Evidence that the RHDVI deletion genotype does not exist (letter)

Published in:
Blood

Citation for published version (APA):

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.

Download date: 19 Apr 2019
Congenital Haptoglobin Deficiency

To the Editor:

Haptoglobin is a dimeric glycoprotein comprising two β chains that bind to hemoglobin α dimers and two α chains.1 In patients with active hemolysis, the hemoglobin escaping into the plasma is bound to the free haptoglobin and the haptoglobin-hemoglobin complex is cleared from the plasma with a T1/2 of 10 to 30 minutes.3 Free haptoglobin, in contrast to the haptoglobin-hemoglobin complex, has a T1/2 of 5 days; hence, the depleted plasma levels in patients with active hemolysis and the clinical practice of measurement of plasma haptoglobin as a marker for hemolysis.9

This report describes two families with congenital deficiency of haptoglobin—an entity that has received little recognition in the hematology literature.

Report of Cases. A 47-year-old woman (Anglo-Saxon) presented in December 1990 with severe anemia and was found to have autoimmune hemolysis due to anti-e antibodies. Despite successful treatment with corticosteroids (normalization of hemoglobin and reticuloocyte count and a negative antiglobulin test), her haptoglobin (measured by rate nephelometry [Beckman Instruments Inc]) remained very low, at less than 0.4 g/L (normal range, 1 to 3.8), for more than four years. The isolated nature of this abnormality prompted me to proceed with family studies. The family studies showed similar low haptoglobin levels in one of her brothers 51 years of age and her daughter 31 years of age; both were clinically well. Three other family members (a brother 55 years of age and 2 sons 28 and 20 years of age, respectively) had normal levels.

A 15-year-old (Greek) girl with Gilbert’s syndrome (mild, hereditary glucuronyl transferase deficiency) was found to have very low serum haptoglobin level at less than 0.4 g/L (normal range, 1 to 3.8) without any other clinical or laboratory evidence of hemolysis. Family studies showed a similar low haptoglobin level in her brother 6 years of age, but the levels were normal in both parents and in her 17-year-old sister.

Reports of congenital deficiency of haptoglobin are rare.5 Two of these reports5,6 have described the association with familial epilepsy, with the latter being attributed to encephalic inflammation secondary to oxidation of brain lipids by the free interstitial hemoglobin. One report1 has documented a high incidence of haptoglobin deficiency amongst patients with respiratory allergies; this association was attributed to an increased prostaglandin synthesis resulting from the haptoglobin deficiency, with haptoglobin being a prostaglandin synthesis inhibitor. The haptoglobin-deficient subjects described in the present report did not manifest either of these associations.

Haptoglobin is genetically determined by two autosomal codominant allelic genes, Hp 1 and Hp 2, with three possible phenotypes Hp 1-1, Hp 2-1, and Hp 2-2.5 The low levels of haptoglobin in three members from two generations in the first family suggests an autosomal dominant type of inheritance, but the negative results in the parents of the second family do not support this. It is interesting to note the coexistence of Gilbert’s disease—a congenital deficiency state of uncertain inheritance pattern—in the second family. Further studies are required to clarify the mode of inheritance and the incidence of congenital haptoglobin deficiency state.

Arunagam Manoharan
Department of Clinical Haematology
St George Hospital
Kogarah, Sydney, Australia

REFERENCES

Evidence That the RHDVI Deletion Genotype Does Not Exist

To the Editor:

The Rhesus (RH) blood group system, one of the most complex polymorphic systems in humans, encompasses at least 45 antigens. These antigens are carried by at least two red blood cell membrane proteins that are encoded by two homologous genes, RHD and RHCE.1 The RHD antigen is a mosaic structure of at least 37 epitopes. Rearrangements of the RHD gene with the RHCE gene or point mutations in the RHD gene result in the loss of one or more D epitopes. Individuals with partial D phenotypes can produce antibodies to the missing epitopes in response to transfusion with D-positive blood or by pregnancy with a D-positive fetus. Until now, the following partial D phenotypes have been described: Da, DHe, DHb, DHea, DVb, DVh, DVl, Dni, Dpr, DRb, DEnu, DHm, Dma, and R$^{He}_{h2}$.

