Meta-Analyses: Key Parenting Program Components for Disruptive Child Behavior

Leijten, P.; Gardner, F.; Melendez-Torres, G.J.; van Aar, J.; Hutchings, J.; Schulz, S.; Knerr, W.; Overbeek, G.

Published in:
Journal of the American Academy of Child and Adolescent Psychiatry

DOI:
10.1016/j.jaac.2018.07.900

Citation for published version (APA):
Objective: Parenting programs are the recommended strategy for the prevention and treatment of disruptive child behavior. Similar to most psycho-social interventions, it is unknown which components of parenting programs (i.e., parenting techniques taught) actually contribute to program effects. Identifying what parents need to be taught to reduce disruptive child behavior can optimize intervention strategies, and refine theories on how parenting shapes disruptive child behavior.

Method: In two meta-analyses, we updated the evidence-base for effectiveness of parenting programs delivered at various levels of prevention and treatment of disruptive behavior. We searched six databases (e.g., PsycINFO, MEDLINE) for randomized trials and coded the parenting techniques taught in each program. We identified the techniques associated with program effects in general, and for prevention versus treatment, and immediate versus longer-term effects, specifically.

Results: Parenting program effects on disruptive behavior gradually increased per level of prevention (universal $d = -0.21$, selective $d = -0.27$, indicated $d = -0.55$) and treatment ($d = -0.69$) (Meta-Analysis 1: 154 trials, 398 effect sizes). Three of 26 parenting techniques were associated with stronger program effects: positive reinforcement, praise in particular, and natural/logical consequences. Several additional techniques (e.g., relationship building and parental self-management) were associated with stronger effects in treatment but weaker effects in prevention. No techniques were associated with stronger longer-term effects (Meta-Analysis 2: 42 trials, 157 effect sizes).

Conclusion: Positive reinforcement and nonviolent discipline techniques (e.g., applying natural/logical consequences) seem to be key parenting program techniques to reduce disruptive child behavior. Additional techniques (e.g., parental self-management skills) might improve program effects in treatment, but not in prevention.

Key words: disruptive child behavior, parenting programs, meta-analysis, identifying effective components, prevention

“...there are hundreds of therapy techniques. To identify what needs to be activated to effect change [...] requires a deeper understanding of therapies than we now have.”

—Alan Kazdin

Behavioral parenting programs have a robust evidence base for their ability to prevent and treat disruptive child behavior. They comprise a multifaceted package of parenting knowledge, principles and skills. When competently delivered together, these components can lead to sustained reductions in disruptive child behavior. Similar to most other psychosocial interventions, there is a dearth of knowledge about which of the often many techniques taught in parenting programs actually contribute to program effects. Yet, this knowledge is vital for understanding why some programs are more effective than others, and for guiding program development and implementation processes. Moreover, if we understand the parenting techniques that yield the strongest effects on disruptive child behavior, this can refine our understanding of the aspects of parenting that matter most for shaping disruptive child behavior at various stages of its development.

Parenting programs for disruptive child behavior are among the most well-studied and exhaustively reviewed interventions for children’s psychiatric problems. They have been evaluated in more than 200 randomized trials and in dozens of systematic reviews and meta-analyses. Most meta-analyses have focused on the magnitude of program effects, on their transportability across countries, or on family characteristics associated with program effects. Although there are some exceptions, few attempts have been made to identify the specific techniques that contribute to parenting program effects.
It is well documented that parenting programs yield meaningfully different effects in prevention versus treatment settings, and that some programs show more sustained effects than others. Yet, whether parenting programs should include different techniques in prevention settings compared to treatment settings, and different techniques to obtain more sustained effects, has never been tested.

Techniques Taught in Parenting Programs
Most established parenting programs for disruptive child behavior in early and middle childhood share a theoretical background in Operant Learning Theory and Social Learning Theory. The translation of these theories into the actual behavior management skills taught differs across programs. Although some programs teach mainly positive reinforcement techniques (eg, praise and rewards), other programs add nonviolent disciplining techniques (eg, ignore and time-out procedures). Besides, programs vary in the extent to which they add other techniques (eg, parental problem solving or emotion regulation skills) to behavior management techniques (eg, positive reinforcement and nonviolent disciplining).

