Enzyme Models

Photocatalytic Hydrogen Evolution by a Synthetic [FeFe] Hydrogenase Mimic Encapsulated in a Porphyrin Cage

Sandra S. Nurttila, René Becker, Joeri Hessels, Sander Woutersen, and Joost N. H. Reek*[^a][^a]

Abstract: The design of a biomimetic and fully base metal photocatalytic system for photocatalytic proton reduction in a homogeneous medium is described. A synthetic pyridylphosphate- appended [FeFe] hydrogenase mimic was encapsulated inside a supramolecular zinc porphyrin-based metal-organic cage structure Fe$_6$(Zn-L)$_6$. The binding is driven by the selective pyridine–zinc porphyrin interaction and results in the catalyst being bound strongly inside the hydrophobic cavity of the cage. Excitation of the capsule-forming porphyrin ligands with visible light while probing the IR spectrum confirmed that electron transfer takes place from the excited porphyrin cage to the catalyst residing inside the capsule. Light-driven proton reduction was achieved by irradiation of an acidic solution of the caged catalyst with visible light.

Introduction

Molecular hydrogen is a viable alternative to fossil fuels when produced sustainably, for example, through photocatalytic water splitting. Platinum and other noble metals act as highly efficient heterogeneous hydrogen evolution catalysts, but their limited availability prevents large-scale applications.[1] In nature, [FeFe] hydrogenase enzymes catalyze the reduction of protons at high rates of 9000 s$^{-1}$ and overpotentials close to the thermodynamic limit with exclusively base metals in their structure.[2] The vast amount of research that has been dedicated to mimicking the structure and/or function of the active site has led to a large number of enzyme mimics for electrode- and photocatalytic hydrogen production.[3,4]

Of particular interest is the ability of the enzyme to reorganize protons and electrons in the vicinity of the active site. The active site consists of a [2Fe–2S] cluster that functions as the proton reduction catalyst, and it is connected through a cysteine residue to a [4Fe–4S] cluster, which in turn supplies electrons to the active site during catalysis.[5] The two sulfur atoms of the [2Fe–2S] cluster are bridged by an amine functional group, which can be protonated and ensures a high local concentration of protons close to the active site, often referred to as “proton relay”. Importantly, all these processes occur within a protein structure protected from bulk solution.

To achieve photocatalytic proton reduction, three main components are required: a light-harvesting photosensitizer, a proton reduction catalyst, and an electron donor.[6] Absorption of visible light by the photosensitizer is followed by electron transfer to the catalyst, and the reducing equivalents are used for the reduction of protons to molecular hydrogen. The role of the sacrificial electron donor is to reduce the oxidized photosensitizer to allow for catalytic turnover. One of the challenges is to ensure that all three components come into close contact with each other to enable efficient catalysis, which is not trivial at the low concentrations typically applied in catalysis.[6]

Nature has already evolved a highly efficient solution to this problem through its sophisticated photosynthetic machinery. Confinement of the light-harvesting antennae (porphyrins) and the [FeFe] catalyst in a shared protein matrix results in a catalytic system that exhibits high rates and nearly no overpotential in proton reduction catalysis.

Inspired by nature, supramolecular catalysis applies concepts of molecular encapsulation to organocatalysis and transition metal catalysis. Several examples of cage-controlled catalysis have appeared in the literature in the past decades.[7] The key is that the reactivity of the catalyst is altered on encapsulation in a synthetic cage-like structure. This can result in higher catalytic rates, modified product or substrate selectivity, and stabilization of other species than in bulk solution.

