Fluid dynamics in charge stabilized colloidal suspensions
Riese, D.O.

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
The structure factor is essentially the Fourier transform of the radial distribution function \(g(r) \), which gives the relative conditional probability of finding a particle at a distance \(r \) apart from another particle [9]. The pair distribution function is related to the direct correlation function \(c(r) \) by the Ornstein-Zernike equation [69]:

\[
h(r) = c(r) + n h(r) \ast c(r),
\]

where \(h(r) = g(r) - 1 \) is the total correlation function, \(n \) the particle number density, and the symbol \(\ast \) denotes a convolution product. To calculate \(g(r) \) [and therefore \(S(q) \)] for a given potential, eq. A.1 has to be closed by an additional relation. We will employ the so-called HMSA closure here, proposed by Zerah and Hansen [112]. This closure relation reads

\[
g(r) = \exp\left\{-u_1(r)/k_B T\right\} \left(1 + \frac{\exp\{f(r)[h(r) - c(r) - u_2(r)/k_B T]\} - 1}{f(r)}\right),
\]

where \(u_1(r) \) is the repulsive part of the interparticle potential and \(u_2(r) \) the attractive part. The "switching function" \(f(r) \) is parameterized by

\[
f(r) = 1 - \exp\{-\zeta r\}.
\]

For a given potential, the parameter \(\zeta \) is varied until thermodynamic consistency is achieved, that is, until the isothermal compressibility obtained from the Ornstein-Zernike equation is equal to the one obtained from the virial
equation1. The closure A.2 interpolates between the hypernetted-chain closure \([f(r) = 1]\) and the soft mean spherical approximation \([f(r) = 0]\), which are both thermodynamically inconsistent \([112]\). For a purely repulsive potential \([u_2(r) = 0]\), the soft mean spherical approximation reduces to the well-known Percus-Yevick closure and, consequently, the HMSA scheme to the thermodynamically consistent Rogers-Young (RY) closure \([9]\). Since the DLVO potential is purely repulsive, the closure A.2 is identical to the RY-closure. The accuracy of the RY closure in conjunction with the DLVO potential has been demonstrated by D'Aguanno and Klein by comparison with computer simulation results \([113]\). The particular numerical scheme we use has successfully been applied to Lennard-Jones systems \([112, 114]\). We tested the scheme for the case of a DLVO potential by comparison with published computer simulation data \([113, 115]\) and found agreement to better than 5\%.

\[\chi_T^{-1} = n(\partial P/\partial n)_T, \text{ where } P \text{ is the pressure.} \]