):

Copyright and permission

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.

UvA-DARE is a service provided by the library of the University of Amsterdam (http://dare.uva.nl)

Download date: 29 Oct 2018
Concentrations of Human Immunodeficiency Virus Type 1 (HIV-1) RNA in Cerebrospinal Fluid after Antiretroviral Treatment Initiated during Primary HIV-1 Infection

Roelien H. Enting, 1, 2 Jan M. Prins, 2 Suzanne Jurriaans, 3 Kees Brinkman, 4 Peter Portegies, 1 and Joep M. A. Lange 2

1 Department of Neurology, 2 National AIDS Therapy Evaluation Center (NATEC), Department of Internal Medicine, and 3 Department of Human Retrovirology, Academic Medical Center, University of Amsterdam, and 4 Department of Internal Medicine, University Hospital Nijmegen, Nijmegen, The Netherlands

In 6 patients with primary human immunodeficiency virus type 1 (HIV-1) infection, concentrations of HIV-1 RNA and β2-microglobulin were monitored in cerebrospinal fluid (CSF) and in plasma during antiretroviral therapy. Four patients had neurological symptoms. At baseline, the CSF of 5 patients had detectable levels of HIV-1 RNA (median, 3.68 log10 copies/mL; range, <2.60–5.67 log10 copies/mL), and the CSF of 3 patients had elevated levels of β2-microglobulin. After 8 weeks of treatment, the median concentrations of HIV-1 RNA in CSF had decreased to <2.60 log10 copies/mL (range, <1.60–3.00 log10 copies/mL; P = .04) and in plasma to 3.07 log10 copies/mL (range, 2.57–3.79 log10 copies/mL; P = .03). Median concentration of β2-microglobulin in CSF had decreased to 1.2 mg/L (range, 0.9–1.7 mg/L; P = .06) and, in plasma, to 1.7 mg/L (range, 1.1–2.2 mg/L; P = .03). After 48 weeks, HIV-1 RNA concentrations in 1 patient were still 1.97 log10 copies/mL in CSF and 1.51 log10 copies/mL in plasma, although β2-microglobulin concentrations in CSF and plasma had normalized after 8 weeks.

Primary HIV-1 infection is frequently associated with a transient flulike illness that is often undiagnosed or misdiagnosed [1, 2]. Neurological manifestations may occur, ranging from mild viral meningitis to encephalitis [2, 3]. The incidence of symptoms consistent with viral meningitis during primary HIV-1 infection is 9% [2]. Neurological symptoms generally resolve in several weeks [2]. HIV-1 and HIV-1 p24 have been detected in CSF specimens obtained from such patients [3, 4]. Very few longitudinal data are available on CSF findings for patients receiving antiretroviral treatment that was initiated at the time of primary HIV-1 infection [5, 6]. Because the investigation of CSF provides a window on what is happening in the brain parenchyma [7], we longitudinally measured HIV-1 RNA and β2-microglobulin in CSF and plasma from 6 patients who started receiving regimens of 5 or of 6 antiretroviral drugs at about this time.

PATIENTS AND METHODS

Since November 1997, 6 patients with primary HIV-1 infection have been enrolled in an open-label trial to evaluate the efficacy of a 5-drug treatment regimen
Table 1. Findings in CSF and in plasma for 6 patients with primary HIV-1 infection.