Keeping the pocket feature of natural hydrogenases in mind, we envisioned a purely synthetic photocatalytic system in which the [FeFe] catalyst is encapsulated in a supramolecular cage and thereby isolated from bulk solution. Some examples of using metal–organic frameworks,[8] micelles,[9] and dendrimers[10] as second coordination spheres for photocatalytic proton reduction catalysis have been previously reported. These systems typically rely on the use of iridium polypyridyl-based complexes as photosensitizer. The key dyes of natural
photosynthesis (porphyrins and metal porphyrins), however, have received relatively little attention in this field.\(^{[9,5]}\)

Along these lines, we decided to use a porphyrin-based supramolecular cage, developed by Nitschke et al.,\(^{[10]}\) as a second coordination sphere for the previously published pyridylphosphole-appended \([\text{FeFe}]\) hydrogenase mimic complex \(1.\(^{[11]}\)

The cage serves a dual role, as it site-isolates the catalyst in addition to acting as the photosensitizer. Self-assembled tetrahedral cage \(\text{Fe}_4(\text{Zn-L})_6\) composed of six zinc porphyrin ligands connected by four iron(II) corners is soluble in organic solvents and has a sufficiently large cavity for selective encapsulation of \(1\) (Figure 1). On irradiation with visible light, the porphyrin cage transfers its photoexcited electron to the encapsulated catalyst, followed by the reduction of protons to molecular hydrogen.

Results and Discussion

Molecular modeling of the host–guest complex

To confirm that complex \(1\) fits inside supramolecular cage \(\text{Fe}_4(\text{Zn-L})_6\), the volumes of the complex and the empty cage were calculated with the online utility Voss Volume Voxelator\(^{[12]}\) (Figure 2). Complex \(1\) has a molecular volume of about 1000 Å\(^3\) and consequently fills 56% of the cavity void. This is in good agreement with the 55% occupancy rule proposed by Rebek and Mecozzi\(^{[13]}\) and verifies that the complex has the proper size for encapsulation.

The orientation of the catalyst inside the cage was further studied by molecular modeling studies with the ADF software. The structure of complex \(1\) was extracted from the crystal structure of the previously crystallized complex \(\text{RuTPP(CO)}\cdot1\cdot\text{RuTPP(CO)}.\(^{[14]}\) A nickel porphyrin analogue of the cage was earlier published by Nitschke et al.\(^{[10]}\) and its crystal structure was used as a starting point for the molecular modeling studies. Geometry optimization was performed with a tight-binding
In the empty cage
minFe i
species. The signal with (taking account of species is shown in sa
s 1·Fe m 2018 m 1 is ditopically bound inside the cage. with an inset showing the experimental and simulated isotope V Fe 1 + 1 are shown a 24 11 1 for the two consecutive binding events: ditopic bind-
distance by and 1·Fe m 1 1 obtained for the empty cage. Importantly, this are suit-
K Fe 1 Full spectrum obtained from the CSI-MS analysis of assembly round = a to 1 sa
K bond is 2.2 and 1 + m are Asimple 1:1 binding model is there-
is located at one side of the cavity, the tetrahedral symmetry of the cage is lost. Also, the effective window aperture size is 7.9 Å (taking account of van der Waals radii), which is smaller than 1, and thus the catal-
yst cannot freely diffuse in and out of the cage.

Analysis of the host–guest complex by CSI-MS and 1H NMR spectroscopy
Having established that the size and geometry of 1 are suitable for encapsulation, we confirmed its inclusion in Fe (Zn-L) 6 by HRMS. The host–guest complex was obtained by simple mixing of the cage and catalyst in 1:1 ratio in dry acetonitrile, which resulted in quantitative formation of 1·Fe (Zn-L) 6. Cold-spray ionization mass spectrometry (CSI-MS) of a dilute solution of equimolar amounts of 1 and Fe (Zn-L) 6 in dry acetonitrile yielded a clean spectrum with signals assigned only to the host–guest complex; signals belonging to the empty host were absent.Charge states of 8+, 7+, 6+, 5+, and 4+ are clearly visible and correspond to different numbers of CF 3 SO 3 − counterions lost during ionization in the spectrometer. Some fragmenta
tion was also observed, despite the low temperature of the measurement (−40 °C), as evident from a signal with m/ z 661 corresponding to the demetallated porphyrin cage building block. The high resolution of the mass spectra allowed determination of the elemental composition. For each charge state the experimental and simulated isotope pattern match perfectly. The full spectrum along with the experimental and simulated isotope pattern for the 4+ species is shown in Figure 3 (for all experimental and simulated isotope patterns, see Supporting Information, Section 2).

