The only good *Helicobacter pylori* is a dead *Helicobacter pylori*

van Doorn, L.J.; Quint, W.; Schneeberger, P.; Tytgat, G.N.J.; de Boer, W.A.

Published in:
Lancet

Citation for published version (APA):
1 Blaser MJ. Not all Helicobacter pylori strains are created equal: should all be eliminated? Lancet 1997; 349:1020–22.

Sir—Martin Blaser suggests that microbiologists should better define markers for different H pylori strains associated with adverse clinical outcome and that epidemiologists should better estimate the disease risks in specific populations. Some genetic markers such as the cagA gene are present in about 60% of H pylori strains. The so-called cytotoxic strains are known to be associated with increased risk of peptic ulcer in adults and children, and with gastric atrophy and cancer. Children are at increased risk of acquiring H pylori infection, and the earlier the acquisition the greater the risk of developing gastric cancer in adulthood. A non-invasive, low-cost test to look for specific H pylori antigens is needed. A western blot on saliva samples could be such a test, and we report preliminary data on 40 children who underwent endoscopy for dyspepsia.

On the morning of the endoscopy, we collected a blood sample from each child and 1 mL of saliva (the child spat in a test tube) which was immediately stored at –20°C. Histology (Giemsa) rapid urease test and C 14-curea breath test showed H pylori gastritis in 30 children (14 boys, 16 girls, median age 12 [range 5–16] years). We also enrolled ten negative controls of similar age and sex, and four were not infected with H pylori. Serum samples and saliva were screened by western blotting after sodium dodecyl sulphate-polyacrylamide gel electrophoresis for H pylori-specific antigens with a commercial kit (Helori-WB, Eurospital, Italy). We tested serum samples at a 1:50 dilution and saliva samples either undiluted or at various dilutions (from 1/1:25 to 1/4) to reach a final volume of 750 µL. The marker for infection with cytotoxic H pylori strains was the presence of a not 120 KDa (CagA-associated protein) band. Presence of 25 KDa band (lectin-like adhesin) indicated infection with a non-cytotoxic strain.

With these criteria, the sensitivity of the saliva test was 100% and specificity was 90% with only one false-positive test in ten controls. Undiluted saliva samples gave the best results. The bands in serum samples and saliva were similar, although the number of salivary bands was lower. The 120 KDa band was present in saliva and serum in 20 (66%) of the children infected with H pylori, with a prevalence similar to that of another series of Italian children. The cagA protein expressed by cagE-positive strains is highly immunogenic and serum antibodies against it can be used to ascertain cagA expression by all H pylori strains that colonise the stomach; the presence of cagA protein in serum and mucosal secretions correlates strongly with ulcer disease and active gastritis. Indeed our patients infected with cytotoxic H pylori strains had the most severe gastritis: histology showed active gastritis—ie, with polymorphonuclear cell infiltration—in 11 of 20 cagE-positive children and in one of ten cagE-negative children (p<0.02, Fisher’s exact test).

The saliva test for detection of antibodies against cagA is useful to identify patients at risk of developing peptic ulcer, gastric carcinoma, or both later in life. Saliva collection has the advantage of being a non-invasive, simple test. Collection is easy for patients and health-care workers and greatly reduces the risk of blood-borne infection.

*Giuseppina Oderda, Anna Rapa, Elena Chiorboli, Maurizio Caradonna, Gianni Bona
Clinica Pediatrica Università di Novara, Via Solaroli 17, 28100 Novara, Italy; and Eurospital SpA, Trieste
THE LANCET
the coming years patients with functional dyspepsia could well need treatment for 10–14 days whereas patients with ulcers could be treated successfully in just 7 days.

Leen-Jan van Doorn, Wim Quint, Peter Schneeberger, Guido N J Tytgat, *Wink A de Boer

Department of Molecular Biology, Diagnostic Centre SSDZ, Delft; Department of Gastroenterology, Academic Medical Centre, Amsterdam; Regional Laboratory Medical Microbiology, Hertogenbosch; and *Department of Internal Medicine, St Anna Hospital, 5340 BE Oss, Netherlands

1 Blaser MJ. Not all *Helicobacter pylori* strains are created equal: should all be eliminated? *Lancet* 1997; 349: 1020–22.