There is a strong rationale for teaching parents more than basic behavior management. It may be effective to target multiple family characteristics, such as marital conflict, that can contribute to the development and maintenance of disruptive child behavior. Yet, there is also evidence to suggest that “less is more,” namely, that programs that teach parents fewer techniques outperform programs that teach more techniques, and that including ancillary services compromises, rather than benefits, parenting program effects. These seemingly counterintuitive findings raise the question of what specific parenting techniques should be taught to reduce disruptive child behavior.

Do We Need Different Parenting Techniques in Prevention and Treatment?
Most behavioral parenting programs were originally developed to treat disruptive child behavior. When moved to prevention settings, programs are sometimes adapted in terms of intensity or delivery methods, but they tend to teach the same parenting techniques. On one hand, mechanisms underlying successful treatment of disruptive child behavior might be similar to mechanisms underlying successful prevention of disruptive child behavior. For example, rewarding positive child behavior with parental attention, and not rewarding disruptive behavior, might effectively reduce disruptive child behavior at various stages of its development. On the other hand, parenting programs might need to teach different techniques to families whose children have significant conduct problems, compared to families considered to be at risk, based on, for example, young parenthood or socioeconomic deprivation. Families whose children have fully developed conduct problems may experience additional difficulties, such as parental exhaustion. Parental self-management techniques such as emotion regulation may therefore be more important in treatment than in prevention settings. We therefore tested not only which parenting program techniques were associated with stronger effects on child behavior, but also to what extent these techniques differed between treatment or prevention settings.

Do We Need Different Parenting Techniques to Obtain More Sustained Effects?
The overwhelming majority of trials that evaluate parenting programs focus on immediate or short-term effects of parenting programs only. Available evidence on longer-term effects suggests that the effects of parenting programs on disruptive child behavior on average are sustained in the months and years after the program, but that there is substantial variation between programs in their longer-term effects. This might, in part, be because different programs teach different parenting techniques. Some techniques, such as positive reinforcement, affect child behavior immediately, whereas other techniques, such as teaching parents to improve children’s emotional regulation skills and relationship building, might affect children more gradually over time. We therefore tested specifically which parenting techniques were associated with stronger longer-term, relative to immediate, program effects on disruptive child behavior.

The Present Studies
In two meta-analyses, we aimed to do the following: (1) to update the evidence base for parenting programs for reducing disruptive child behavior at various levels of prevention and treatment; (2) to identify the parenting program techniques associated with stronger program effects; (3) to test whether different parenting techniques are associated with program effects in prevention versus treatment settings; and (4) to test whether different parenting techniques are associated with longer-term, relative to immediate, program effects.

METHOD
Meta-Analysis 1
In Meta-Analysis 1, we first estimated the effects of parenting programs on disruptive child behavior in universal prevention, selective prevention, indicated prevention, and
treatment settings. Second, we identified the parenting techniques that, when taught in parenting programs, yield stronger or weaker effects. Third, we tested whether techniques yield different effects in prevention versus treatment settings.

Data Sources, Trial Selection, Inclusion Criteria
We identified randomized controlled trials of behavioral parenting programs for reducing disruptive child behavior by updating the search from a previous meta-analysis (Table S1, available online). We included trials that: (1) compared a parenting program based on social learning theory principles (ie, the dominant theoretical approach in this field) to any type of control; (2) randomly allocated participants to conditions, to allow for causal inference about program effects; (3) evaluated programs in which >50% of the sessions focused on parenting, because we focused on parenting techniques specifically; and (4) included children with a mean age between 2 and 9 years, because different parenting techniques might be important for infants and adolescents. We excluded trials on special populations such as children in foster care, and children with autism or physical disabilities, because changing the behavior of these children might require different parenting techniques. We did not exclude trials on children with ADHD because conduct problems and hyperactivity-impulsivity often co-occur in young children. One author assessed trials that were likely to meet inclusion criteria. Uncertainties and the final list of trials included in the review were checked with another author. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) flow diagram of Meta-Analysis 1 is presented in Figure S1, available online.

Data Extraction and Risk of Bias
General Trial Characteristics. We coded several sample (eg, age, percentage of boys, ethnic background), intervention (eg, individual or group based), and design characteristics (eg, following intention-to-treat principles).

Parenting Techniques Taught. We coded the techniques (Table 1) taught in each program based on information provided in the paper, online information about the program, or program manuals. For 15 trials, information was requested from the authors because available information was insufficient. For eight trials, authors reported sufficient information to include the trial in our analyses; seven trials had to be excluded due to insufficient information on included components. Because some parenting techniques share the same function (eg, praise and rewards are both used as positive reinforcement techniques), we coded techniques on two levels: general techniques (eg, positive reinforcement), and specific operationalizations of these general techniques (eg, praise and rewards).