To gain further insight into the encapsulation of 1, we studied the host–guest complex by 1H NMR spectroscopy. Mixing of equimolar amounts of 1 and Fe (Zn-L) 6 in deuterated acetonitrile under an inert atmosphere yielded a red-dark purple solution, which was analyzed by 1H NMR spectroscopy. Broaden-
ing and shifts of all the cage peaks were evident (Supporting Information, Figures S7 and S8). In the host–guest complex, binding of the guest molecule breaks the tetrahedral symmetry of the cage and results in a desymmetrized spectrum and hence broadening of the signals. 2D 1H DOSY NMR spectroscopy of the solution gave a diffusion constant of 3.5 × 10 −10 m 2 s −1 for 1·Fe (Zn-L) 6, which is comparable to that of 3.9 × 10 −10 m 2 s −1 obtained for the empty cage. Importantly, this experiment confirms that the host–guest complex has a similar size to the empty host and that diffusion of the host and guest are identical, in line with full encapsulation. The DOSY spectra of empty cage Fe (Zn-L) 6 and 1·Fe (Zn-L) 6 are shown in Figure 4.

Determination of the binding constant of 1 to Fe (Zn-L) 6
Next, we evaluated the binding strength of 1 to Fe (Zn-L) 6 by UV/Vis titration in acetonitrile at 298 K. On coordination of 1 to Fe (Zn-L) 6, the typical bathochromic shifts of both the Soret and Q bands of the porphyrin cage expected for axial pyridine binding to zinc porphyrins were observed (Figure 5).[17] After addition of more than 1 equiv of guest, the isosbestic point at each Q band was lost. Such an inflection point in the titration curve indicates strong binding for the first guest, followed by a weaker binding event.[18] A simple 1:1 binding model is therefore not an accurate description of this system. The obtained curves did not allow a reliable fit of a higher stoichiometry (1:3 up to 1:5), but a good fit was obtained with the equilibrium equation for 1 host–guest binding (for all fitting data, see Supporting Information, Section 4). The fitting yielded microscopic association constants of K 1 = 1.3 × 10 8 M −1 and K 2 = 4.5 × 10 6 M −1 for the two consecutive binding events: ditopic bind-
ing of one complex inside the cage followed by weaker monotopic binding at the outside of the cage. The binding constants have the same order of magnitude as those previously reported for bis(pyridyl)phosphine ligands in the same cage, that is, 1 is ditopically bound inside the cage.[19]

Fluorescence quenching studies on the cage
Next we evaluated whether binding of 1 in Fe (Zn-L) 6 indeed results in quenching of the porphyrin excited state by steady-
state fluorescence studies. On excitation at 550 nm, the empty cage exhibits two emission bands in the range 560–700 nm corresponding to $S_1 \rightarrow S_0$ transitions. The difference in energy of the absorption and emission peaks shows a small Stokes shift of 8 nm (Figure 6, top). This corresponds to the literature value for the Stokes shift of ZnTPP in acetonitrile. On encapsulation of 1 in the cavity of the cage, the Stokes shift decreases to 5 nm, consistent with an increase in the rigidity of the cage structure when its void is filled with a guest (Figure 6, bottom).