Of the partial DV phenotype, the partial D category that is most frequently leading to alloimmunization, two genotypes have been described7: the conversion type and the deletion type. In the conversion type, exons 4, 5, and 6 of the RHD gene are replaced by RHCE equivalents occurring in individuals of the DVI Cee phenotype. Individuals of the DVI Cee phenotype were originally described as belonging to the deletion type in which exons 4, 5, and 6 of the RHD gene are lost. Recent evidence suggests that these two types can also be distinguished at the serologic level using anti-BARC serum9 or several monoclonal antibodies (IgG MoAbs NOI, SAL17-
3)-CE(exon 4) fragments from both D VI ccEe and D VI Ccee samples
and D noncoding region in all the DVI variants previously described, we amplified hybrid D(exon 4) experiments that were performed on the reticulocyte transcripts from and 5 could not. Furthermore, in polymerase chain reaction (PCR) experiments that were performed on the reticulocyte transcripts from the DVI variants previously described, we amplified hybrid D(exon 3)-CE(exon 4) fragments from both DccEe and DcEe samples and a hybrid CE(exon 5)-D(exon 6) fragment only from the DcEe sample (Fig 1). From genomic DNA, a hybrid CE(exon 6)-D(exon 7) fragment could only be amplified from DcEe samples. As expected, no amplification product was obtained with control dccee and DccEE samples.

Together with the sequence analysis of full-length RHD cDNA of individual 307, previously described as having the D30 deletion, these results showed replacement of RHD exons 4 and 5 by their equivalent exons from the RHCE gene and not the deletion of exons 4, 5, and 6 in variants with the DcE haplotype.

The different conclusions from our previous published results could be explained by (1) the comigration of the rearranged CE(exon 4-5)-D(exon 6) BamHI genomic fragment with the restriction fragment of 5.3 kb carrying exons 4, 5, and 6 of the RHCE gene, which resulted in a higher intensity of this band in the DcE haplotype (DEL and 307) as compared with the other DccEe samples and D controls; and (2) the fact that the original sequence analysis of the D30 DEL transcripts was most likely performed on a splice variant of the RhD transcripts lacking exon 4-5-6.

Western blot analysis performed with a monoclonal antibody recognizing a nonconformation epitope of the RhD antigen showed a 30- to 34-kD RhD polypeptide in the red blood cell membrane of DcEe (DEL and 307) as compared with the other DccEe samples and D controls.

In conclusion, our results show that the D30 deletion genotype does not exist. In the conversion type described before, exons 4, 5, and 6 of the RHD gene are replaced by RHCE equivalents occurring in individuals of the DcEe phenotype. Individuals of the DcEe phenotype have the newly described conversion type in which RHD exons 4 and 5 are replaced by RHCE equivalents. Our results confirm the recent analysis of unrelated DcEe samples performed by Avent et al. and Huang. Based on the serologic heterogeneity among D30 variants, it may be possible that, in the future, more rare D30 genotypes will be described.

P.A. Maaskant-van Wijk
E.A.M. Beckers
D.J. van Rhenen
Red Cross Bloodbank
Rotterdam, The Netherlands
The A20210 Allele of the Prothrombin Gene Is Not Frequently Associated With the Factor V Arg 506 to Gln Mutation in Thrombophilic Families

To the Editor:

A genetic variation in the 3'-untranslated region of the prothrombin gene was recently linked to an increased risk for venous thrombosis. In 28 families selected for hereditary thrombophilia, 5 (18%) of the probands carried the G to A transition at nucleotide 20210 of the factor II gene, whereas the A20210 allele was found in 1% of 100 healthy subjects. Two (40%) of the A20210 carriers also had the factor V (FV) Arg 506 to Gln mutation. This prompted us to look for an association of the two risk alleles in 26 families carrying the FV mutation in two French centers. As recently underlined, the selection of such families is based on the severity of clinical expression that motivates the laboratory background. It is thus conceivable that several genetic risk factors might account for the expression of the thrombotic phenotype.

We screened 288 subjects belonging to the 26 families; 151 carried the FV Arg 506 to Gln mutation and 66 had had thromboses. The G to A transition at position 20210 was identified after amplification with primer A (5'-TTACAAGCCTGTGAAGGGA-3') and primer B (5'-CCATGAAATAGCCTGGAGATTGAAGGGA-3'). The latter was designed with a C to A substitution at position 20214 to create a restriction site for HindIII when the G to A transition is present. None of the probands or family members had the prothrombin gene mutation. We also screened 400 apparently healthy subjects and found the mutation in 2.8% of them. The frequency in the normal population was therefore comparable to that found in the Dutch population (1% in healthy subjects and 2.3% in a population-based case/control study). We conclude that the newly identified prothrombin gene mutation does not frequently contribute to thrombosis in individuals with the FV Arg 506 to Gln mutation.

REFERENCES