Level of Prevention or Treatment. We coded trials as follows: (1) universal prevention if the program targeted general community samples (universal prevention therefore reflected that no selection criteria were used); (2) selective prevention if the program targeted families at higher risk for disruptive child behavior (selective prevention therefore reflected that families were selected based on known risk factors for the development of disruptive child behavior, for example, parenting difficulties or socioeconomic deprivation); (3) indicated prevention if the program targeted families with emerging disruptive child behavior (indicated prevention therefore reflected that children were screened for the study purposes, and included only when they showed subclinical or clinical levels of disruptive child behavior); and (4) treatment if the program targeted families who were referred or self-referred to outpatient clinics for children’s mental health problems (treatment therefore reflected that families received the parenting program in clinical settings).

Effect Size Calculation. We converted postintervention means and standard deviations into Cohen’s d values. We prioritized means and standard deviations that were analysis of covariance adjusted for baseline. When means and standard deviations were not reported, we used alternative summary statistics to calculate Cohen’s d values (eg, p values and sample sizes, or t test statistics). We included multiple effect sizes per trial if trials included multiple measures of parent-reported disruptive child behavior. For each effect size, we “differenced” the parenting techniques to create a binary variable indicating that the technique was taught in the intervention condition and not in the control condition (coded as 1), or that the technique was taught in neither or both conditions (coded as 0).

Risk of Bias. We assessed risk of bias in the included trials as high, low, or unclear using the Cochrane Collaboration tool. We followed the Cochrane Handbook’s standardized guidance on how to rate trials on random sequence generation, allocation concealment, blinding of assessors, blinding of providers and families (which is frequently impossible in psychosocial interventions), incomplete outcome data, selective reporting, and other sources of bias.

Analytic Strategy. We used a robust variance estimation approach in which the multiple effect sizes in included trials are weighted using an approximate variance—covariance matrix. This results in valid point estimates and significance tests even when the exact variance—covariance matrix
of effect sizes in included trials is unknown.27 We estimated the model with only between-trial variables, because very few trials included multiple intervention conditions that varied in the parenting techniques that they taught.

First, we estimated overall program effects per level of prevention. Second, we tested for each technique whether inclusion was associated with program effects. The meta-regression coefficients of this model represent the difference in effect size between trials that compare a parenting program with the target technique against a control, and trials that compare a parenting program without the target technique against a control. Third, we tested for each

<table>
<thead>
<tr>
<th>General Technique</th>
<th>Specific Operationalization</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Psychoeducation</td>
<td>Explaining child development</td>
<td>Parents are informed about general child development and parent–child interactions</td>
</tr>
<tr>
<td></td>
<td>Explaining parent–child interactions</td>
<td>Parents are informed about typical and atypical child development</td>
</tr>
<tr>
<td>Positive reinforcement</td>
<td>Praise</td>
<td>Verbally praise positive child behavior</td>
</tr>
<tr>
<td></td>
<td>Rewards</td>
<td>Reward positive child behavior with social and/or tangible rewards</td>
</tr>
<tr>
<td>Nonviolent disciplining</td>
<td>Time-out</td>
<td>React to disruptive child behavior with a time-out procedure</td>
</tr>
<tr>
<td></td>
<td>Ignore</td>
<td>React to disruptive child behavior with a time-out procedure</td>
</tr>
<tr>
<td></td>
<td>Natural/logical consequences</td>
<td>React to disruptive child behavior with natural and/or logical consequences (eg, take a toy away when the child plays too rough with it)</td>
</tr>
<tr>
<td>Proactive parenting</td>
<td>Direct and positive commands</td>
<td>Proactively prevent the occurrence of disruptive child behavior</td>
</tr>
<tr>
<td></td>
<td>Rule setting</td>
<td>Set rules about appropriate and inappropriate behavior</td>
</tr>
<tr>
<td></td>
<td>Monitoring</td>
<td>Invest in knowing what the child does and whom s/he plays with</td>
</tr>
<tr>
<td>Relationship enhancement</td>
<td>Parent-child play</td>
<td>Have daily play sessions with the child</td>
</tr>
<tr>
<td></td>
<td>Empathy</td>
<td>Understand what the child feels in different situations</td>
</tr>
<tr>
<td>Active listening</td>
<td>Emotion regulation skills</td>
<td>Techniques to improve parental well-being</td>
</tr>
<tr>
<td></td>
<td>Problem-solving skills</td>
<td>Generate and implement solutions to difficult parenting situations</td>
</tr>
<tr>
<td>Skills for parents themselves</td>
<td>Partner support</td>
<td>Improve partner relationships and co-parenting</td>
</tr>
<tr>
<td>Skills parents teach their children</td>
<td>Emotion regulation skills</td>
<td>Teach the child skills to improve her/his socioemotional development</td>
</tr>
<tr>
<td></td>
<td>Problem-solving skills</td>
<td>Teaching the child how to have words for emotions and how to regulate them</td>
</tr>
<tr>
<td></td>
<td>Social skills</td>
<td>Teaching the child how to interact with other children</td>
</tr>
</tbody>
</table>
technique whether inclusion (versus exclusion) interacted with whether the program was offered as prevention (versus treatment) in predicting program effects. In other words, we tested for each technique whether its merit depended on whether it was included in a program offered for either the prevention or treatment of disruptive behavior. Because we specifically tested components as moderators of intervention effects, we did not include covariates.