Steady-state fluorescence titration experiments revealed quenching of the fluorescence of Fe$_4$(Zn-L)$_6$ by 1 in acetonitrile at 298 K. As shown in Figure 7, complex 1 quenches the fluorescence of the cage by about 40% (550 nm excitation), which corresponds to static quenching of two porphyrin ligands of the cage through ditopic Zn···N$_p$ interactions. The obtained titration curve was fitted to a 1:2 host–guest equilibrium equation, giving $K_1 = 1.83 \times 10^5 \text{M}^{-1}$ and $K_2 = 6.11 \times 10^4 \text{M}^{-1}$ for the two consecutive binding events. These values, which are close to those obtained from the UV/Vis titrations, confirm that the fluorescence quenching corresponds to the same binding events observed during the UV/Vis experiment. The quenching is attributed to electron transfer from the excited state of the porphyrin cage to encapsulated complex 1 in combination with a decreased fluorescence quantum yield of the formed host–guest complex. In fluorescence lifetime measurements the data obtained for the empty cage were fitted to a monoexponential decay function, whereas the host–guest complex has a second time component and was fitted to a biexponential decay function. For the empty cage a fluorescence lifetime of 1.5 ns was obtained, which is identical to that of a cyclic zinc porphyrin tetramer. Host–guest complex 1·Fe$_4$(Zn-L)$_6$ gave two lifetimes of 1.5 and 0.03 ns. The former component arises from porphyrins that are not coordinated by 1 and whose lifetime is unaffected by the presence of the catalyst. The shorter lifetime is attributed to uncoordinated porphyrins that are affected by the proximity of the catalyst. The amplitudes of the two species, which are related to their relative concentrations, are 59.2 and 40.8% and were obtained from the biexponential fit (for the fits of the decay curves, see Supporting Information, Section 5). The two porphyrin ligands that are ditopically coordinated by complex 1 do not affect the lifetime of the host–guest complex.
To gain further insight into the mechanism of quenching, we performed a Stern–Volmer analysis of the obtained fluorescence titration data. By plotting I_0/I (ratio of fluorescence intensity in the absence and presence of quencher) against the concentration of guest 1 (quencher), a straight line is expected if purely static or dynamic quenching takes place. The curved shape of the obtained Stern–Volmer plot (Figure 8, top) suggests that neither mechanism by itself is an accurate description of the system. By using the simple Stern–Volmer equation we assume that quenching occurs in a single type of environment. The observed saturation quenching efficiency occurs in cases in which fractions of the quencher and the fluorophore are inaccessible to each other, such as in micelles. By modifying the equation to include a term that accounts for the fraction of accessible fluorophore f_a, a modified Stern–Volmer plot can be used to interpret the results (Figure 8, bottom). From the obtained straight line, the intercept gives $1/f_a$ and the slope gives $1/f_aK_{SV}$, where $K_{SV} = k_q/t_0$; k_q is the quenching rate constant and t_0 is the fluorescence lifetime in the absence of quencher) is the Stern–Volmer quenching constant. In the present case, the extracted mean value of K_{SV} is around 2.8×10^14 M^{-1}s^{-1} from which k_q was calculated to be 1.9×10^{14} M^{-1}s^{-1} by using the lifetime of the empty cage of 1.5 ns as t_0 (vide supra). The fact that the quenching rate constant is several orders of magnitude larger than the diffusion-limited rate indicates that binding is involved in the quenching mechanism. From the intercept a value of 0.44 was obtained for f_a, in good agreement with the static fluorescence quenching studies. The results from the Stern–Volmer analysis imply that formation of the ground-state host–guest complex promotes efficient static nonradiative quenching of the singlet excited state of Fe₄(Zn-L)₆ through ditopic binding of 1 inside the cage.

Confirmation of photoinduced electron transfer by TRIR spectroscopy

Having established that the fluorescence of the cage is quenched by 1, the next step was to assess whether photoinduced electron transfer can take place from excited Fe₄(Zn-L)₆ to encapsulated 1. The steady-state IR spectrum of the encapsulated catalyst showed that the ν(CO) bands of the catalyst are slightly blueshifted on encapsulation in the cage (Figure 9). This is consistent with a more electron poor complex as a
result of a change of the electronic properties of the ligand on pyridine coordination.