<table>
<thead>
<tr>
<th>Patient</th>
<th>Neurological symptoms</th>
<th>Time to treatment, (t_a)</th>
<th>CD4 count, cells/µL</th>
<th>Leukocyte count, cells/µL</th>
<th>HIV-1 RNA level, copies/mL</th>
<th>Leukocyte count, cells/µL</th>
<th>HIV-1 RNA level, copies/mL</th>
<th>Leukocyte count, cells/µL</th>
<th>HIV-1 RNA level, copies/mL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>CSF</td>
<td>Plasma</td>
<td>CSF</td>
<td>Plasma</td>
<td>CSF</td>
<td>Plasma</td>
<td>CSF</td>
</tr>
<tr>
<td>16</td>
<td>Severe</td>
<td>6</td>
<td>390</td>
<td>19(^a)</td>
<td>1800</td>
<td>280,000</td>
<td>2</td>
<td><40</td>
<td>370</td>
</tr>
<tr>
<td>18</td>
<td>Severe</td>
<td>4</td>
<td>340</td>
<td>59(^a)</td>
<td>470,000</td>
<td>300,000</td>
<td>10</td>
<td>1000</td>
<td>3300</td>
</tr>
<tr>
<td>20</td>
<td>Mild</td>
<td>4</td>
<td>350</td>
<td>5</td>
<td>20,000</td>
<td>930,000</td>
<td>3</td>
<td>200</td>
<td>6100</td>
</tr>
<tr>
<td>21</td>
<td>None</td>
<td>4</td>
<td>620</td>
<td>4</td>
<td><400</td>
<td>44,000</td>
<td>3</td>
<td>ND</td>
<td>1500</td>
</tr>
<tr>
<td>23</td>
<td>Mild</td>
<td>2</td>
<td>730</td>
<td>203</td>
<td>7700</td>
<td>340,000</td>
<td>13</td>
<td><400</td>
<td>850</td>
</tr>
<tr>
<td>24</td>
<td>None</td>
<td>6(^a)</td>
<td>670</td>
<td>40</td>
<td>620</td>
<td>25,000</td>
<td>4</td>
<td><400</td>
<td><400</td>
</tr>
</tbody>
</table>

NOTE. ND, not determined.

\(^a\) Time from first symptoms of acute HIV-1 infection to the start of antiretroviral treatment.

\(^b\) Data were available only for patients 16 and 18 at week 48.

\(^c\) First CSF examination was done in another hospital.

\(^d\) Time to treatment from documented seroconversion, no symptoms of acute HIV-1 infection.

Results are reported as medians and ranges for all variables. Differences were tested by use of the Wilcoxon matched pairs signed rank test and Mann-Whitney \(U\) test, as appropriate. Correlations were tested by use of Spearman’s rank correlation test. If values were below the lower limit of detection, the cutoff point was used as the subject’s value in all analyses. \(P < .05\) was considered significant.

RESULTS

Five patients (patients 16, 18, 20, 21, 23) experienced an acute illness consistent with primary HIV-1 infection and had peak plasma HIV-1 RNA concentrations of \(>5 \log_{10}\) copies/mL. For 4 of these 5 patients (patients 16, 18, 21, 23), the results of Western blotting were indeterminate during their first visit but evolved toward positive during follow up. One patient (patient 20) had a peak plasma HIV-1 RNA concentration of \(6.4 \log_{10}\) copies/mL, and the HIV-1 antibody level increased 4-fold after the acute illness. For 1 patient (patient 24), results of HIV-1 antibody screening were negative 6 months before study entry, but the patient was found to be HIV-1–seropositive 6 weeks before enrollment.

Two patients (patients 16 and 18) had severe neurological symptoms. Patient 16 had meningoencephaloradiculitis due to primary HIV-1 infection. The first CSF examination (done elsewhere) revealed the following values: leukocyte count, 130 cells/µL; protein level, 2.89 g/L; and glucose level, 2.7 mM/L. The following tests yielded negative results: cultures for bacteria and virus, Ziehl-Neelsen staining, and PCR analysis for herpesviruses. Patient 18 had viral meningitis due to primary HIV-1 infection; symptoms gradually resolved over several weeks. Two patients (patients 20 and 23) had mild neurological symptoms (headache and fever), and 2 patients had no neurological symptoms (table 1).
At baseline, 5 patients had detectable HIV-1 RNA in CSF (median, 3.68 log_{10} copies/mL; range, <2.60–5.67 log_{10} copies/mL); the 2 patients without neurological symptoms had either low (2.79 log_{10} copies/mL) or undetectable levels (figure 1; table 2). In CSF, neither leukocyte level nor protein levels correlated with levels of HIV-1 RNA (data not shown). Concomitant plasma levels of HIV-1 RNA were 5.46 log_{10} copies/mL (range, 4.40–5.97 log_{10} copies/mL). Levels of HIV-1 RNA in CSF were not significantly correlated with plasma HIV-1 RNA levels ($r = .77$; $P = .07$). After 8 weeks of treatment, levels of HIV-1 RNA in CSF decreased significantly, to a median of <2.60 log_{10} copies/mL (range, <1.60–3.00 log_{10} copies/mL; $P = .04$; figure 1; tables 1 and 2).