We did not test for publication bias. A standard assumption of tests for visualizing and examining publication bias, including funnel plots, Egger test, and trim-and-fill tests, is the independence of effect sizes. Because a key feature of our analysis strategy was the inclusion of all relevant effect sizes from each study, the standard tests were not applicable.

Meta-Analysis 2

In Meta-Analysis 2, we aimed to identify the parenting techniques that were associated with more sustained (ie, longer-term), relative to immediate, program effects.

Data Sources, Trial Selection, Inclusion Criteria. We identified randomized controlled trials on longer-term effects of parenting programs by updating the search from a previous meta-analysis (Table S2, available online). Inclusion criteria were the same as for Meta-Analysis 1, with the exception of a somewhat wider age range (children’s mean age between 1 and 11 years) and including both behavioral and nonbehavioral parenting programs. These wider inclusion criteria were necessary to include sufficient numbers of trials, as randomized trials of longer-term effects of parenting programs are relatively scarce. One author assessed abstracts and full texts of trials that were likely to meet inclusion criteria. Uncertainties and the final list of trials included in the review were checked with another author. The PRISMA flow diagram of Meta-Analysis 2 is presented in Figure S2, available online.

Data Extraction and Risk of Bias. We extracted the same data, effect sizes, and risk of bias indices as in Meta-Analysis 1. Meta-Analysis 2 included effect sizes based on multiple informants (ie, parents and teachers) and methods (ie, questionnaire and observation). In addition, we specified for each effect size when follow-up assessment took place, expressed in months after the end of the parenting program. Similar to Meta-Analysis 1, we “differenced” the parenting techniques for each effect size to create a binary variable indicating that the technique was taught in the intervention condition and not in the control condition (coded as 1), or that the technique was taught in neither or both conditions (coded as 0). Agreement between researchers coding the parenting techniques for Meta-Analysis 1 and Meta-Analysis 2 was 89%.

Analytic Strategy. We estimated a multilevel model to account for the multiple effect sizes, from different instruments and different assessment points, that cluster within trials. We estimated a random effects model with a compound symmetry correlation matrix within trials that assumes effect sizes from different measures of disruptive behavior to correlate $\rho = 0.80$. Time was a within-trial variable with intercept 0. One trial included multiple intervention conditions that differed in the techniques that they taught parents. We treated intervention versus control comparisons in this trial as separate trials to prevent spurious within-trial inference arising from low variation on techniques within trials. We estimated cross-level interactions (ie, technique \times assessment time within trials) to test the added effect of each of the target techniques over time. We did not include covariates.

RESULTS

Included Trials and Aggregate Effects

Meta-Analysis 1 included 154 trials and 398 effect sizes (Table S3, available online). The majority of the trials ($k = 95$; 62%) included children with subclinical or clinical levels of disruptive behavior (ie, indicated prevention or treatment). Other trials included community sample children or children growing up in families at higher risk for the development of disruptive child behavior (ie, universal or selective prevention; $k = 58$; 37%). The remaining trial included mixed selective prevention and treatment. On average across different levels of prevention and treatment, parenting programs reduced disruptive child behavior by almost half a standard deviation (Cohen’s $d = -0.47$; 95% CI -0.55 to -0.40).