Time-resolved infrared (TRIR) measurements on a solution of $1\cdot$Fe$_4$(Zn-L)$_6$ were performed in which the cage was selectively excited with a laser pulse (585 nm) while probing the IR spectrum with subpicosecond resolution. The absorption-difference spectra showed bleaching of neutral encapsulated complex 1 at 2043 and 1989 cm$^{-1}$ in the form of negative bands, while new redshifted bands assigned to monoanion 1^- (2022 and 1958 cm$^{-1}$) appeared (Figure 10, top). The bands in the IR spectrum of the generated monoanionic species change shape with time, indicating that the geometry of the diiron complex changes on photoreduction. The band at 2060 cm$^{-1}$ is attributed to a hot vibrational state arising from direct excitation of 1 with the laser pulse, similar to the hot singlet state observed in TR UV/Vis absorption measurements (for fitted species spectra, see Supporting Information, Section 6). The average v(CO) shift between 1 and 1^- of 26 cm$^{-1}$ corresponds to that previously obtained for electron transfer from ZnIITPP to 1.$^{[9, 5]}$ By global biexponential fitting a time constant of 0.5 ps was obtained for charge separation and 37 ps for charge recombination (Figure 10, bottom). Compared to the previously pub-
lished system with ZnIITPP, both processes are accelerated when the catalyst is bound in the cage. Use of the Rehm–Weller equation gave the Gibbs free energy for photoinduced electron transfer, which was calculated to be \(0.26\, \text{eV}\) for the cage and \(0.18\, \text{eV}\) for ZnIITPP (for calculations, see Supporting Information, Section 8). Clearly there is a stronger driving force for electron transfer from the cage to \(1\) compared to that from ZnIITPP to \(1\), inline with the faster electron-transfer kinetics observed for \(1\cdot\text{Fe}_4\text{(Zn-L)}_6\). The estimated electron-transfer yield was 1%, as expected for a system with a relatively low driving force for electron transfer (for calculations, see Supporting Information, Section 7). This is also in line with TR UV/Vis measurements which gave similar spectra and time constants in the presence and absence of \(1\), which indicate that the catalyst has no real influence on the bulk behavior of the porphyrins of the cage (for TR UV/Vis measurements, see Supporting Information, Section 9).

Electrochemical characterization of \(1\cdot\text{Fe}_4\text{(Zn-L)}_6\)

To elucidate the redox behavior of the encapsulated catalyst, empty cage \(\text{Fe}_4\text{(Zn-L)}_6\) and assembly \(1\cdot\text{Fe}_4\text{(Zn-L)}_6\) were subjected to electrochemical investigations in acetonitrile in the presence of 0.1 \(\text{m} \ \text{nBu}_4\text{PF}_6\) as electrolyte. Cyclic voltammetry of the empty cage revealed a quasireversible redox event with a cathodic peak potential around \(-1.3\, \text{V}\) vs. ferrocene/ferrorenium (Fc/Fc-)], followed by a second nonreversible reduction wave at \(-1.6\, \text{V}\) (Figure 11, top left). These waves are assigned to the sequential ligand-based reduction of two cage iminopyridine ligands at each corner of the cage. Similar sequential reductions have been previously reported for bipyridine-based tetrahedral iron(II) cages.28 Semidifferential convolution analysis of the voltammogram indicated that the number of electrons in each wave was the same, as expected for the reduction of two identical moieties. A plot of the semidifferential peak current against the scan speed for each reduction wave separately yielded a straight line, indicative of a solution-based redox event (Figure 11, bottom).29 Moreover, by inspecting the slopes of the plots we could confirm that the first reduction wave is more reversible than the second.

Next, the electrochemistry of assembly \(1\cdot\text{Fe}_4\text{(Zn-L)}_6\) was studied by cyclic voltammetry. The voltammogram features two reduction waves at \(-1.2\) and \(-1.3\, \text{V}\), followed by a third reduction event at \(-1.6\, \text{V}\) (Figure 12, blue trace). The second and third events belong to the earlier discussed sequential reductions at the corners of the cage. These two waves are
slightly shifted as compared to the free cage as a result of electronic communication between 1 and the cage.\[31\] The first wave, however, is not present in the voltammogram of the empty cage and is assigned to the reduction of encapsulated complex 1. Reduction of the catalyst occurs at a potential that is nearly identical to that of the first reduction of the cage corners (Figure 12, cf. blue and orange traces). For this wave representing the encapsulated catalyst, a plot of the semidifferential peak current against the scan speed was constructed, which yielded a straight line indicative of a solution-based redox event (Figure 13).