For 2 patients, data were available for week 48. The patient who had the highest level of HIV-1 RNA in CSF at baseline (5.67 log_{10} copies/mL; plasma HIV-1 RNA level, 5.48 log_{10} copies/mL) still had detectable HIV-1 RNA after 8 weeks (in CSF, 3.00 log_{10} copies/mL; in plasma, 3.52 log_{10} copies/mL) and after 48 weeks (in CSF, 1.97 log_{10} copies/mL; in plasma, 1.51 log_{10} copies/mL). The plasma HIV-1 RNA level remained <0.70 log_{10} copies/mL from week 71 onwards, but follow-up measurement of concentrations in CSF was not planned to be performed until week 96. The other patient’s HIV-1 RNA levels in CSF were <1.60 log_{10} copies/mL at both week 8 and 48. Plasma HIV-1 RNA levels decreased significantly, from 5.46 log_{10} copies/mL (range, 4.40–5.97 log_{10} copies/mL) to 3.07 log_{10} copies/mL (range, 2.57–3.79 log_{10} copies/mL; $P = .03$) after 8 weeks of treatment (figure 1).

In addition, the CSF inflammatory response was evaluated during treatment. After 8 weeks of treatment, the median leukocyte count in CSF decreased from 30 cells/µL (range, 4–203 cells/µL; >90% lymphocytes in all patients) to 4 cells/µL (range, 2–13 cells/µL; $P = .03$). The median protein level in CSF decreased slightly, from 0.58 g/L (range, 0.32–1.36 g/L) to 0.48 g/L (0.22–0.68 g/L; $P = .10$). At baseline, β_{2}-microglobulin levels in CSF were significantly higher in patients infected with HIV-1 than levels in HIV-1–seronegative control subjects ($P = .002$), and they were elevated in 3 patients (table 2).

Baseline levels of β_{2}-microglobulin in CSF were significantly correlated with the leukocyte count in CSF ($r = .83$; $P = .04$) and protein levels in CSF ($r = .83$; $P = .04$). Baseline levels of β_{2}-microglobulin in plasma also were higher in case patients than they were in control subjects ($P = .002$). Baseline levels of β_{2}-microglobulin in CSF and plasma were significantly correlated ($r = .78$; $P < .001$); 4 patients had levels of β_{2}-microglobulin in CSF that exceeded the levels in plasma. After 8 weeks of treatment, levels of β_{2}-microglobulin in CSF decreased from 2.5 mg/L (range, 0.9–5.5 mg/L) to 1.2 mg/L (range, 0.9–1.7 mg/L; $P = .06$; figure 2).

For 2 patients, data were available for week 48. For patient 16, the β_{2}-microglobulin level in CSF decreased from 2.0 mg/L at baseline to 1.2 mg/L at week 8 and to 0.8 mg/L at week 48; the level in plasma decreased from 1.7 mg/L at baseline to 1.1 mg/L at week 8 and 1.0 mg/L at week 48. At baseline, patient 18 had elevated levels of β_{2}-microglobulin in CSF and in plasma (5.5 and 3.1 mg/L, respectively), which decreased to 1.4 and 1.9 mg/L, respectively, after 8 weeks and to 0.9 and 1.1 mg/L, respectively, after 48 weeks. After 8 weeks, levels of β_{2}-microglobulin in plasma had decreased from 2.6 mg/L (range, 1.4–3.1 mg/L) to 1.7 mg/L (range, 1.1–2.2 mg/L; $P = .03$; figure 2).