Meta-Analysis 2 included 42 trials and 157 effect sizes (Table S4, available online). All trials contributed effect sizes for at least two assessment points after the end of the program. More specifically, 81% of the trials contributed effect sizes for at least 6 months after the end of the program, and 40% of the trials contributed effect sizes for at least 1 year after the end of the program. On average across assessment points, parenting programs reduced disruptive child behavior by almost one-third of a standard deviation (Cohen’s $d = -0.30$; 95% CI -0.38 to -0.27), with stability between immediate effects (Cohen’s $d = -0.30$ at 0 months after the program) and longer-term effects (Cohen’s $d = -0.31$ at 12 months after the program). The largely similar but somewhat wider inclusion criteria used for Meta-Analysis 2 led to a set of trials that partly overlapped with the set of trials in Meta-Analysis 1. Specifically, 52% of the trials in Meta-Analysis 2 was also included in Meta-Analysis 1.
With regard to risk of bias in both meta-analyses, older trials sometimes failed to describe how random sequences were generated and whether allocation was concealed. Participant blindness was not possible in any of the trials, because parents actively participated in the programs. Risk of bias was judged to be low on blinding of outcome assessors, addressing incomplete data, analyzing drop-outs, and selective outcome reporting.

Parenting Program Effects by Level of Prevention and Treatment (Meta-Analysis 1)

Parenting program effects in terms of reductions in disruptive behavior increased gradually per level of prevention and treatment (Figure 1). Universal prevention programs failed to yield significant effects ($d = -0.21$, 95% CI -0.52 to 0.10). Programs at all other levels of prevention and treatment yielded significant effects: selective prevention $d = -0.27$ (95% CI -0.36 to -0.17), indicated prevention $d = -0.55$ (95% CI -0.70 to -0.39), and treatment $d = -0.69$ (95% CI -0.84 to -0.54). Programs in universal and selective prevention were less effective than programs in indicated prevention and treatment ($\beta = 0.33$, $p < .001$). Differences between universal and selective prevention, and between indicated prevention and treatment, were not significant, as indicated by their overlapping 95% confidence intervals. For our analyses of interaction effects between parenting techniques and treatment setting, we therefore combined universal and selective prevention, and indicated prevention and treatment, into one dichotomized variable (ie, universal and selective prevention versus indicated prevention and treatment).

Parenting Techniques Associated With Stronger Overall Effects (Meta-Analysis 1)

Of the 26 techniques tested (Table S5, available online), three techniques were associated with stronger program effects (Table 2): positive reinforcement as a general technique ($\beta = -0.28$, 95% CI -0.61 to -0.15), praise as a specific operationalization of positive reinforcement ($\beta = -0.22$, 95% CI -0.43 to -0.02), and the use of natural or logical consequences as a disciplining technique ($\beta = -0.21$, 95% CI -0.38 to -0.05). Programs that included these techniques had stronger effects on reduced disruptive child behavior than programs that did not include these
techniques. There were trends for three additional techniques to be associated with stronger effects (time-out, proactive parenting as a general technique, and monitoring as a specific operationalization of proactive parenting), and for one technique to be associated with weaker effects (parental self-management), but these effects did not reach significance ($p = .062 - .094$). Thus, although few techniques seemed to make a difference, children’s disruptive behavior reduced more if programs taught parents to use reinforcements, and specifically praise, to increase positive child behavior, and to use natural or logical consequences to reduce disruptive behavior. Please note that β values in this context (Table 2) reflect the standardized additional reductions in disruptive child behavior in programs that include these techniques, compared to programs that do not include these techniques.

Parenting Techniques Associated with Stronger Prevention Versus Treatment Effects (Meta-Analysis 1)

Each of the three techniques associated with stronger overall effects turned out to be associated with stronger effects in indicated prevention and treatment only, as indicated by significant technique \times prevention versus treatment interaction effects (Table 3; interaction effect: $\beta = -0.34$ to -0.51, $p < .023$). We found similar interaction effects for four other techniques: relationship building as a general technique, parent-child play as a specific operationalization of relationship building, active listening, and parental self-management. These techniques were associated with stronger effects in indicated prevention and treatment only, and were either associated with weaker effects or not associated with effects in universal and selective prevention (interaction effect: $\beta = -0.30$ to -0.42, $p < .042$).