Author’s reply

Sir—David Graham is unequivocal about the dangers of *Helicobacter pylori*, as he should be, since he is only considering the risks of carriage. But what if *H pylori* is more analogous to *Bacteroides* spp than to variola or *Mycobacterium tuberculosis*? *Bacteroides* spp, well-recognised as commensals, can also be pathogens—eg, their involvement in diverticulitis, perforitis, and appendicitis. Although by current definitions commensals cannot be pathogens, and vice versa, with long-term colonisers like *Bacteroides* spp and *H pylori*, a new conceptual model is needed.

M tuberculosis has probably only infected human beings for 10 000–15 000 years, it is highly clonal and has spread in an epidemic pattern; its eradication from human beings is a worthy goal. By contrast, the hypothesis that *H pylori* and humans have coevolved over the past millions of years predicts that the loss of the organism will have harmful effects. The fall in the prevalence of *H pylori* in developed countries, as confirmed by Leen-Jan van Doorn and colleagues, has coincided with a substantial increase in gastroesophageal reflux disease, Barrett’s disease, and adenocarcinoma of the lower oesophagus and gastric cardia. If these events are related, then by eliminating *H pylori*, will we be substituting one risk (gastroesophageal reflux disease and proximal cancers) for other (ulcer disease and distal cancers)? In developed countries, adenocarcinomas of the distal oesophagus and proximal stomach are rising at a faster rate than any other cancers,1 so that the full extent of the potential risk is not yet known.

Could variation among *H pylori* strains help explain clinical and epidemiological differences? van Doorn and colleagues seek to explain the lower *H pylori* eradication rates observed in people with gastritis alone compared with ulcer patients. Their investigations indicate that diversity in *H pylori* strains (based on vacA signal sequence type) correlates with the differential eradication rates, and illustrates how assessment of *H pylori* strain variation may have increasing clinical significance as diagnostic techniques become more sophisticated.

Giuseppina Oderda and colleagues suggest that testing salivary antibodies is useful for the detection of *Helicobacter pylori* in Italian children. Antibodies induced by the cagA protein were also detectable in saliva. Is it important to detect whether a patient carries a cagA-positive strain? It is well documented that carriage of a cagA-positive strain is associated with increased gastric inflammation and increased risk of developing duodenal ulcer, adenocarcinoma of the distal stomach or both.2 By contrast, among Asian populations, most people carry cagA-negative strains.3 Nonetheless, in both populations most carriers of cagA-negative strains have no clinically evident disorder. Indeed, two abstracts presented in May, 1997, at the Digestive Disease week meeting, in Washington DC, USA, suggest that cagA-positive strains could afford protection against oesophageal adenocarcinoma and related premalignant lesions.4–5 If these observations are confirmed, they would suggest that carriage of cagA-positive strains may be both bad (increased risk of distal gastric cancer and duodenal ulceration) and good (decreased risk of pre-malignant lesions and adenocarcinomas of the lower oesophagus and upper stomach).6

Thus, the intersection of *H pylori* and human biology is more complex than is suggested by proponents of the new dogma that the only good heliobacters are dead ones. Careful stratification of study groups in terms of age, symptoms, carriage of *H pylori*, strain types, histopathology, and host acid secretion and genotypes should allow a better understanding of the clinical significance of particular combinations of *H pylori* and human hosts.

Martin J Blaser

Department of Medicine, Division of Infectious Diseases, A-3510 Medical Center North, Vanderbilt University Nashville, TN 37232-2005, USA

Disclosing conflicts of interest

Sir—In his commentary on conflicts of interest in clinical research, Richard Horton (April 19, p 1112) laments that “the research community has become extremely exercised by this issue” and argues against disclosure. Disclosure has its drawbacks but that does not mean it is unnecessary. It is time for the discussion to go beyond disclosure and focus on whether so many scientists should have avoidable conflicting interests in the first place.

Disclosure is only possible when there is a forum for it, such as a publication or oral presentation. When investigators are restrained by industry sponsors from presenting their work, the sponsorship cannot be revealed. Even when studies are published, financial ties of authors are not always disclosed; Krimsky et al found that in 34% of articles in leading biomedical journals with a Massachusetts-based lead author, that author had at least one disclosed financial interest.4

A more important reason for actions beyond disclosure stems from a moral obligation. Researchers have an obligation to fellow scientists and to the public to do the best science possible. Professionals are accorded a great deal of trust (and economic and social status) by society, on the understanding that they will strive for excellence and hold the public’s interests above personal ones.5 Because academic institutions receive large amounts of...