DISCUSSION

Measuring the level of HIV-1 RNA in CSF may indicate what is happening in the brain [7]. HIV-1 RNA is detectable in the

Table 2. Concentrations of β_{2}-microglobulin and HIV-1 RNA in CSF and in plasma before and after initiation of treatment with 5 or 6 antiretroviral drugs.

<table>
<thead>
<tr>
<th>Compartment, time relative to initiation of treatment</th>
<th>β_{2}-microglobulin, mg/L</th>
<th>HIV-1 RNA, log_{10} copies/mL</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSF</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control subjects</td>
<td>0.8 (0.5–1.8)</td>
<td>NA</td>
</tr>
<tr>
<td>Case patients</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Before</td>
<td>2.5 (0.9–5.5)</td>
<td>3.68 (<2.60–5.67)</td>
</tr>
<tr>
<td>8 w after</td>
<td>1.2 (0.9–1.7)</td>
<td>2.60 (<1.60–3.00)</td>
</tr>
<tr>
<td>48 w after (n = 2)</td>
<td>0.9 (0.8–0.9)</td>
<td>1.82 (<1.60–1.97)</td>
</tr>
<tr>
<td>Plasma</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control subjects</td>
<td>1.3 (0.8–2.2)</td>
<td>NA</td>
</tr>
<tr>
<td>Case patients</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Before</td>
<td>2.6 (1.4–3.1)</td>
<td>5.46 (4.40–5.97)</td>
</tr>
<tr>
<td>8 w after</td>
<td>1.7 (1.1–2.2)</td>
<td>3.07 (2.57–3.79)</td>
</tr>
<tr>
<td>48 w after (n = 2)</td>
<td>1.1 (1.0–1.1)</td>
<td>1.27 (<0.70–1.51)</td>
</tr>
</tbody>
</table>

*a P = .002 compared with HIV-1 seronegative control subjects.

b $P = .06$ compared with values before treatment.

c $P = .04$ compared with values before treatment.

d $P = .03$ compared with values before treatment.
CSF of most untreated asymptomatic HIV-1–infected persons [9–11], and over several years a small but significant increase is seen in the level [11]. The concentration of HIV-1 RNA in CSF varies widely (range, <2.30–5.10 log_{10} copies/mL), but it is generally lower than the concentration in plasma [9–12]. However, levels of HIV-1 RNA in CSF may surpass levels in plasma [9, 10, 12]. The CSF HIV-1 RNA concentration is correlated with the CSF lymphocyte count but not necessarily with the plasma HIV-1 concentration [9, 10, 12, 13].

Therefore, it is assumed that lymphocytes are the main source of HIV-1 in the CSF of asymptomatic patients. Leakage of HIV-1 from plasma is improbable, because in these patients the integrity of the blood-brain barrier has generally been preserved. However, lymphocyte transport across an intact blood-brain barrier is known to occur [9, 10, 13]. In neurologically symptomatic patients, CSF HIV-1 RNA concentrations correlate with the presence and severity of cognitive impairment, neuropathologic abnormalities, and with high levels of HIV-1 RNA in the brain [14–17]. In these patients, CSF HIV-1 RNA levels are independent of CSF lymphocyte counts, a finding that strongly supports the hypothesis that brain macrophages are the source of HIV-1 RNA in the CSF [7, 18]. In asymptomatic patients, the levels of HIV-1 RNA in CSF and in plasma are seen to decrease at the same rate after the initiation of antiretroviral therapy; whereas in demented persons, the level decreases more slowly in CSF than in plasma, which suggests that HIV-1 replication in the CNS becomes increasingly independent in patients with advanced HIV-1 infection [18].

There is a preliminary report on the monitoring of HIV-1 RNA in CSF in 4 patients who were receiving combination antiretroviral treatment that was started during primary HIV-1 infection, which demonstrated that the level of HIV-1 RNA in CSF had become undetectable after 8 weeks [5]. In 2 patients for whom baseline data were unavailable, HIV-1 RNA was undetectable in CSF after 2 and 2.5 years of triple-nucleoside therapy that was initiated at the time of primary HIV-1 infection [6].