TABLE 2 Techniques Associated With Stronger or Weaker Parenting Program Effects on Disruptive Child Behavior

<table>
<thead>
<tr>
<th>Technique Present in Intervention (n)</th>
<th>Technique Absent in Intervention (n)</th>
<th>Effect Size (d) With This Technique</th>
<th>Effect Size (d) Without This Technique</th>
</tr>
</thead>
<tbody>
<tr>
<td>Psychoeducation</td>
<td>130</td>
<td>-0.43</td>
<td>-0.51</td>
</tr>
<tr>
<td>Explaining child developmental stages</td>
<td>117</td>
<td>-0.40</td>
<td>-0.51</td>
</tr>
<tr>
<td>Explaining parent-child interactions</td>
<td>106</td>
<td>-0.47</td>
<td>-0.48</td>
</tr>
<tr>
<td>Positive reinforcement techniques</td>
<td>359</td>
<td>-0.50**</td>
<td>-0.22</td>
</tr>
<tr>
<td>Praise</td>
<td>344</td>
<td>-0.50†</td>
<td>-0.29</td>
</tr>
<tr>
<td>Rewards</td>
<td>259</td>
<td>-0.44</td>
<td>-0.55</td>
</tr>
<tr>
<td>Disciplining techniques</td>
<td>366</td>
<td>-0.48</td>
<td>-0.44</td>
</tr>
<tr>
<td>Time-out</td>
<td>336</td>
<td>-0.49†</td>
<td>-0.35</td>
</tr>
<tr>
<td>Ignore</td>
<td>397</td>
<td>-0.50</td>
<td>-0.40</td>
</tr>
<tr>
<td>Natural/logical consequences</td>
<td>301</td>
<td>-0.52**</td>
<td>-0.32</td>
</tr>
<tr>
<td>Proactive parenting techniques</td>
<td>313</td>
<td>-0.50†</td>
<td>-0.37</td>
</tr>
<tr>
<td>Direct and positive commands</td>
<td>299</td>
<td>-0.49</td>
<td>-0.44</td>
</tr>
<tr>
<td>Rule setting</td>
<td>210</td>
<td>-0.44</td>
<td>-0.53</td>
</tr>
<tr>
<td>Monitoring</td>
<td>88</td>
<td>-0.70†</td>
<td>-0.43</td>
</tr>
<tr>
<td>Relationship enhancement techniques</td>
<td>176</td>
<td>-0.52</td>
<td>-0.44</td>
</tr>
<tr>
<td>Parent-child play</td>
<td>176</td>
<td>-0.52</td>
<td>-0.44</td>
</tr>
<tr>
<td>Empathy</td>
<td>9</td>
<td>-0.34</td>
<td>-0.48</td>
</tr>
<tr>
<td>Active listening</td>
<td>139</td>
<td>-0.57</td>
<td>-0.43</td>
</tr>
<tr>
<td>Skills for parents themselves</td>
<td>289</td>
<td>-0.38</td>
<td>-0.53†</td>
</tr>
<tr>
<td>Emotion regulation skills</td>
<td>150</td>
<td>-0.44</td>
<td>-0.51</td>
</tr>
<tr>
<td>Problem-solving skills</td>
<td>200</td>
<td>-0.46</td>
<td>-0.50</td>
</tr>
<tr>
<td>Partner support</td>
<td>25</td>
<td>-0.58</td>
<td>-0.47</td>
</tr>
<tr>
<td>Skills parents teach their children</td>
<td>106</td>
<td>-0.41</td>
<td>-0.50</td>
</tr>
<tr>
<td>Emotion regulation skills</td>
<td>92</td>
<td>-0.46</td>
<td>-0.48</td>
</tr>
<tr>
<td>Problem-solving skills</td>
<td>95</td>
<td>-0.41</td>
<td>-0.50</td>
</tr>
<tr>
<td>Social skills</td>
<td>92</td>
<td>-0.43</td>
<td>-0.49</td>
</tr>
</tbody>
</table>

