Effect of CO2 milliwatt laser on tensile strength of microsutures
Menovsky, T.; Beek, J.F.; van Gemert, M.J.C.

Published in:
Lasers in Surgery and Medicine

DOI:

Citation for published version (APA):
Effect of the CO₂ Milliwatt Laser on Tensile Strength of Microsutures

Thomas Menovsky,* Johan F. Beek, MD, PhD, and Martin J.C. van Gemert, PhD

Laser Center, Academic Medical Center, 1105 AZ Amsterdam, The Netherlands

Background and Objective: Laser-assisted tissue repair is often accompanied by a high dehiscence rate, which may be due to alterations in suture material after laser exposure. The goal of this study was to investigate the effect of CO₂ laser irradiation on the tensile strength of microsurgical suture material.

Study Design/Materials and Methods: 10-0 nylon and 25 µm stainless steel threads were exposed to 12 combinations of power densities (62, 124, and 186 W/cm²) and pulse durations (0.5, 1, 2, 3 s) and tested on a tensometer for their tensile strength.

Results: At power densities of 186 W/cm², the 10-0 nylon thread disrupted during laser irradiation, regardless of pulse duration. This was also the case at power densities of 124 W/cm² for 2 s and 3 s pulse duration. At 124 W/cm² for 0.5 and 1 s, the tensile strength decreased with 70% relative to the control. At 62 W/cm², the tensile strength gradually decreased from 100% (0.5 s pulse duration) to 50% (3 s pulse duration) relative to control. Stainless steel thread resisted all laser irradiations.

Conclusions: The 10-0 nylon thread is significantly compromised by irradiation with the CO₂ milliwatt laser and therefore meticulous care should be taken not to irradiate the sutures during laser tissue welding. Lasers Surg Med 20:64–68, 1997.

Key words: laser microsurgery; 10-0 nylon; steel wire; surgical thread; tissue welding

INTRODUCTION

Microsurgical laser tissue fusion is currently the subject of intensive investigations in various fields of surgery. Despite many progresses achieved, laser tissue fusion still needs additional stay sutures to provide the initial strength for holding the tissues together. Most commonly, 10-0 nylon sutures are used for supporting the laser welds in microsurgical laser repair of arteries [1–3], veins [4], nerves [5–7], vas deferens [8, 9], and urethra [10,11].

Due to its desirable properties of low tissue penetration and limited spread in tissue, the CO₂ laser (λ = 10.6 µm) is currently the most frequently laser used for microsurgical tissue fusion. As the CO₂ laser energy is mostly absorbed at the tissue surface, it also may certainly affect the suture material with regard to its tensile strength when occasionally irradiated. The consequences of altered tensile strength of the sutures could be disastrous for the patency and bonding rate of the fused tissues. Because no data are available on the effect of CO₂ laser irradiation on microsurgical suture material, this study was designed to investigate the tensile strength of 10-0 nylon thread irradiated by a CO₂ laser at different power densities and exposure times. As a possible (future) alternative to nylon thread, we also investigated the tensile strength of 25-µm stainless steel thread, both laser irradiated and nonirradiated.

MATERIALS AND METHODS

Two different suture threads were used in this study: 10-0 monofilament nylon thread (Der-
malon black monofilament, Davis-Geck, Hampshire, U.K.), and 25-μm soft stainless steel thread (Trakus, Bergneustadt, Germany). The suture material (±5 cm each) was stretched on a piece of cork and single pulse laser irradiation of the thread was performed at 12 different laser settings (power densities of 62, 124, and 186 W/cm²; pulse duration of 0.5, 1, 2, and 3 s). During irradiation, the thread was positioned in the middle of the laser beam. Six irradiations were performed for each group of laser settings. Nonirradiated thread (n = 6) served as a control.

For all procedures, a CO₂ laser (Cooper LS 860, Cooper LaserSonics, Santa Clara, CA) was used in conjunction with an operating microscope at 40-fold magnification (OpMi-1, Zeiss, Jena, Germany) and a joystick micromanipulator (Cooper LaserSonics LS-11). The laser was operated in a cw mode using an electrical shutter (T 132, Optilas, Eindhoven, The Netherlands) with a foot switch to control the pulse duration. A spot size of 320 μm was used, with powers of 50, 100, and 150 mW (power densities of 62, 124, and 186 W/cm²). All procedures were carried out by the same person.