Stepwise addition of HNEt$_3$PF$_6$ ($pK_a = 10.8$) as weak acid to the solution of 1-Fe$_4$(Zn-L)$_6$ resulted in an increase in current at -1.2 V (Figure 14, top). This current continued to increase with increasing acid concentration and was assigned to protonation of the reduced catalyst. The acid is not strong enough to protonate the neutral catalyst, as is clear from the 1H NMR spectrum of 1, which did not change on addition of HNEt$_3$PF$_6$.\[12\] The increase in acid concentration also decreased the reversibility of the back-oxidation wave, and this indicated that protonation of the reduced catalyst is fast on the time-scale of the measurement. Reoxidation of the protonated species was not observed in the window of the measurement.

On scanning to a more negative potential a new band attributed to proton reduction catalysis became visible around -1.9 V (Figure 14, bottom). The current, which is five times higher than that of the wave belonging to the catalyst, indicates that it represents a catalytic event. Moreover, the catalyst in bulk solution has been reported to catalyze the reduction of protons around this potential.\[11\] To determine the rate constant for the catalytic proton reduction, a foot-of-the-wave analysis was performed to give a rate constant k_{cat} of 7×10^{6} m$^{-1}$ s$^{-1}$ (Supporting Information, Figure S23).\[31\] This value has the same order of magnitude as that reported for free catalyst 1 in dichloromethane.\[11\] The calculated overpotential η is 0.64 V, which is 20 mV lower than that of the catalyst in bulk solution. With the method reported by Artero and Savéant, a Tafel plot was built from TOF$_{max} = 2k_{cat}[H^+] = 1.4 \times 10^{10}$ s$^{-1}$.\[1\]
(TOF = turnover frequency), which was extrapolated for a 1 M concentration of substrate (Supporting Information, Figure S24).

Photocatalytic proton reduction activity of 1·Fe₄(Zn-L)₆

Having established that 1·Fe₄(Zn-L)₆ functions as an electrocatalytic proton reduction catalyst, we evaluated its photocatalytic activity in deaerated acetonitrile at room temperature in the presence of CF₃COOH (TFA) or H₂O as the proton source and a number of different sacrificial electron donors (SED) (Figure 15). The sacrificial electron donors are required to reach more than one turnover, as the oxidized photosensitizer must be reduced before a second catalytic cycle can commence.[33] The zinc porphyrin-based cage acts as the photosensitizer and at the same time it isolates the [FeFe] catalyst from bulk solution.

The solutions were continuously irradiated with 590 nm visible light from LEDs. The chosen wavelength allowed selective excitation of the porphyrin cage, as the catalyst shows negligible absorption in this region. Moreover, photoinduced electron transfer was previously confirmed by TRIR spectroscopy at nearly the same wavelength (585 nm). After a certain reaction time, an aliquot of the headspace was analyzed by direct injection into a gas chromatograph. First, we studied the photocatalytic activity of 1·Fe₄(Zn-L)₆ in the presence of TFA as the proton source and 4-mercaptobenzoic acid (SED1) as SED, inspired by conditions used by Sun et al. for a similar system (Table 1, entry 1).[9 d]