Note: Differences in effect sizes between programs with or without the parenting technique were significant at the level of *$p < .05$; **$p < .01$; †$p < .10$. Effect sizes in boldface type differ significantly ($p < .05$); effect sizes in italic type show a nonsignificant trend ($p < .10$).
Within subgroup analyses (ie, within universal and selective prevention or, separately, within indicated prevention and treatment) further revealed that in indicated prevention and treatment, teaching time-out was associated with stronger effects (\(\beta = -0.26, 95\% \text{ CI} -0.50 \text{ to } -0.02 \)). In universal and selective prevention, teaching rule setting and parental problem solving skills were associated with weaker effects (\(\beta = 0.20, 95\% \text{ CI} = 0.04 \text{ to } 0.36 \) and \(\beta = 0.19, 95\% \text{ CI} = 0.02 \text{ to } 0.36 \), respectively). Please note that \(\beta \) values with a positive sign in this context in Table 3 reflect less reduction in disruptive child behavior, instead of an increase in disruptive child behavior. The other 16 techniques were associated with parenting program effects neither within prevention or treatment, nor did they interact with universal and selective prevention versus indicated prevention and treatment setting in predicting parenting program effects.

Parenting Techniques Associated With More Sustained Effects (Meta-Analysis 2)

None of the 26 techniques tested (Table S6, available online) were associated with obtaining more sustained parenting program effects on disruptive child behavior. In other words, none of the technique \(\times \) assessment point interaction terms significantly predicted parenting program effects (\(p > .11 \)).

DISCUSSION

Parenting programs for disruptive child behavior are complex interventions—they teach parents a multifaceted
tend to be stronger when children
versal prevention. It is well-known that intervention effects
when implemented as selective prevention, indicated pre-
tive to prevention, and whether different techniques are
are associated with intervention success in treatment, rela-
tive to prevention, and whether different techniques are
associated with longer-term, relative to short-term, effects.

Parenting programs reduced disruptive child behavior
when implemented as selective prevention, indicated pre-
vention, or treatment, but not when implemented as uni-
versal prevention. It is well-known that intervention effects
tend to be stronger when children’s disruptive behavior is
more severe.12,29 Our findings suggest that, on average, the
threshold between ineffective and effective intervention lies
between universal prevention and selective prevention: whereas universal prevention programs had no significant
effects, selective prevention had small but significant effects.

The immediate merit of universal prevention programs
might lie in reducing risk factors for disruptive behavior (eg,
harsh parenting) or in improving other aspects of child
development (eg, cognitive development), rather than in
reducing disruptive behavior. This might, in part, be
because of floor effects of the level of disruptive behavior in
universal prevention trials: when children hardly show any
disruptive behavior, it is hard to further reduce this
behavior. Also, the included trials varied substantially in the
effect sizes that they found for universal prevention, even
when evaluating the same program (eg, $d = \sim 0.10$ for
Triple P in Switzerland and Sweden, and $d = \sim 0.40$ for
Triple P in Hong Kong and Australia). These wide vari-
ations, and the fact that some large trials had null effects,
combined with the small number of trials (8 trials for
universal prevention, compared to >40 trials for all other
levels of prevention and treatment), meant that there was an
overall null effect. Although it was beyond the scope of our
meta-analysis to test moderation effects, there seemed to be
a trend that universal prevention programs were ineffective
in European countries specifically.

Of the 26 techniques tested, three techniques were
associated with stronger parenting program effects on
disruptive child behavior—namely, positive reinforcement
as a general technique, praise as a specific operationalization
of positive reinforcement, and the use of natural or logical
consequences as a nonviolent disciplining technique. Pro-
grams that included these techniques more effectively
reduced disruptive child behavior than programs that did
not include these techniques. One previous meta-analysis
identified various parenting techniques that were associ-
ated with parenting programs effects on disruptive child
behavior.9 In a meta-analytic sample twice as large, and by
using state-of-the-art methods that account for the multi-
level structure of meta-analytic data, our findings are
generally in line with this study. Importantly, however, our
study showed for the first time that some techniques that are
often assumed to be important for all parenting programs
(eg, time-out) seem to be important for parenting programs
in indicated prevention and treatment specifically.

The general picture that emerged was that adding
techniques (eg, relationship building, active listening, and
time-out) yielded stronger effects in indicated prevention
and treatment settings, whereas adding techniques (eg,
parental self-management) yielded weaker effects in uni-
versal and selective prevention settings. Although seemingly
counterintuitive, it is well established that “less can be
more” in psychosocial intervention.17 Our findings suggest
that in the context of parenting programs for disruptive
child behavior, this is the case for prevention programs
specifically. Two differences between treatment and pre-
vention settings may explain this. First, different parenting
techniques may be important for changing disruptive child
behavior at various stages of its development. Techniques
such as time-out may be effective to reduce problematic
levels of disruptive child behavior, but may not be necessary
to prevent disruptive child behavior. Second, and related to
children’s level of disruptive behavior, parents in treatment
and prevention settings may have different motivations,
expectations, and goals for participating.30,31 Our findings
highlight the importance of understanding of the specific
parenting techniques that should be targeted in different
settings.