The tensile strength of the threads was measured directly after the irradiation using a tensometer (TM type W, Monsanto, U.K.), coupled to a motor pulley (Hoover MK IV, U.K.) and a x-y plotter. The threads were strained at a rate of 3.18 mm/min, until breakage occurred. The force (in Newton, N) to do so was recorded as the tensile strength. The data were statistically analyzed using a Student t-test.

**RESULTS**

The tensile strength of the nonirradiated group was 0.35 ± 0.02 N. Irradiation at power densities of 186 W/cm² resulted in disruption of the nylon thread, regardless of the pulse duration. Thus no tensile strength could be recorded for these groups. Also, at power densities of 124 W/cm², disruption of the nylon thread occurred with pulse duration of 2 s and 3 s. Irradiation at 124 W/cm² for 0.5 s and 1 s resulted in a decrease of the tensile strength with a factor of 3 to 4. At power densities of 62 W/cm², the tensile strength of the nylon thread was not altered at 0.5 s and gradually decreased with irradiations at 1 s, 2 s, and 3 s pulse duration. These values were significantly lower than the control group (P < 0.01).

Table 1 gives an overview of the tensile strength data for the 10-0 nylon thread. The relation of the relative strength loss at different power densities and pulse durations is shown in Figure 1. Figure 2 shows the relative strength loss at identical total doses of energy at different pulse durations.

<table>
<thead>
<tr>
<th>Power density (W/cm²)</th>
<th>Pulse duration (s)</th>
<th>0</th>
<th>0.5</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td>0.35 ± 0.02</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>62</td>
<td></td>
<td>0.34 ± 0.03</td>
<td>0.31 ± 0.05</td>
<td>0.24 ± 0.05</td>
<td>0.18 ± 0.12</td>
<td></td>
</tr>
<tr>
<td>124</td>
<td></td>
<td>0.08 ± 0.05</td>
<td>0.12 ± 0.02</td>
<td>b</td>
<td>b</td>
<td>b</td>
</tr>
<tr>
<td>186</td>
<td></td>
<td>b</td>
<td>b</td>
<td>b</td>
<td>b</td>
<td>b</td>
</tr>
</tbody>
</table>

Table 1. Effect of CO₂ Laser Light Doses on the Tensile Strength in Newton (mean ± sd) of 10-0 Nylon Suture Thread

aOne suture disrupted during laser irradiation.
bAll sutures disrupted during laser irradiation.

The tensile strength of nonirradiated stainless steel thread was 0.55 ± 0.03 N (mean ± sd), which was statistically different from the 10-0 nylon control group (P < 0.01). Laser irradiation of the steel thread did not alter its tensile strength, not even at power densities of 186 W/cm² for 3 s pulse duration.

**DISCUSSION**

Tissue fusion by laser energy has certain advantages over conventional suture repair such as less traumatic tissue handling, avoidance of a foreign body reaction, a watertight sealing of the tissues, and a reduced operation time [1,9,10,12]. The mechanism of CO₂ laser tissue welding is attributed to protein denaturation [12, 13] and/or fusion of collagen [14, 15]. However, the major disadvantage of tissue fusion by laser is the weak bonding strength. Even with the use of additional stay sutures, the bonding rate is still not optimal, which is, e.g., the case for laser nerve repair [16, 17].

When dealing with nerve repair, the nerve ends will, after transection, retract due to the elasticity of the nerve. Therefore, the end-to-end nerve repair is always under some degree of ten-
sion, which will vary with the degree of elasticity of the nerve and with the position of the surrounding joints. In CO₂ laser nerve repair, one or two stay sutures are usually placed in the epineurium (for easy handling and approximation) and subsequent laser irradiation follows of the nerve [5–7]. However, in experiments performed in the same nerve model (sciatic nerve in the rat), nerve repair with one or two sutures without laser irradiation resulted in a dehiscence rate of 0% [19, 20]. This finding in the literature and our own pilot experiments (unpub. obs.), in which we found dehiscence of the laser welded nerves even with the use of three stay sutures, led us to the hypothesis that the tensile strength of suture material could be altered by laser irradiation, resulting in bonding failure.