Indeed, after 2 h of irradiation formation of dihydrogen was observed, but the amount corresponded to a turnover number of 0.4, which was the maximum due to the low acid concentration used in the experiment. Addition of a further 0.4 equiv of TFA after 2 h led to formation of additional dihydrogen, confirming that the catalyst is still active after 2 h of irradiation. The low acid concentration was used to prevent pyridine protonation and subsequent catalyst decoordination from the zinc porphyrin cage. To promote more efficient catalysis, we increased both the acid and SED concentration while maintaining the original catalyst concentration (Table 1, entry 2). However, during irradiation, SED1 self-polymerizes due to the elevated concentration.[34] To prevent polymerization we used 2-mercaptobenzoic acid (SED2) as SED (Figure 15). No dihydrogen was formed irrespective of the concentrations used, because the used donor led to cage decomposition, as evidenced by the formation of a purple precipitate (Table 1, entries 3 and 4). Now the donor stays in solution, as self-polymerization is prevented, but it decomposes the self-assembled cage structure due to chelation to the iron corners. Also, the use of the ester analogue (SED3) or thiophenol (SED4) did not lead to hydrogen formation, although with these SEDs the cage was stable (Table 1, entries 6 and 7). However, detection of free CO

Figure 14. Cyclic voltammogram of 0.4 mM 1·Fe₄(Zn-L)₆ and increasing concentrations of HNEt₃PF₆ at 0.1 V s⁻¹ in acetonitrile containing 0.1 mM nBu₄PF₆. Top: First wave showing the increase in current due to protonation of the reduced catalyst and decreased reversibility of the back-oxidation wave. Bottom: Second wave around –1.9 V (vs. Fc/Fc⁺) corresponding to proton reduction catalysis.

Figure 15. Molecular structures of the proton sources and the SEDs used for the photocatalytic experiments.
in the chromatogram indicated catalyst decomposition. Utilization of ferrocene as SED gave the same result (Table 1, entry 8). Most likely, acid functionality in the SED is required to guarantee a higher proton concentration and thereby promote the protonation of anionic intermediates in the catalytic cycle. An experiment with reference catalyst 2 lacking pyridine units, which did not result in photocatalytic hydrogen evolution, demonstrated that the supramolecular interaction between the catalyst and the cage porphyrins is required for catalysis to occur (Table 1, entry 11).

Finally, water was used as proton source and triethylamine as SED. Utilization of acetonitrile/water (8.5:1) in the presence of 5% triethylamine precipitated the cage and no hydrogen was formed after irradiation of the solution (Table 1, entry 9). The solubility of the cage was limited by the rather high water content. Indeed, on decreasing the contents of water and triethylamine, cage precipitation was prevented and dihydrogen was formed after irradiation at the Soret band of the porphyrin (445 nm) to ensure maximum light absorption. Unfortunately, under these conditions CO was also detected, which indicated catalyst decomposition, most likely as a result of direct excitation of the catalyst (Table 1, entry 10).

Clearly, 4-mercaptobenzoic acid is the only SED that allows for photocatalytic dihydrogen evolution with 1-Fe(II)(Zn-L)4 and under these conditions catalyst and cage decomposition is not observed. On using triethylamine as the SED, dihydrogen is also formed but catalyst decomposition occurs. No dihydrogen was evolved in any experiment in which the assembly precipitated. We did not further explore the use of other SEDs such as triethanolamine and propan-2-ol, as the efficiency of current system is limited by the relatively weak driving force for electron transfer from the cage to the catalyst in combination with the short lifetime of the charge-separated state (37 ps). The preorganization of the catalyst–chromophore complex resulted in a change from reductive quenching (via the SED) to oxidative quenching (to the catalyst), which results in these short life times.

Conclusion

Self-assembled 1-Fe(II)(Zn-L)4 produces molecular hydrogen as photocatalyst by using visible light as the primary energy source. Catalyst 1 is strongly bound inside the cage by selective ditopic pyridyl–zinc porphyrin interactions with the inner walls of the cavity. Fast photoinduced electron transfer (0.5 ps) from the cage porphyrins to the catalyst residing inside the cage was observed, but also charge recombination is fast from the cage porphyrins to the catalyst inside the cage and also catalyst 2 (1-Fe(II)(Zn-L)4).

We did not further explore the use of other SEDs such as triethanolamine and propan-2-ol, as the efficiency of current system is limited by the relatively weak driving force for electron transfer from the cage to the catalyst residing inside the cage. Fast photoinduced electron transfer (0.5 ps) from the cage porphyrins to the catalyst residing inside the cage was observed, but also charge recombination is fast from the cage porphyrins to the catalyst inside the cage.