HIV-1 replication may mediate an inflammatory response in the CNS that is reflected in an increased CSF lymphocyte count, a higher IgG index, and elevated levels of markers of immune activation, including β_{2}-microglobulin and neopterin [19]. β_{2}-microglobulin levels are the more interesting of the latter 2 markers, because neurologically asymptomatic patients with elevated concentrations of β_{2}-microglobulin in CSF have a much higher risk of eventually developing AIDS dementia [20]. Longitudinal data have shown that the CSF β_{2}-microglobulin concentration slightly increases over time in untreated persons infected with HIV-1 [19]. Elevated β_{2}-microglobulin concentrations in CSF have been reported in 3 patients with primary HIV-1 infection [21]; β_{2}-microglobulin had become undetectable 10 weeks after therapy was initiated but had increased 11 months after.

We monitored HIV-1 RNA and β_{2}-microglobulin concentrations in the CSF of 6 patients who initiated antiretroviral treatment within 6 weeks of first symptoms of primary HIV-1 infection or documented HIV-1 seroconversion. We chose to use the 5-drug regimen described above in this open-label study because its antiviral effect is superior to that of a 3-drug regimen [8]. Many data support the initiation of antiretroviral treatment during primary HIV-1 infection. Initiating aggressive treatment at this stage may facilitate the HIV-1–specific CD4 T cell response and may lead to a greater reduction in HIV-1 viremia than that in persons who start treatment during chronic infection [22, 23].

HIV-1 RNA was detectable (>400 copies/mL) in CSF samples of 5 of our 6 patients. The level of HIV-1 RNA in CSF surpassed the level in plasma in 1 patient who had severe neurological symptoms before the start of treatment. The lowest CSF HIV-1 RNA concentrations were seen in the 2 patients who did not have neurological symptoms. An inflammatory response was seen in some patients: 4 patients had elevated leukocyte counts in CSF, which is consistent with viral meningitis; levels of β_{2}-microglobulin in CSF were elevated in 3 patients and were significantly higher than levels in control subjects.

After 8 weeks of treatment, the concentration of HIV-1 RNA, the leukocyte count, and the levels of β_{2}-microglobulin in CSF decreased at the same rate as levels of HIV-1 RNA and β_{2}-microglobulin in plasma. Of note, in 1 patient, HIV-1 RNA was still detectable in CSF (1.97 log_{10} copies/mL) after 48 weeks of treatment, and the concentration exceeded that in plasma (1.51 log_{10} copies/mL). This patient began with the 5-drug regimen described in this open-label study before the 6-drug regimen and changed to the 6-drug regimen at week 14. His CSF β_{2}-microglobulin concentration was elevated at baseline but had normalized after 8 weeks of treatment. Our findings demonstrate that clearance of HIV-1 RNA from CSF (and plasma) may not be complete after 48 weeks of aggressive treatment initiated within 6 weeks of a diagnosis of primary HIV-1 in-
fection. Eleven patients from our institution started treatment with 2 nucleoside analogues (if necessary, augmented with a protease inhibitor) during chronic HIV-1 infection and had CSF HIV-1 RNA levels of <50 copies/mL after 48 weeks, even when plasma response was not complete [24].

Several explanations can be given for the slow decrease in HIV-1 RNA levels in patient 18. The drug combination used was not the culprit, because it included all of the drugs administered in a previous study [24]. A discordant HIV-1 response in CSF and blood may be explained by divergent resistance patterns in these compartments [25]. There is no reason to doubt that these highly motivated patients adhered to their therapeutic regimens; furthermore, patient 18 eventually had an undetectable plasma HIV-1 RNA concentration. The very high concentration of HIV-1 RNA in CSF at baseline may be a contributing factor. Another explanation could be that, at this early stage of HIV-1 infection, the immune response is still immature. Clearance of HIV-1 RNA from the CSF may be slow in patients who start therapy during primary HIV-1 infection. Similar data have been found with regard to levels in plasma [26].

References