There are only two studies that report on the effect of laser irradiation on the tensile strength of sutures. In the first study the laser used was the diode laser (λ = 808 nm) [21], which is not (yet) commonly used for tissue welding, and the size of the sutures investigated varied from 3-0 to 6-0. These sutures are of little use for microsurgical repair of tissues. In the second study, the laser utilized was a KTP laser (532 nm) and the sutures investigated were 4-0 Daxon etc. [22]. We have selected the CO₂ laser and 10-0 nylon thread (which has a diameter of 25 μm) for this study, as these are most commonly used for microsurgical laser repair of arteries, veins, and nerves. The laser settings investigated (power densities = 62, 124, and 186 W/cm², pulse duration = 0.5, 1 s, 2 s, and 3 s) represent the generally used parameters for tissue welding. Moreover, the selected laser settings have been shown to produce strong welds in our previous study of nerve welding [23]. Irradiation with the CO₂ laser at 186 W/cm² resulted in suture disruption regardless of the pulse duration. Disruption of the sutures also occurred at 124 W/cm² for 2.0 s and 3.0 s. At power densities of 124 W/cm² for less than 2.0 s pulse duration and at 62 W/cm² for 1 s, 2 s, and 3 s pulse duration, the mean tensile strength was significantly less than that of the control group (P < 0.01). Although it is obvious that disruption of the suture thread occurs at high CO₂ laser powers, it is surprising that it also occurs at the very low powers, as the effects on tissue by irradiation with low power CO₂ laser are only microscopically visible. These results suggest that irradiation of the nylon sutures with a low power CO₂ laser impairs the tensile strength of the repair, which may result in early wound dehiscence. It is likely that other surgical threads (Vicryl, polypropylene) also will be influenced by laser irradiation, as well as surgical threads larger than 10-0.

The suture material used in this study was dry. During surgery, the thread will become wet after contact with tissue, and it is likely that the energy absorption of the laser will be altered. However, our pilot experiments showed that there was almost no difference in tensile strength of dry and wet nylon thread after laser irradiation. Moreover, tissue welding with the CO₂ laser is successful only when performed in a dry operative field. As the CO₂ laser is used clinically for welding of the vas deference [9, 24] and vessels [25] and in general for many other surgical procedures, meticulous care should be taken to avoid irradiation of the surgical thread. The appearance

Fig. 1. Relative strength loss of the nylon suture as a function of the power density at different pulse durations. An asterix (*) signifies that the thread disrupted during irradiation (100% loss of strength).

Fig. 2. Relative strength loss of the nylon suture at identical total light doses at different pulse durations. An asterix (*) signifies that the thread disrupted during irradiation (100% loss of strength).
of irradiated 10-0 nylon thread (124 W/cm², 0.5 s) is seen in Figure 3.

As an alternative to nylon sutures, we have used 25 μm soft stainless steel thread, which has the same diameter as 10-0 nylon. The use of stainless steel as suture material is known since the beginning of this century. However, the practical use of stainless steel wire is limited to orthopaedic and plastic surgery for fixation of bones. The use of stainless steel thread for microsurgical repair of nerves or vessels has never gained favor because of the kinking of the wire and its difficult manipulation like knotting [26, 27]. The mean tensile strength of the steel thread was 0.55 ± 0.03 N, which is statistically different from 10-0 nylon thread (P < 0.01). Irradiation of the steel thread with the CO₂ laser did not affect the tensile strength, regardless of the power density or pulse duration used. This means that the steel thread, from the point of safety, can be used in combination with laser welding without impairing the bonding strength of the repair site. Furthermore, stainless steel sutures have been shown to produce less amount of foreign body reaction than nylon sutures, which can be another potential advantage [28–30]. However, the feasibility of using stainless steel for neural repair in combination with laser welding has to be explored in in vivo studies.

In conclusion, we have demonstrated that (1) irradiation of 10-0 nylon thread with a low power CO₂ laser results in disruption of the thread or reduction of the tensile strength, (2) stainless steel thread has a greater tensile strength than 10-0 nylon thread, and (3) irradiation of stainless steel thread with a CO₂ laser does not alter its tensile strength. Further research in tissue welding using stainless steel as suture material is warranted.

ACKNOWLEDGMENTS

The authors thank Dr. J. van Marle for his help with the scanning electron microscopy, and Arie Steenbeek, Stanley Tee, and Peter Schneider for their technical assistance.

REFERENCES

16. Huang TC, Blanks RH, Berns MW, Crumley RL. Laser