Acknowledgements

We thank the European Research Council (ERC Adv. NAT-CAT Reek) for financial support. Dongdong Zheng is acknowledged for help with steady-state fluorescence measurements. Michiel Hilbers is thanked for help with time-resolved fluorescence measurements. Prof. Dr. J. R. Nitschke is acknowledged for valuable discussions on the supramolecular cage used in this study.

Table 1. Photocatalytic proton reduction experiments with various proton sources and sacrificial electron donors.

<table>
<thead>
<tr>
<th>Entry</th>
<th>Proton source, c (mm)</th>
<th>SED, c (mm)</th>
<th>(\lambda_{ev})</th>
<th>H2 evolution</th>
</tr>
</thead>
<tbody>
<tr>
<td>5th</td>
<td>TFA, 0.03</td>
<td>SED1, 0.2</td>
<td>590</td>
<td>yes</td>
</tr>
<tr>
<td>2th</td>
<td>TFA, 0.2</td>
<td>SED1, 0.8</td>
<td>590</td>
<td>no</td>
</tr>
<tr>
<td>3th</td>
<td>TFA, 0.2</td>
<td>SED1, 0.8</td>
<td>590</td>
<td>no</td>
</tr>
<tr>
<td>4th</td>
<td>TFA, 4.0</td>
<td>SED2, 20</td>
<td>590</td>
<td>no</td>
</tr>
<tr>
<td>5th</td>
<td>TFA, 0.03</td>
<td>SED3, 0.2</td>
<td>590</td>
<td>no</td>
</tr>
<tr>
<td>6th</td>
<td>TFA, 0.03</td>
<td>SED4, 0.2</td>
<td>590</td>
<td>no</td>
</tr>
<tr>
<td>7th</td>
<td>TFA, 0.03</td>
<td>SED4, 1.7</td>
<td>590</td>
<td>no</td>
</tr>
<tr>
<td>8th</td>
<td>TFA, 0.8</td>
<td>SED5, 0.8</td>
<td>590</td>
<td>no</td>
</tr>
<tr>
<td>9th</td>
<td>H2O, excess</td>
<td>SED6, 0.8</td>
<td>590</td>
<td>no</td>
</tr>
<tr>
<td>10th</td>
<td>H2O, excess</td>
<td>SED6, 445</td>
<td>590</td>
<td>yes</td>
</tr>
<tr>
<td>11th</td>
<td>TFA, 0.03</td>
<td>SED1, 0.2</td>
<td>590</td>
<td>no</td>
</tr>
</tbody>
</table>

[a] Reactions were performed with deaerated acetonitrile solutions (5 mL) containing 1-Fe(II)(Zn-L)4, formed in situ by mixing proton source and SED under continuous irradiation by 2.6 W LED lights. Irradiation time was 2 h and the reaction temperature was 298 K. An aliquot of the headspace was injected into a gas chromatograph by using a gastight syringe. [b] Further 0.4 equiv of TFA with respect to the catalyst was added after 1 h of irradiation, which resulted in more H2 being formed. [c] SED self-polymerizes and precipitates. [d] Decomposition of the cage was observed after precipitation of porphyrin building block. [e] Free CO was observed in the gas chromatogram owing to decomposition of the catalyst. [f] 5% NEt3 and CH3CN:MilliQ H2O (8.5:1) as solvent, proton source, and SED. [g] 0.5% NEt3 and CH3CN:MilliQ water (99:1) as solvent, proton source and SED.
For selected publications on photocatalytic proton reduction catalysis, see:

For reviews on hydrogenation mimics, see:

[3] The authors declare no conflict of interest.

Keywords: cage compounds • enzyme models • host-guest systems • iron – photochemistry

Manuscript received: July 2, 2018
Accepted manuscript online: August 17, 2018
Version of record online: October 9, 2018