In Meta-analysis 2, we found no evidence that some
parenting techniques are more important than others for
obtaining more sustained (ie, longer-term) reductions in
disruptive child behavior. Although some parenting tech-
niques may contribute to processes that need more time to
evolve (eg, relationship building and teaching children
emotional regulation skills),12,29 programs that teach these
techniques did not yield stronger longer-term effects than
programs that did not teach these techniques. Because
longer-term randomized comparisons of parenting programs
with control conditions are still relatively scarce, Meta-
analysis 2 (42 trials; 157 effect sizes) was less well-
powered than Meta-analysis 1 (154 trials; 398 effect
sizes). We therefore recommend replication of our findings
in a few years, when the evidence base for longer-term ef-
fects of parenting programs has hopefully expanded.
Several study limitations merit attention. First, we tested associations between parenting techniques and program effects. With associations, we can never rule out the possibility that other program characteristics that are confounded with these techniques are responsible for the superiority of some programs over others. A causal test of true additive effects of techniques requires randomized, within-study differences between families in the techniques taught, rather than between-study differences in techniques taught. Designs that achieve this, through multi-arm additive or disentangling trials, or factorial designs, are unfortunately rare in parenting program research. Second, Meta-Analysis 1 relied on parent-reported outcomes of disruptive child behavior. A recent meta-analysis, however, reassuringly shows that parenting program effects on disruptive child behavior tend to be of similar magnitude when based on independent observations. Third, although Meta-Analysis 1 included 398 effect sizes and was generally well powered, the fact that some techniques (eg, positive reinforcement) were taught in almost all programs, and other techniques (eg, empathy and monitoring) were taught in only a few programs, made our analyses better powered for some techniques than for other techniques. Fourth, and related to this, we tested only the associations between individual techniques and program effects. Although empirically understudied, the merit of certain parenting techniques might depend on the presence or absence of other parenting techniques, or on the order in which techniques are taught (eg, teaching positive parenting practices before disciplining techniques). Testing hypotheses about interaction effects between techniques on program effects requires more power than currently allowed for by the meta-analytic data available in this field.

Future research should invest in designing studies that allow for causal conclusions about the parenting techniques that increase program effects when added to a program, or that comprise program effects when left out. In addition, we need a roadmap for meaningfully defining and classifying the parenting techniques taught in parenting programs for disruptive child behavior. We distinguished between higher-level techniques (eg, positive reinforcement, reflecting the function of a technique), and lower-level techniques (eg, praise, reflecting the form of a technique). A better understanding of how well lower-level techniques fulfill their expected function (eg, whether praise indeed acts as a positive reinforcement) is needed to improve our understanding of why some techniques lead to stronger reductions in disruptive child behavior.

In clinical practice, most prevention programs for disruptive child behavior are clones of treatment programs. Our findings highlight the need to reconsider this approach. Although the evidence base for parenting programs is well documented (eg, Blueprints in the United States, National Institute for Health and Care Excellence in the United Kingdom), clearinghouses tend to focus on general labels for programs as “evidence based” or “promising.” These general labels mask meaningful differences between settings in which programs are less or more effective. Our findings show that families in universal and selective prevention, compared to families in indicated prevention and treatment, may benefit from different program content. We therefore encourage guidelines to include information on differential effectiveness in addition to overall labels of effectiveness.

In conclusion, parenting programs yield the strongest effects on disruptive child behavior in indicated prevention and treatment settings, and are not generally effective in universal prevention settings. Our findings further suggest that programs that teach positive reinforcement (specifically praise) to increase positive child behavior, and those that teach the use of natural and logical consequences to reduce disruptive child behavior, are more successful than programs that do not teach these techniques. In indicated prevention and treatment, adding techniques (eg, parent—child play, active listening) yielded stronger program effects, whereas we found no evidence for this in universal and selective prevention settings. Our findings call for more differentiation in the content of parenting programs implemented either to prevent or to treat disruptive child behavior.
REFERENCES

